JPH03233271A - Snow gun - Google Patents

Snow gun

Info

Publication number
JPH03233271A
JPH03233271A JP2907590A JP2907590A JPH03233271A JP H03233271 A JPH03233271 A JP H03233271A JP 2907590 A JP2907590 A JP 2907590A JP 2907590 A JP2907590 A JP 2907590A JP H03233271 A JPH03233271 A JP H03233271A
Authority
JP
Japan
Prior art keywords
water
compressed air
snow gun
pressure water
snow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2907590A
Other languages
Japanese (ja)
Other versions
JPH0660775B2 (en
Inventor
Naoji Isshiki
一色 尚次
Masuhito Takahashi
高橋 益人
Masahiro Taniguchi
正宏 谷口
Yoshihiro Doi
土肥 義洋
Takaharu Tsunoda
角田 隆晴
Sunao Miyauchi
直 宮内
Takefumi Hirafuji
平藤 武文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2907590A priority Critical patent/JPH0660775B2/en
Publication of JPH03233271A publication Critical patent/JPH03233271A/en
Publication of JPH0660775B2 publication Critical patent/JPH0660775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C3/00Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow
    • F25C3/04Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow for sledging or ski trails; Producing artificial snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2303/00Special arrangements or features for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Special arrangements or features for producing artificial snow
    • F25C2303/048Snow making by using means for spraying water
    • F25C2303/0481Snow making by using means for spraying water with the use of compressed air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)

Abstract

PURPOSE:To make a diameter of atomized particle small and improve an efficiency in atomization as well as a snow making by a method wherein a circulating compressed air in an opposite direction is struck against a water flow of high pressure injected from a water nozzle outlet against a gas-water striking part at a high relative speed. CONSTITUTION:A high pressure water moving system X having water nozzle outlets 5B opened at gas-water striking parts 8X concentrically formed is arranged at a front end of a metering chamber 6. A compressed air moving system Y is provided with a compressed air feeding pipe 7 fixed at a position eccentric from a longitudinal axis C of a main body 1 of a snow gun for use in circulating the compressed air within a main body 1 of the snow gun in a opposite direction of the circulating direction of water flow of high speed and high pressure, and with an annular passage 8 concentric with the longitudinal axis C of the main body 1 of the snow gun for circulating the compressed air flow flowed out of the feeding pipe 7 toward the gas-water striking part 8X while being gradually metered. Atomization nozzle ports 9 for use in injecting the atomized water are formed at the gas-water striking part 8X on the front end longitudinal axis C of the main body 1 of the snow gun.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、スキー場に供給する人工雪を大量に造雪する
スノーガンに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a snow gun that makes a large amount of artificial snow to supply to ski resorts.

[従来の技術] スキー場に供給する人工雪を造雪するスノーガンとして
、例えば、特公昭59−11835号公報に開示されて
いる構造のものが既に知られている。
[Prior Art] As a snow gun for making artificial snow to be supplied to ski resorts, for example, one having a structure disclosed in Japanese Patent Publication No. 11835/1983 is already known.

この種のスノーガンは、第4図に示すように、実線矢印
で示すうす巻き状に流れる高圧水と、破線矢印で示す直
線状に流れる圧縮空気流とを衝突させて霧を生成し、圧
縮空気噴射管Aの前方に開口している霧ノズル出口aか
ら噴出させ、低温外気の冷却作用によって造雪するよう
に構成されている。
As shown in Figure 4, this type of snow gun generates mist by colliding high-pressure water flowing in a thin spiral, indicated by the solid line arrow, with a compressed air stream flowing in a straight line, indicated by the dashed line. The fog is ejected from a fog nozzle outlet a opened at the front of the spray pipe A, and is configured to make snow by the cooling effect of low-temperature outside air.

[発明が解決しようとする課題] ところで、造雪効率を向上させるためには、霧化効率を
向上させる必要があり、霧化効率の向上は空気と水の衝
突による霧の生成を良好にし、かつ霧径をできるだけ小
径にすることが要請される。そして、良好な霧の生成と
霧径の小径化は、空気と水が衝突する場合の接触面積の
増大および気水衝突時の相対速度の大きさに依存すると
されている。
[Problems to be Solved by the Invention] By the way, in order to improve snow-making efficiency, it is necessary to improve atomization efficiency, and improving atomization efficiency improves the formation of fog by the collision of air and water. In addition, it is required to make the mist diameter as small as possible. It is said that good fog generation and reduction of the mist diameter depend on an increase in the contact area when air and water collide and on the magnitude of the relative velocity at the time of air-water collision.

しかし、前記従来のスノーガンでは、圧縮空気噴射管A
から直線状に噴射した圧縮空気流に対して、うす巻き状
の高圧水流を衝突させるようにしているだけのものであ
るから、水と空気との接触面積を大きく確保することが
困難であり、かつ圧縮空気も増速させることなく、単に
圧縮空気噴射管Aから直線状に噴射させているのに過ぎ
ないため、大きい相対速度によって気水衝突を行なうこ
とが期待できない、したがって、良好な気水衝突状態お
よび霧径の小径化の点に関しては、いささか不十分であ
り、霧化効率と造雪効率に劣る問題点を有している。
However, in the conventional snow gun, the compressed air injection pipe A
Since this method simply collides a thinly coiled high-pressure water stream with a compressed air stream injected in a straight line from the air, it is difficult to ensure a large contact area between water and air. In addition, since the compressed air is simply injected in a straight line from the compressed air injection pipe A without increasing its speed, it cannot be expected that air-water collision will occur due to a large relative velocity. It is somewhat insufficient in terms of collision conditions and reduction of the mist diameter, and has problems with poor atomization efficiency and snow-making efficiency.

本発明は、このような事情に鑑みなされたもので、良好
な気水衝突状態および霧径の小径化の達成により、霧化
効率と造雪効率の向上を実現できるスノーガンの提供を
目的としている。
The present invention was made in view of the above circumstances, and aims to provide a snow gun that can improve atomization efficiency and snow-making efficiency by achieving good air-water collision conditions and reducing the diameter of the mist. .

[課題を解決するための手段] 前記目的を達成するために、本発明に係るスノーガンは
、スノーガン本体部の縦軸線から偏心した位置に取付け
られ高圧水をスノーガン本休部内で旋回させるようにに
導入する高圧水導入管と、スノーカン本休部内に形成さ
れて前記導入管から流出した高圧水流を旋回させる旋回
室と、この旋回室の前側に連通形成されて旋回室から流
出した高圧水流を絞りながら旋回移動させる先細截頭円
錐形の空間によって形成されたスノーガン本体部の縦軸
線と同心の絞り室と、この絞り室の前端部に同心に形成
され気水衝突部に開口する水ノズル出口とからなる高圧
水移動系を有し、スノーガン本体部の縦軸線から偏心し
た位置に取付けられ圧縮空気をスノーガン本休部内で高
速でかつ高圧水流の旋回方向の反対方向に旋回させるよ
うに導入する圧縮空気導入管と、この圧縮空気導入管か
ら流出した圧縮空気流を前記気水衝突部に向けて徐々に
絞りながら旋回移動させるスノーガン本体部の縦軸線と
同心の環状の絞り通路とからなる圧縮空気移動系を備え
、スノーガン本体部の前端部縦軸線上に前記気水衝突部
で生成された霧を噴出させる霧ノズル出口が形成されて
いるものである。
[Means for Solving the Problems] In order to achieve the above object, the snow gun according to the present invention is mounted at a position eccentric from the vertical axis of the snow gun main body so that high-pressure water is swirled within the main rest part of the snow gun. A high-pressure water introduction pipe to be introduced, a swirling chamber formed within the snow can main break section for swirling the high-pressure water flow flowing out from the introduction pipe, and a swirling chamber formed in communication with the front side of the swirling chamber to throttle the high-pressure water flow flowing out from the swirling chamber. A squeezing chamber concentric with the vertical axis of the snow gun body formed by a tapered truncated conical space that rotates while moving, and a water nozzle outlet that is formed concentrically at the front end of the squeezing chamber and opens to the air-water collision part. It has a high-pressure water moving system consisting of a compressor, which is installed at a position eccentric from the vertical axis of the snow gun main body and introduces compressed air into the main rest part of the snow gun so as to swirl it at high speed and in the opposite direction to the swirling direction of the high-pressure water flow. Compressed air consisting of an air introduction pipe and an annular constriction passage concentric with the vertical axis of the snow gun body, which rotates the compressed air flow flowing out from the compressed air introduction pipe toward the air-water collision part while gradually constricting it. The snow gun includes a moving system, and has a fog nozzle outlet formed on the longitudinal axis of the front end of the snow gun body for spouting the fog generated at the air/water collision part.

[作用] 本発明によれば、高圧水移動系の高圧水導入管からスノ
ーガン本体部の内部に導入された高圧水流は、旋回室内
において、例えば右まわりに旋回する。
[Operation] According to the present invention, the high-pressure water flow introduced into the snow gun main body from the high-pressure water introduction pipe of the high-pressure water transfer system swirls, for example, clockwise in the swirling chamber.

旋回室から絞り室に流下した高圧水流は、絞られること
によって流速を高められながら旋回し、水ノズル出口か
ら気水衝突部に噴射される。
The high-pressure water flow that has flown down from the swirling chamber to the throttle chamber is throttled, swirls while increasing its flow velocity, and is injected from the water nozzle outlet to the air-water collision area.

水ノズル出口から気水衝突部に噴射された高圧水流は、
遠心力によって旋回半径を拡大され、この拡大された旋
回軌道に沿って、薄い水膜状になって旋回する。
The high-pressure water stream injected from the water nozzle outlet to the air-water collision area is
Its turning radius is expanded by centrifugal force, and it turns along this expanded turning trajectory in the form of a thin film of water.

一方、圧縮空気移動系の圧縮空気導入管からスノーガン
本体部の内部に導入された圧縮空気流は、前記高圧水流
の反対方向(左まわり)に旋回しながら環状の絞り通路
を流下することによって絞られ、かつ流速が高められる
On the other hand, the compressed air flow introduced into the snow gun body from the compressed air introduction pipe of the compressed air transfer system is throttled by flowing down the annular throttle passage while swirling in the opposite direction (counterclockwise) to the high-pressure water flow. flow rate is increased.

環状の絞り通路は、圧縮空気流を徐々に絞りながら旋回
移動させることができるように形成されているから、圧
縮空気流を層流もしくは層流に近い流れに整流して気水
衝突部に導くことができる気水衝突部では、整流されて
高速で旋回する圧縮空気流が前述の薄い水膜状になって
旋回している高圧水流に衝突する。この場合、高圧水流
と圧縮空気流とは、互いに反対方向に旋回しているため
、大きい相対速度で衝突することになる。つまり、整流
されて高速で旋回している圧縮空気流を薄い水膜状にな
って反対方向に旋回している高圧水流に大きい相対速度
で衝突させることによって、気水衝突状態が良好になり
、霧径を小径化できる。
The annular constriction passage is formed so that the compressed air flow can be rotated while being gradually constricted, so the compressed air flow is rectified into a laminar flow or a near-laminar flow and guided to the air-water collision area. In the air-water collision area, the compressed air flow that is rectified and swirls at high speed collides with the swirling high-pressure water flow in the form of a thin water film. In this case, the high-pressure water stream and the compressed air stream are swirling in opposite directions, so they collide with each other at high relative speeds. In other words, by colliding a rectified compressed air flow that is swirling at high speed with a high-pressure water flow that is swirling in the opposite direction in the form of a thin water film at a large relative speed, the air-water collision condition is improved. The mist diameter can be reduced.

[実施例] 以下、本発明の実施例を図面に基づいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.

第1図は上半部の正面図、第2図は上半部の縦断側面図
、第3図は上半部の背面図を示し、これらの図において
、スノーガン本体部1は筒状の基部IAと、この筒状の
基部IAの前端面に環状のスペーサIBを介して固着さ
れるフランジ状の前体部IDおよび筒状の基部IAの後
端面に固着されるフランジ状の後体部IEとから構成さ
れ、高圧水移動系Xと圧縮空気移動系Yとを具備してい
る。
Fig. 1 shows a front view of the upper half, Fig. 2 shows a vertical side view of the upper half, and Fig. 3 shows a rear view of the upper half. IA, a flange-shaped front body part ID fixed to the front end surface of the cylindrical base IA via an annular spacer IB, and a flange-shaped rear body part IE fixed to the rear end surface of the cylindrical base IA. It is comprised of a high-pressure water transfer system X and a compressed air transfer system Y.

フランジ状の後体部IEの後面に高圧水移動系Xの高圧
水導入管3が取付けられている。この高圧水導入管3は
、ポンプによってなる高圧水供給源2から管路2Aを経
て供給される高圧水をスノーガン本体部1内で旋回させ
るように導入するためのもので、スノーガン本体部1の
縦軸線Cから側方に偏心した位置に、前部りに傾斜して
取付けられ、旋回室4に開口している。したがって、高
圧水導入管3から流出した高圧水流は、旋回室4内にお
いて、正面側から見て右まわりに旋回する高圧水移動系
Xの旋回室4はフランジ状の後体部IEの前部に凹設さ
れたスノーガン本体部1の縦軸線Cと同心の環状溝4A
と、スノーガン本体部l内において縦軸線Cと同心にフ
ランジ状の後体部IEに対向して取付けられたすり林状
部材5の外周縁部5Aの後面とで囲まれた環状空間によ
って形成されており、該旋回室4の前側に前記すり林状
部材5の周壁部で囲まれた、先細截頭円錐形の空間によ
ってなる絞り室6が連通形成され、この絞り室6の前側
にスノーガン本体部lの縦軸線Cと同心の水ノズル出口
5Bが形成され、該水ノズル出口5Bは気水衝突部8x
に開口している筒状の基部IAの上端部に圧縮空気移動
系Yの圧縮空気導入管7が取付けられている。この圧縮
空気導入管7は、ニアコンプレッサーによってなる圧縮
空気供給源7Aから管路7Bを経て供給される圧縮空気
をスノーガン本体部l内で前記高圧水流よりも高速かつ
高圧水流の反対方向に旋回させるように導入するための
もので、スノーガン本体部lの上端部から接線方向に延
出して取付けられ、筒状の基部IAの内部に開口してい
る。したがって、圧縮空気導入管7から流出した圧縮空
気流は、筒状の基部IA内において正面側から見て左ま
わりに旋回する。
A high-pressure water introduction pipe 3 of a high-pressure water transfer system X is attached to the rear surface of the flange-shaped rear body portion IE. This high-pressure water introduction pipe 3 is for introducing high-pressure water supplied through a pipe line 2A from a high-pressure water supply source 2 consisting of a pump into the snow gun main body 1 so as to swirl it inside the snow gun main body 1. It is installed at a position eccentric to the side from the longitudinal axis C, inclined toward the front, and opens into the turning chamber 4. Therefore, the high-pressure water flow flowing out from the high-pressure water introduction pipe 3 is directed to the front part of the flange-shaped rear body part IE of the high-pressure water transfer system An annular groove 4A concentric with the vertical axis C of the snow gun main body 1 recessed in the
It is formed by an annular space surrounded by the rear surface of the outer circumferential edge part 5A of the forest-like member 5, which is installed in the snow gun main body part L so as to be concentric with the longitudinal axis C and facing the flange-like rear part IE. A squeezing chamber 6 formed by a tapered truncated conical space surrounded by the peripheral wall of the forest-like member 5 is formed in communication with the front side of the swirling chamber 4, and a snow gun main body is formed on the front side of the squeezing chamber 6. A water nozzle outlet 5B is formed which is concentric with the longitudinal axis C of part l, and the water nozzle outlet 5B is connected to the air-water collision part 8x.
A compressed air introduction pipe 7 of the compressed air moving system Y is attached to the upper end of the cylindrical base IA that is open to the cylindrical base IA. This compressed air introduction pipe 7 swirls compressed air supplied via a pipe line 7B from a compressed air supply source 7A consisting of a near compressor within the snow gun main body l at a higher speed than the high pressure water flow and in the opposite direction of the high pressure water flow. It is attached to extend tangentially from the upper end of the snow gun main body l, and opens into the interior of the cylindrical base IA. Therefore, the compressed air flow flowing out from the compressed air introduction pipe 7 turns counterclockwise within the cylindrical base IA when viewed from the front side.

圧縮空気移動系Yの環状の絞り通路8は、圧縮空気導入
管7から筒状の基部IA内に流出した圧縮空気流を前記
気水衝突部8xに向けて徐々に絞りながら旋回移動させ
るためのもので、すり林状部材5の前面に形成された略
く字状を呈する後面8Aとこの後面8Aの前側に対向配
置された円弧状に膨出する前面8Bおよび筒状の基部l
Aの内面によって囲まれた環状空間によって形成されて
おり、径外部後方より径内部前方にかけて通路断面積が
徐々に縮小されるように構成されてシ)る。
The annular throttle passage 8 of the compressed air moving system Y is for rotating the compressed air flowing out from the compressed air introduction pipe 7 into the cylindrical base IA toward the air-water collision part 8x while gradually constricting it. A substantially dogleg-shaped rear surface 8A formed on the front surface of the forest-like member 5, a front surface 8B bulging in an arc shape disposed opposite to the rear surface 8A, and a cylindrical base l.
It is formed by an annular space surrounded by the inner surface of A, and is configured such that the passage cross-sectional area gradually decreases from the rear of the radial outside to the front of the radial inside.

そして、該環状の絞り通路8の前端部にスノーガン本体
部1の縦軸線Cと同心の霧ノズル出口9が形成されてい
る。
A fog nozzle outlet 9 is formed at the front end of the annular throttle passage 8 and is coaxial with the longitudinal axis C of the snow gun main body 1.

即ち、円弧状に膨出する前面8Aはフランジ状の前体部
IDの後部に形成され、霧ノズル出口9はフランジ状の
前体部IDの中心部を貫通して形成されている。
That is, the front surface 8A that bulges out in an arc shape is formed at the rear of the flange-like front body ID, and the mist nozzle outlet 9 is formed to pass through the center of the flange-like front body ID.

つぎに、前記構成の作用について説明する。Next, the operation of the above configuration will be explained.

高圧水移動系Xの高圧水導入管3からスノーガン本体部
1の内部に導入された高圧水流は、旋回室4内において
、例えば右まわりに旋回する。
The high-pressure water flow introduced into the snow gun main body 1 from the high-pressure water introduction pipe 3 of the high-pressure water transfer system X swirls, for example, clockwise within the swirling chamber 4.

旋回室4から絞り室6に流下した高圧水流は、絞られる
ことによって流速を高められながら旋回し、水ノズル出
口5Bから気水衝突部8xに噴射される。
The high-pressure water flow that has flowed down from the swirling chamber 4 to the throttle chamber 6 is throttled, swirls while being increased in flow velocity, and is injected from the water nozzle outlet 5B to the air-water collision part 8x.

水ノズル出口5Bから気水衝突部8xに噴射された高圧
水流は、遠心力によって旋回半径を拡大され、この拡大
された旋回軌道に沿って、薄い水膜状になって旋回する
The high-pressure water stream injected from the water nozzle outlet 5B to the air-water collision part 8x has its turning radius expanded by centrifugal force, and turns in the form of a thin water film along this expanded turning trajectory.

一方、圧縮空気移動系Yの圧縮空気導入管7からスノー
ガン本体部lの内部に導入された圧縮空気流は、前記高
圧水流の反対方向(左まわり)に旋回しながら環状の絞
り通路8を流下することによって絞られ、かつ流速が高
められる。
On the other hand, the compressed air flow introduced into the snow gun main body l from the compressed air introduction pipe 7 of the compressed air moving system Y flows down the annular throttle passage 8 while rotating in the opposite direction (counterclockwise) to the high-pressure water flow. This reduces the flow rate and increases the flow rate.

環状の絞り通路8は、圧縮空気流を徐々に絞りながら旋
回移動させることができるように形成されているから、
圧縮空気流を層流もしくは層流に近い流れに整流して気
水衝突部8xに導くことができる。
The annular throttle passage 8 is formed so that the compressed air flow can be rotated while being gradually throttled.
The compressed air flow can be rectified into a laminar flow or a nearly laminar flow and guided to the air/water collision part 8x.

気水衝突部8xでは、整流されて高速で旋回する圧縮空
気流が前述の薄い水膜状になって旋回している高圧水流
に衝突する。この場合、高圧水流と圧縮空気流とは、互
いに反対方向に旋回しているため、大きい相対速度で衝
突することになる。
In the air/water collision section 8x, the rectified compressed air flow swirling at high speed collides with the swirling high-pressure water flow in the form of a thin water film. In this case, the high-pressure water stream and the compressed air stream are swirling in opposite directions, so they collide with each other at high relative speeds.

つまり、整流されて高速で旋回している圧縮空気流が薄
い水膜状になって反対方向に旋回している高圧水流に大
きい相対速度で衝突することになるその結果、気水衝突
状態が良好になり、霧径を小径化でき、霧化効率が大幅
に向上し、造雪効率を向上させることができる。
In other words, the compressed air flow that is rectified and swirls at high speed becomes a thin film of water and collides with the high-pressure water flow that is swirling in the opposite direction at a large relative speed.As a result, the air-water collision condition is good. As a result, the diameter of the mist can be reduced, the atomization efficiency can be greatly improved, and the snow-making efficiency can be improved.

圧縮空気流の流速および流量を高圧水流の流速および流
量よりも大きく設定しておくことで、高圧水流と圧縮空
気流の気水衝突流体は、圧縮空気流の旋回方向(左まわ
り)に旋回することになるなお、本発明に係るスノーガ
ンによって生成された霧径は、従来のスノーガンによっ
て生成された霧径の約70%に縮小されたことが実験に
より確認できた。
By setting the flow velocity and flow rate of the compressed air flow to be larger than the flow velocity and flow rate of the high pressure water flow, the air-water collision fluid between the high pressure water flow and the compressed air flow will swirl in the swirling direction (counterclockwise) of the compressed air flow. In addition, it was confirmed through experiments that the diameter of the mist generated by the snow gun according to the present invention was reduced to about 70% of the diameter of the mist generated by the conventional snow gun.

[発明の効果] 本発明は、前述のように構成されているので、以下に記
載されるような効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it produces the following effects.

即ち、水ノズル出口から気水衝突部に噴射され、遠心力
によって拡大された旋回軌道に沿って、薄い水膜状にな
って旋回する高圧水流に対して、環状の絞り通路を流下
することにより絞られ、かつ流速が高められた反対方向
の旋回圧縮空気流を大きい相対速度で衝突させることが
できるので、気水衝突状態が良好になり、霧径を小径化
でき、霧化効率と造雪効率の向上を実現できる。
In other words, the high-pressure water stream is injected from the water nozzle outlet into the air-water collision area and swirls in a thin film of water along a swirling trajectory expanded by centrifugal force, by flowing down an annular constriction passage. Since the swirling compressed air flows in opposite directions that are constricted and have increased flow speeds can collide with each other at a high relative velocity, the air-water collision condition is improved, the mist diameter can be reduced, and the atomization efficiency and snow making can be improved. Improved efficiency can be achieved.

また、環状の絞り通路によって、圧縮空気流が徐々に絞
られながら旋回移動するので、圧縮空気流を層流もしく
は層流に近い流れに整流して気水衝突部に導くことがで
きるため、振動および騒音の大幅な低減を達成できる。
In addition, since the compressed air flow is gradually constricted and rotated by the annular throttle passage, the compressed air flow can be rectified into a laminar flow or a near-laminar flow and guided to the air-water collision area, which reduces vibration. and a significant reduction in noise can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の実施例を示し、第1図は
上半部の正面図、第2図は上半部の縦断側面図、第3図
は上半部の背面図であり、第4図は従来例の概略説明図
である。 l・・・スノーガン本体部 3・・・高圧水導入管 4・・・水旋回室 5B・・・水ノズル出口 6・・・絞り室 7・・・圧縮空気導入管 8・・・環状の絞り通路 8x・・・気水衝突部 9・・・フランジ状の前体部 C・・・スノーガン本体部の縦軸線 X・・・高圧水移動系 Y・・・圧縮空気移動系
Figures 1 to 3 show embodiments of the present invention; Figure 1 is a front view of the upper half, Figure 2 is a vertical side view of the upper half, and Figure 3 is a rear view of the upper half. 4 is a schematic explanatory diagram of a conventional example. l... Snow gun main body 3... High pressure water introduction pipe 4... Water swirling chamber 5B... Water nozzle outlet 6... Throttle chamber 7... Compressed air introduction pipe 8... Annular throttle Passage 8x... Air-water collision part 9... Flange-shaped front body C... Vertical axis of snow gun main body X... High-pressure water moving system Y... Compressed air moving system

Claims (1)

【特許請求の範囲】[Claims] スノーガン本体部の縦軸線から偏心した位置に取付けら
れ高圧水をスノーガン本体部内で旋回させるようにに導
入する高圧水導入管と、スノーガン本体部内に形成され
て前記導入管から流出した高圧水流を旋回させる旋回室
と、この旋回室の前側に連通形成されて旋回室から流出
した高圧水流を絞りながら旋回移動させる先細截頭円錐
形の空間によって形成されたスノーガン本体部の縦軸線
と同心の絞り室と、この絞り室の前端部に同心に形成さ
れ気水衝突部に開口する水ノズル出口とからなる高圧水
移動系を有し、スノーガン本体部の縦軸線から偏心した
位置に取付けられ圧縮空気をスノーガン本休部内で高速
でかつ高圧水流の旋回方向の反対方向に旋回させるよう
に導入する圧縮空気導入管と、この圧縮空気導入管から
流出した圧縮空気流を前記気水衝突部に向けて徐々に絞
りながら旋回移動させるスノーガン本体部の縦軸線と同
心の環状の絞り通路とからなる圧縮空気移動系を備え、
スノーガン本体部の前端部縦軸線上に前記気水衝突部で
生成された霧を噴出させる霧ノズル出口が形成されてい
ることを特徴とするスノーガン。
A high-pressure water introduction pipe is installed at a position eccentric from the vertical axis of the snow gun body and introduces high-pressure water so as to swirl it inside the snow gun body, and a high-pressure water introduction pipe is formed inside the snow gun body and swirls the high-pressure water flow flowing out from the introduction pipe. A squeezing chamber concentric with the vertical axis of the snow gun body, which is formed by a swirling chamber that communicates with the front side of the swirling chamber and that rotates while squeezing the high-pressure water flow flowing out from the swirling chamber. It has a high-pressure water transfer system consisting of a water nozzle outlet formed concentrically at the front end of this squeezing chamber and opening into the air-water collision area, and is installed at a position eccentric from the vertical axis of the snow gun body to supply compressed air. A compressed air introduction pipe is introduced into the snow gun main rest part so as to swirl at high speed in a direction opposite to the swirling direction of the high pressure water flow, and the compressed air flow flowing out from this compressed air introduction pipe is gradually directed toward the air water collision part. Equipped with a compressed air movement system consisting of an annular throttle passage concentric with the vertical axis of the snow gun body, which rotates while squeezing the snow gun.
A snow gun, characterized in that a fog nozzle outlet is formed on the longitudinal axis of the front end of the snow gun main body for spouting out the mist generated in the air/water collision part.
JP2907590A 1990-02-08 1990-02-08 snow gun Expired - Lifetime JPH0660775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2907590A JPH0660775B2 (en) 1990-02-08 1990-02-08 snow gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2907590A JPH0660775B2 (en) 1990-02-08 1990-02-08 snow gun

Publications (2)

Publication Number Publication Date
JPH03233271A true JPH03233271A (en) 1991-10-17
JPH0660775B2 JPH0660775B2 (en) 1994-08-10

Family

ID=12266233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2907590A Expired - Lifetime JPH0660775B2 (en) 1990-02-08 1990-02-08 snow gun

Country Status (1)

Country Link
JP (1) JPH0660775B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110686436A (en) * 2018-07-06 2020-01-14 河南晋安机械科技有限公司 Snow maker head
CN114251887A (en) * 2022-01-14 2022-03-29 中国飞机强度研究所 Snow making machine and application thereof in airplane test

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110686436A (en) * 2018-07-06 2020-01-14 河南晋安机械科技有限公司 Snow maker head
CN114251887A (en) * 2022-01-14 2022-03-29 中国飞机强度研究所 Snow making machine and application thereof in airplane test

Also Published As

Publication number Publication date
JPH0660775B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
JP2597410B2 (en) Foam-off nozzle structure with barrel screen insert for triggered atomizer
US5868321A (en) Enhanced efficiency atomizing and spray nozzle
EP3356052A1 (en) Pressurized air assisted full cone spray nozzle assembly
CN208554675U (en) A kind of low pressure internal-mixing two-fluid spray nozzle
JP2005052754A (en) Spray nozzle
CN111097611A (en) Water-gas mixing atomizing nozzle and atomizing device
CN109277220B (en) Dry ice cleaning nozzle with function of stabilizing flow direction of dry ice
US6129154A (en) Spray nozzle, especially for spraying water in fire prevention systems
CN111001107A (en) Combined pressure rotational flow open type water mist spray head applied to large-scale passenger liner
CN211801733U (en) Water-gas mixing atomizing nozzle and atomizing device
JPH03233271A (en) Snow gun
CN108480345A (en) A kind of spiral vessel surface washer jet
GB2075866A (en) Shower fitting
WO2012134357A1 (en) Vortical jet sprayer
CN109812364B (en) A kind of valve seat and spiral inclined in type nozzle
JPH03233273A (en) Snow gun
JPH03233272A (en) Snow gun
CN113798076A (en) Double-fluid nozzle
CN201072313Y (en) Sprayer
CN1158756A (en) Dust diffusion-preventing spray precipitation method and its nozzle
CN212468538U (en) Nozzle capable of realizing synergistic atomization of bubbles
JPH1057844A (en) Pressure fluid nozzle
CN2282071Y (en) Dustfall nozzle for preventing dust from diffusion
CN208542705U (en) Collision type vessel surface washer jet
CN220610881U (en) Atomizer