JPH0660906A - Organic compound battery - Google Patents

Organic compound battery

Info

Publication number
JPH0660906A
JPH0660906A JP4208014A JP20801492A JPH0660906A JP H0660906 A JPH0660906 A JP H0660906A JP 4208014 A JP4208014 A JP 4208014A JP 20801492 A JP20801492 A JP 20801492A JP H0660906 A JPH0660906 A JP H0660906A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
propylene carbonate
solution
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4208014A
Other languages
Japanese (ja)
Inventor
Yoshiko Sato
佳子 佐藤
Yasushi Uemachi
裕史 上町
Tadashi Tonomura
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4208014A priority Critical patent/JPH0660906A/en
Publication of JPH0660906A publication Critical patent/JPH0660906A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a battery allowing a large-current charge/discharge at the room temperature and excellent in reversibility without impairing the feature that a positive electrode using an active material made of a disulfide compound has a high energy density. CONSTITUTION:A battery is constituted of a positive electrode 5 using an active material made of a disulfide compound and a negative electrode 3 made of metal lithium. An electrolyte dissolved with alkaline metal salt is used for an electrolyte portion, and propylene carbonate or a mixed liquid of propylene carbonate and dimethoxyethane is used for its composition. Sufficient ion conductivity is obtained at the room temperature, and a large-current charge/discharge is allowed. The electrolyte infiltrates into the composite positive electrode 5, the practical contact area is remarkably increased, and a positive electrode capacity of about 100% can be obtained. The reversibility of reaction is improved, and the cycle characteristic is stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ジスルフィド系化合物
を正極活物質として用いた二次電池に関するものであ
る。
TECHNICAL FIELD The present invention relates to a secondary battery using a disulfide compound as a positive electrode active material.

【0002】[0002]

【従来の技術】導電性高分子を電極材料に用いると、軽
量で高エネルギー密度の電池や大面積のエレクトロクロ
ミック素子、微小電極を用いた生物化学センサーなどの
電気化学素子の実現が期待できることから、導電性高分
子電極の実用が盛んに検討されている。1971年に白
川らが発見したポリアセチレンに始まり、ポリアニリ
ン、ポリピロール、ポリアセン、ポリチオフェンなどの
π電子共役系導電性高分子が見いだされ、これらを電極
として用いた二次電池が開発されるに及んでいる。
2. Description of the Related Art When a conductive polymer is used as an electrode material, it can be expected to realize lightweight and high energy density batteries, large area electrochromic devices, and electrochemical devices such as biochemical sensors using microelectrodes. The practical application of conductive polymer electrodes has been actively studied. Beginning with polyacetylene discovered by Shirakawa et al. In 1971, π-electron conjugated conductive polymers such as polyaniline, polypyrrole, polyacene and polythiophene were found, and secondary batteries using these as electrodes were developed. .

【0003】これらの導電性高分子を用いた電極のエネ
ルギー密度としては、導電性高分子あたりで250〜4
00Wh/kgで実際の電池を構成する段階での実効的
なエネルギー密度はこの10〜30%程度すなわち20
〜120Wh/kgとなる。
The energy density of electrodes using these conductive polymers is 250 to 4 per conductive polymer.
The effective energy density at the stage of constructing an actual battery at 00 Wh / kg is about 10 to 30%, that is, 20%.
~ 120 Wh / kg.

【0004】これに対し、2倍から4倍の高エネルギー
密度が期待できる有機材料として、米国特許第4,83
3,048号明細書にジスルフィド化合物が提案されて
いる。この化合物は、最も簡単な形でR−S−S−Rと
表わされ、S−S結合が電解還元によって開裂し、電解
浴中のカチオン(M+ )とでR−S- ・M+ で表わされ
る塩を生成する。また、この塩は、電解酸化により再び
元のR−S−S−Rの戻るという性質を持つものであ
る。また、カチオン(M+ )を供給、捕捉する金属Mと
ジスルフィド系化合物を組み合わせた金属−硫黄二次電
池が前述の米国特許に提案されており、電池あたり15
0Wh/kgと通常の二次電池に匹敵あるいはそれ以上
のエネルギー密度が期待できる。
On the other hand, as an organic material which can be expected to have a high energy density of 2 to 4 times, US Pat.
A disulfide compound is proposed in the specification of 3,048. This compound is represented in its simplest form as R-S-S-R, cleaved by S-S bond electrolytic reduction, de with a cation (M +) in the electrolysis bath R-S - · M + A salt represented by is produced. Further, this salt has the property of returning to the original R-S-S-R again by electrolytic oxidation. In addition, a metal-sulfur secondary battery in which a metal M that supplies and captures a cation (M + ) and a disulfide compound is combined is proposed in the above-mentioned US patent, and the amount of the metal-sulfur secondary battery is 15 per battery.
An energy density of 0 Wh / kg, which is comparable to or higher than that of an ordinary secondary battery, can be expected.

【0005】[0005]

【発明が解決しょうとする課題】しかしながら、提案さ
れているジスルフィド系化合物は、米国特許第4,83
3,048号の発明者らが、J.Electroche
m.Soc.,Vol.136,No.9,p.257
0〜2575(1989)で報告しているように、たと
えばテトラエチルチウラムジスルフィド(化3)の電解
では、酸化と還元の電位が1volt以上離れており、
電極反応論の教えるところによれば、このような材料に
おける電気化学反応は、その電子移動過程が極めて遅
く、従って室温付近では実用に見合う大きな電流、例え
ば1mA/cm2 以上の電流を取り出すことが困難であ
り、100〜200℃の高温での使用に限られるという
課題を有していた。
However, the proposed disulfide compound is disclosed in US Pat. No. 4,833.
The inventors of No. 3,048 disclosed in J. Electroche
m. Soc. , Vol. 136, No. 9, p. 257
0-2575 (1989), for example, in the electrolysis of tetraethylthiuram disulfide (Chemical Formula 3), the oxidation and reduction potentials are separated by 1 volt or more,
According to the teaching of electrode reaction theory, the electron transfer process of an electrochemical reaction in such a material is extremely slow, and therefore, at a temperature around room temperature, a large current that is practically suitable, for example, a current of 1 mA / cm 2 or more can be extracted. It is difficult and has a problem that it is limited to use at a high temperature of 100 to 200 ° C.

【0006】[0006]

【化3】 [Chemical 3]

【0007】また、同じ発明者らが、J.Electr
ochem.Soc.,Vol.137,No.4,
p.1191〜1192(1990)で報告していると
ころによるとジメチルスルホキシドに溶解したテトラエ
チルチウラムジスルフィドを電池活物質として、正極グ
ラファイトと負極リチウムとを用いたセルにより、室温
で16mA/cm2 の高い電流密度で充電と放電を繰り
返したことを報告している。また、3.4mA/cm2
でサイクル特性を検討しているが、いずれの場合も放電
深度を10%に抑えているため低容量であった。
[0007] The same inventors also described in J. Electr
ochem. Soc. , Vol. 137, no. 4,
p. 1191 to 1192 (1990) reported that a high current density of 16 mA / cm 2 at room temperature was obtained by a cell using positive electrode graphite and negative electrode lithium with tetraethylthiuram disulfide dissolved in dimethyl sulfoxide as a battery active material. It has been reported that charging and discharging were repeated at. Also, 3.4 mA / cm 2
Although the cycle characteristics were examined in Table 1, the capacity was low because the depth of discharge was suppressed to 10% in all cases.

【0008】さらに、同じ発明者らがMol.Crys
t.Liq.Cryst.,Vol.190,pp.1
85〜195(1990)で報告している中で、2,5
−ジメルカプト1,3,4−チアジアゾールとカーボン
とイオン伝導性高分子としてポリエチレンオキサイドを
混合した電極を用い、ポリエチレンオキサイドと塩から
なる電解質とLi金属とを組み合わせて電池を構成し、
80〜100℃で作動させているが、この場合にも電流
密度は0.5mA/cm2 にとどまっている。
[0008] Further, the same inventors of Mol. Crys
t. Liq. Cryst. , Vol. 190, pp. 1
85-195 (1990), 2,5
-Using a mixed electrode of dimercapto 1,3,4-thiadiazole, carbon and polyethylene oxide as an ion-conducting polymer, an electrolyte composed of polyethylene oxide and a salt and a Li metal are combined to form a battery,
Although it is operated at 80 to 100 ° C., the current density is 0.5 mA / cm 2 in this case as well.

【0009】本発明は、前記従来の課題を解決するた
め、ジスルフィド系化合物の単量体あるいは重合体を電
池の電極として用い、高エネルギー密度を有するという
性質を損なわず、かつ室温でも大電流充放電が可能で可
逆性に優れた電池を提供することを目的とする。
In order to solve the above conventional problems, the present invention uses a monomer or polymer of a disulfide compound as a battery electrode, does not impair the property of having a high energy density, and is capable of charging a large current at room temperature. It is an object of the present invention to provide a battery that can be discharged and has excellent reversibility.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するた
め、本発明の有機化合物電池は、ジスルフィド系有機化
合物を正極活物質に用いた電池であって、アルカリ金属
塩を溶解した電解液として、プロピレンカーボネート、
プロピレンカーボネートとジメトキシエタンの混合液、
プロピレンカーボネートとテトラヒドロフランの混合
液、スルホランとジメトキシエタンの混合液、スルホラ
ンとテトラヒドロフランの混合液から選ばれる少なくと
も一つの溶液を用いることを特徴とする。
In order to achieve the above object, the organic compound battery of the present invention is a battery using a disulfide organic compound as a positive electrode active material, wherein an electrolyte solution in which an alkali metal salt is dissolved is used. Propylene carbonate,
A mixed solution of propylene carbonate and dimethoxyethane,
At least one solution selected from a mixed solution of propylene carbonate and tetrahydrofuran, a mixed solution of sulfolane and dimethoxyethane, and a mixed solution of sulfolane and tetrahydrofuran is used.

【0011】前記構成においては、アルカリ金属塩が、
過塩素酸リチウム、トリフルオロメタンスルホン酸リチ
ウム、四フッ化ホウ酸リチウム、六フッ化リン酸リチウ
ムから選ばれる少なくとも一つであることが好ましい。
In the above constitution, the alkali metal salt is
It is preferably at least one selected from lithium perchlorate, lithium trifluoromethanesulfonate, lithium tetrafluoroborate and lithium hexafluorophosphate.

【0012】また前記構成においては、ジスルフィド系
有機化合物が、2,5−ジメルカプト−1,3,4−チ
アジアゾールの単量体(前記化1)またはその重合体
(前記化2)であることが好ましい。
Further, in the above constitution, the disulfide organic compound is a monomer of 2,5-dimercapto-1,3,4-thiadiazole (formula 1) or a polymer thereof (formula 2). preferable.

【0013】[0013]

【作用】前記した本発明の構成によれば、電解質を液体
にすることにより、室温で十分なイオン伝導度が得ら
れ、大電流による充放電が可能となった。また、複合正
極内部に電解液が含浸することにより実質的な接触面積
が格段に増大され、ほぼ100%に近い正極容量を得る
ことができ、反応の可逆性も向上し、サイクル特性が安
定する。そして、液体溶媒を比較検討し、プロピレンカ
ーボネート、もしくはプロピレンカーボネートとジメト
キシエタンの混合液、プロピレンカーボネートとテトラ
ヒドロフランの混合液、またはスルホランとジメトキシ
エタンの混合液、スルホランとテトラヒドロフランの混
合液を溶媒としたときに正極利用率、サイクル特性とも
に向上する。
According to the above-described structure of the present invention, by making the electrolyte liquid, sufficient ionic conductivity can be obtained at room temperature, and charging / discharging with a large current becomes possible. Further, by impregnating the inside of the composite positive electrode with the electrolytic solution, the substantial contact area is significantly increased, a positive electrode capacity close to 100% can be obtained, the reversibility of the reaction is improved, and the cycle characteristics are stabilized. . Then, a liquid solvent is compared and examined, and when propylene carbonate or a mixed solution of propylene carbonate and dimethoxyethane, a mixed solution of propylene carbonate and tetrahydrofuran, or a mixed solution of sulfolane and dimethoxyethane, a mixed solution of sulfolane and tetrahydrofuran is used as a solvent. In addition, the positive electrode utilization rate and cycle characteristics are improved.

【0014】[0014]

【実施例】以下実施例を用いて本発明をさらに具体的に
説明する。図1は本発明の一具体例であるコイン型電池
の構成図である。図1において、1はセパレータ、2は
負極ケース、3は負極、4はガスケット、5は正極、6
は正極ケースである。
EXAMPLES The present invention will be described in more detail with reference to the following examples. FIG. 1 is a configuration diagram of a coin-type battery which is one specific example of the present invention. In FIG. 1, 1 is a separator, 2 is a negative electrode case, 3 is a negative electrode, 4 is a gasket, 5 is a positive electrode, 6
Is the positive electrode case.

【0015】本発明において正極5に用いることができ
るジスルフィド系有機化合物の例としては、たとえば下
記(化4)〜(化9)に示される繰り返し単位のポリマ
ーがある。下記(化4)〜(化9)において、(化4)
は2−メルカプトエチルエーテル、(化5)は2−メル
カプトエチルスルフィド、(化6)は1,2−エタンジ
チオール、(化7)はテトラチオエチレンジアミン、
(化8)はトリチオシアヌル酸、(化9)は2,4−ジ
チオピリジンのそれぞれポリマーである。
Examples of the disulfide-based organic compound that can be used for the positive electrode 5 in the present invention include polymers of repeating units represented by the following (formula 4) to (formula 9). In the following (Chemical formula 4) to (Chemical formula 9), (Chemical formula 4)
Is 2-mercaptoethyl ether, (Chemical Formula 5) is 2-mercaptoethyl sulfide, (Chemical Formula 6) is 1,2-ethanedithiol, (Chemical Formula 7) is tetrathioethylenediamine,
(Chemical Formula 8) is a polymer of trithiocyanuric acid, and (Chemical Formula 9) is a polymer of 2,4-dithiopyridine.

【0016】[0016]

【化4】 [Chemical 4]

【0017】[0017]

【化5】 [Chemical 5]

【0018】[0018]

【化6】 [Chemical 6]

【0019】[0019]

【化7】 [Chemical 7]

【0020】[0020]

【化8】 [Chemical 8]

【0021】[0021]

【化9】 [Chemical 9]

【0022】次にアルカリ金属塩を溶解した電解液とし
て、プロピレンカーボネート、プロピレンカーボネート
とジメトキシエタンの混合液、プロピレンカーボネート
とテトラヒドロフランの混合液、スルホランとジメトキ
シエタンの混合液、スルホランとテトラヒドロフランの
混合液から選ばれる少なくとも一つの溶液を用いるが、
混合液の場合は、混合比率を任意のものとすることがで
きる。
Next, as an electrolytic solution in which an alkali metal salt is dissolved, from propylene carbonate, a mixed solution of propylene carbonate and dimethoxyethane, a mixed solution of propylene carbonate and tetrahydrofuran, a mixed solution of sulfolane and dimethoxyethane, and a mixed solution of sulfolane and tetrahydrofuran. Use at least one solution selected,
In the case of a mixed liquid, the mixing ratio can be arbitrary.

【0023】次にアルカリ金属塩としては、過塩素酸リ
チウム、トリフルオロメタンスルホン酸リチウム、四フ
ッ化ホウ酸リチウム、六フッ化リン酸リチウムから選ば
れる少なくとも一つを用いるが、その使用量は通常の電
池に使用するものと同等で良い。
Next, as the alkali metal salt, at least one selected from lithium perchlorate, lithium trifluoromethanesulfonate, lithium tetrafluoroborate, and lithium hexafluorophosphate is used. It can be the same as that used for the battery.

【0024】実施例1 ジスルフィド系有機化合物の一例である2,5−ジメル
カプト1,3,4−チアジアゾール(前記化1)0.2
molに1M濃度のLiOH水溶液400mlを加えて
完全に溶解した。不溶物をろ過後、ろ液に1MのK3
e(CN)6 水溶液を撹拌しながら徐々に加えて酸化重
合を行なった。生成した沈澱物を分取し、大量の水で洗
ったあとエタノールで洗浄して乾燥させ、前記(化2)
で示されるユニットのポリマーを得た。収率は85%で
あった。この生成物は、水、エタノール、エーテルに不
溶であった。単量体がエタノール、エーテルに溶解する
ことから、この生成物が単量体ではないことを確認し
た。
Example 1 2,5-dimercapto-1,3,4-thiadiazole (Formula 1) 0.2 which is an example of a disulfide organic compound
400 ml of a 1 M aqueous LiOH solution was added to the mol to completely dissolve it. After insoluble matter is filtered, the filtrate is mixed with 1M K 3 F.
The e (CN) 6 aqueous solution was gradually added with stirring to carry out oxidative polymerization. The formed precipitate was collected, washed with a large amount of water, then washed with ethanol and dried, and
A polymer having a unit represented by The yield was 85%. This product was insoluble in water, ethanol and ether. Since the monomer dissolves in ethanol and ether, it was confirmed that this product was not a monomer.

【0025】上記の酸化剤を用いて重合させた2,5−
ジメルカプト1,3,4−チアジアゾールの重合体粉末
1gと炭素粉末(黒鉛化気相法炭素繊維 昭和電工製)
5gとポリテトラフルオロエチレン(ポリフロン F−
103 ダイキン製)粉末2gをすり鉢で混合し、すり
合わせることによってガムペースト状の固まりを作成し
た。これを粉砕し、粉状の混合物を加圧成形することで
正極とした。
2,5-polymerized using the above-mentioned oxidizing agent
Dimercapto 1,3,4-thiadiazole polymer powder 1 g and carbon powder (graphitized vapor phase carbon fiber Showa Denko)
5 g and polytetrafluoroethylene (Polyflon F-
103 g of Daikin) powder (2 g) was mixed in a mortar and rubbed together to form a gum paste-like lump. This was crushed and the powdery mixture was pressure-molded to obtain a positive electrode.

【0026】プロピレンカーボネート10gとジメトキ
シエタン10gを混合した溶液を作成し、この溶液20
mlに四フッ化ホウ酸リチウム1.9gを溶解して電解
液とした。
A solution was prepared by mixing 10 g of propylene carbonate and 10 g of dimethoxyethane, and this solution 20
1.9 g of lithium tetrafluoroborate was dissolved in ml to prepare an electrolytic solution.

【0027】前記の方法で作られた複合正極とLi金属
からなる負極とした電池を構成し、電解液に前記の方法
で作成したプロピレンカーボネートとジメトキシエタン
の混合溶媒を用いた。この場合の正極5(図1)の重量
は150mgとした。
A battery having a composite positive electrode prepared by the above method and a negative electrode made of Li metal was constructed, and the mixed solvent of propylene carbonate and dimethoxyethane prepared by the above method was used as an electrolytic solution. The weight of the positive electrode 5 (FIG. 1) in this case was 150 mg.

【0028】一定電流(2mA/cm2 )で3.5Vと
2.6Vの間で充電・放電の繰り返し試験を行なったと
ころ、平坦な放電電位を有する放電カーブが得られ、初
期の容量が理論値の90%と高く、50回目で80%の
容量が維持されていた。
Repeated tests of charging and discharging between 3.5 V and 2.6 V at a constant current ( 2 mA / cm 2 ) showed that a discharge curve having a flat discharge potential was obtained and the initial capacity was theoretical. The value was as high as 90%, and the capacity of 80% was maintained at the 50th time.

【0029】さらに、3.5Vと2.0Vの間で充電と
放電を繰り返したところ、初期の容量が理論値の90%
と高く、50回目で50%の容量が維持されていた。 実施例2 実施例1と同様の方法で作成した正極用い、プロピレン
カーボネート10gとテトラヒドロフラン10gを混合
した溶液を作成し、この溶液20mlにトリフルオロメ
タンスルホン酸リチウム3.0gを溶解して電解液とし
た。
When charging and discharging were repeated between 3.5 V and 2.0 V, the initial capacity was 90% of the theoretical value.
And the capacity was maintained at 50% at the 50th time. Example 2 A positive electrode prepared in the same manner as in Example 1 was used to prepare a solution in which 10 g of propylene carbonate and 10 g of tetrahydrofuran were mixed, and 3.0 g of lithium trifluoromethanesulfonate was dissolved in 20 ml of this solution to prepare an electrolytic solution. .

【0030】前記の方法で作られた複合正極とLi金属
からなる負極とした電池を構成し、電解液を前記の方法
で作成したプロピレンカーボネートとテトラヒドロフラ
ンの混合溶媒とした。
A battery having the composite positive electrode prepared by the above method and the negative electrode made of Li metal was constructed, and the electrolytic solution was the mixed solvent of propylene carbonate and tetrahydrofuran prepared by the above method.

【0031】実施例1と全く同じ方法で3.5Vと2.
6Vの間で充電と放電の繰り返し試験を行なったとこ
ろ、平坦な放電電位を有する放電カーブが得られ、初期
の容量が理論値の90%と高く、50回目で80%の容
量が維持されていた。
In the same manner as in Example 1, 3.5 V and 2.
When a repeated test of charging and discharging was performed between 6V, a discharge curve having a flat discharge potential was obtained, the initial capacity was as high as 90% of the theoretical value, and the capacity of 80% was maintained at the 50th time. It was

【0032】さらに、実施例1と同様に3.5Vと2.
0Vの間で充電と放電を繰り返したところ、初期の容量
が理論値の90%と高く、50回目で45%の容量が維
持されていた。
Further, as in the first embodiment, the voltage of 2.
When charging and discharging were repeated at 0 V, the initial capacity was as high as 90% of the theoretical value, and the capacity of 45% was maintained at the 50th time.

【0033】実施例3 実施例1と同様の方法で作成した正極用い、スルホラン
10gとジメトキシエタン10gを混合した溶液を作成
し、この溶液20mlに四フッ化ホウ酸リチウム1.9
gを溶解して電解液とした。
Example 3 A positive electrode prepared in the same manner as in Example 1 was used to prepare a solution in which 10 g of sulfolane and 10 g of dimethoxyethane were mixed, and 20 ml of this solution was charged with 1.9 lithium tetrafluoroborate.
g was dissolved to obtain an electrolytic solution.

【0034】前記の方法で作られた複合正極とLi金属
からなる負極とした電池を構成し、電解液を前記の方法
で作成したスルホランとジメトキシエタンの混合溶媒と
した。実施例1と全く同じ方法で3.5Vと2.6Vの
間で充電と放電の繰り返し試験を行なったところ、平坦
な放電電位を有する放電カーブが得られ、初期の容量が
理論値の90%と高く、50回目で75%の容量が維持
されていた。
A battery having a composite positive electrode prepared by the above method and a negative electrode made of Li metal was constructed, and an electrolytic solution was a mixed solvent of sulfolane and dimethoxyethane prepared by the above method. Repeated tests of charging and discharging between 3.5 V and 2.6 V were carried out by the same method as in Example 1, and a discharge curve having a flat discharge potential was obtained, and the initial capacity was 90% of the theoretical value. And the capacity of 75% was maintained at the 50th time.

【0035】さらに、実施例1と同様に3.5Vと2.
0Vの間で充電と放電を繰り返したところ、初期の容量
が理論値の90%と高く、50回目で55%の容量が維
持されていた。
Further, as in the first embodiment, the voltage is set to 3.5V and 2.V.
When charging and discharging were repeated at 0 V, the initial capacity was as high as 90% of the theoretical value, and the capacity of 55% was maintained at the 50th time.

【0036】実施例4 実施例1と同様の方法で作成した正極用い、スルホラン
10gとテトラヒドロフラン10gを混合した溶液を作
成し、この溶液20mlに過塩素酸リチウム2.0gを
溶解して電解液とした。
Example 4 Using the positive electrode prepared in the same manner as in Example 1, a solution was prepared by mixing 10 g of sulfolane and 10 g of tetrahydrofuran, and 2.0 g of lithium perchlorate was dissolved in 20 ml of this solution to prepare an electrolytic solution. did.

【0037】前記の方法で作られた複合正極とLi金属
からなる負極とした電池を構成し、電解液を前記の方法
で作成したスルホランとジメトキシエタンの混合溶媒と
した。実施例1と全く同じ方法で3.5Vと2.6Vの
間で充電と放電の繰り返し試験を行なったところ、平坦
な放電電位を有する放電カーブが得られ、初期の容量が
理論値の90%と高く、50回目で70%の容量が維持
されていた。
A battery having a composite positive electrode prepared by the above method and a negative electrode made of Li metal was constructed, and an electrolytic solution was a mixed solvent of sulfolane and dimethoxyethane prepared by the above method. Repeated tests of charging and discharging between 3.5 V and 2.6 V were carried out by the same method as in Example 1, and a discharge curve having a flat discharge potential was obtained, and the initial capacity was 90% of the theoretical value. And the capacity was maintained at 70% at the 50th time.

【0038】さらに、実施例1と同様に3.5Vと2.
0Vの間で充電と放電を繰り返したところ、初期の容量
が理論値の90%と高く、50回目で50%の容量が維
持されていた。
Further, as in the first embodiment, the voltage of 2.
When charging and discharging were repeated at 0 V, the initial capacity was as high as 90% of the theoretical value, and the capacity of 50% was maintained at the 50th time.

【0039】実施例5 実施例1と同様の方法で作成した正極用い、プロピレン
カーボネート20mlに四フッ化ホウ酸リチウム1.9
gを溶解して電解液とした。
Example 5 Using a positive electrode prepared in the same manner as in Example 1, 20 ml of propylene carbonate was charged with 1.9 lithium tetrafluoroborate.
g was dissolved to obtain an electrolytic solution.

【0040】前記の方法で作られた複合正極とLi金属
からなる負極とした電池を構成し、電解液を前記の方法
で作成したプロピレンカーボネート溶液とした。実施例
1と全く同じ方法で3.5Vと2.6Vの間で充電と放
電の繰り返し試験を行なったところ、平坦な放電電位を
有する放電カーブが得られ、初期の容量が理論値の90
%と高く、50回目で70%の容量が維持されていた。
A battery having the composite positive electrode prepared by the above method and the negative electrode composed of Li metal was constituted, and the electrolytic solution was the propylene carbonate solution prepared by the above method. Repeated tests of charging and discharging between 3.5 V and 2.6 V were carried out by the same method as in Example 1, and a discharge curve having a flat discharge potential was obtained, and the initial capacity was 90% of the theoretical value.
%, The capacity was maintained at 70% at the 50th time.

【0041】さらに、実施例1と同様に3.5Vと2.
0Vの間で充電と放電を繰り返したところ、初期の容量
が理論値の90%と高く、50回目で50%の容量が維
持されていた。
Further, as in the first embodiment, the voltage of 2.
When charging and discharging were repeated at 0 V, the initial capacity was as high as 90% of the theoretical value, and the capacity of 50% was maintained at the 50th time.

【0042】比較例1 実施例1と同様の方法で作成した正極用い、エチレンカ
ーボネート10gとジメトキシエタン10gを混合した
溶液を作成し、この溶液20mlに四フッ化ホウ酸リチ
ウム1.9gを溶解して電解液とした。
Comparative Example 1 Using the positive electrode prepared in the same manner as in Example 1, a solution was prepared by mixing 10 g of ethylene carbonate and 10 g of dimethoxyethane, and 1.9 g of lithium tetrafluoroborate was dissolved in 20 ml of this solution. Electrolyte solution.

【0043】前記の方法で作られた複合正極とLi金属
からなる負極とした電池を構成し、電解液を前記の方法
で作成したエチレンカーボネートとジメトキシエタンの
混合溶媒とした。
A battery having the composite positive electrode prepared by the above method and the negative electrode made of Li metal was constructed, and the electrolytic solution was the mixed solvent of ethylene carbonate and dimethoxyethane prepared by the above method.

【0044】実施例1と全く同じ方法で3.5Vと2.
6Vの間で充電と放電の繰り返し試験を行なったとこ
ろ、平坦な放電電位を有する放電カーブが得られ、初期
の容量は理論値の90%と高かったが、3回目で10%
以下の容量しか維持されなかった。さらに、実施例1と
同様に3.5Vと2.0Vの間で充電と放電を繰り返し
たが、初期の容量は理論値の90%と高いが、やはり3
回目で10%以下の容量となった。
In the same manner as in Example 1, 3.5V and 2.V.
When a repeated charge and discharge test was performed between 6 V, a discharge curve having a flat discharge potential was obtained, and the initial capacity was as high as 90% of the theoretical value, but 10% at the third time.
Only the following capacities were maintained. Furthermore, charging and discharging were repeated between 3.5 V and 2.0 V as in Example 1, and the initial capacity was as high as 90% of the theoretical value, but still 3
The capacity became 10% or less at the first time.

【0045】比較例2 実施例1と同様の方法で作成した正極用い、ジメチルス
ルホキシド20mlに四フッ化ホウ素酸リチウム3.2
gを溶解して電解液とした。
Comparative Example 2 Using a positive electrode prepared in the same manner as in Example 1, 20 ml of dimethyl sulfoxide was used and 3.2 of lithium tetrafluoroborate was used.
g was dissolved to obtain an electrolytic solution.

【0046】前記の方法で作られた複合正極とLi金属
からなる負極とした電池を構成し、電解液を前記の方法
で作成したジメチルスルホキシド溶媒とした。実施例1
と全く同じ方法で3.5Vと2.6Vの間で充電と放電
の繰り返し試験を行なったところ、平坦な放電電位を有
する放電カーブが得られたが、初期の容量は理論値の5
0%と低く、3回目で10%以下の容量しか維持されな
かった。さらに実施例1と同様に3.5Vと2.0Vの
間で充電と放電を繰り返した結果、初期の容量は理論値
の50%と低くが3回目で10%以下の容量となった。
A battery having the composite positive electrode prepared by the above method and the negative electrode made of Li metal was constructed, and the electrolytic solution was the dimethyl sulfoxide solvent prepared by the above method. Example 1
Repeated tests of charging and discharging between 3.5 V and 2.6 V were performed by the same method as above, and a discharge curve having a flat discharge potential was obtained, but the initial capacity was 5% of the theoretical value.
It was as low as 0%, and at the third time, the capacity was maintained at 10% or less. Further, as a result of repeating charging and discharging between 3.5 V and 2.0 V as in Example 1, the initial capacity was as low as 50% of the theoretical value, but the capacity was 10% or less at the third time.

【0047】以上の結果を(表1)にまとめて示した。The above results are summarized in (Table 1).

【0048】[0048]

【表1】 [Table 1]

【0049】実施例では、負極として金属リチウムを用
いているが、この他にLi−Alなどのリチウム合金
や、カーボンとAl粉末とポリテトラフルオロエチレ
ン、ポリエチレンオキシド、合成ゴムなどの有機バイン
ダーで構成されるカーボン複合負極などを用いることが
できる。
In the examples, metallic lithium is used as the negative electrode, but in addition to this, a lithium alloy such as Li-Al, or carbon and Al powder and an organic binder such as polytetrafluoroethylene, polyethylene oxide or synthetic rubber is used. It is possible to use a carbon composite negative electrode or the like.

【0050】以上説明したように、本実施例の有機化合
物電池は、ジスルフィド系化合物を正極の活物質とし、
負極に金属リチウムを用いた電池を構成する。電解質部
分には、アルカリ金属塩を溶解した電解液を用い、その
組成をプロピレンカーボネート、またはプロピレンカー
ボネートとジメトキシエタンの混合液などを用いる。こ
れにより室温で十分なイオン伝導度が得られ、大電流に
よる充放電が可能となる。さらに複合正極内部に電解液
がしみこむことにより実質的な接触面積が格段に増大さ
れ、ほぼ100%に近い正極容量を得ることができる。
また反応の可逆性も向上しサイクル特性も安定する。好
適な例としては、室温で1mA/cm2以上の大電流で
の充放電が可能で、正極の利用率を向上し、かつサイク
ル寿命を改善することができる。
As described above, in the organic compound battery of this embodiment, the disulfide compound is used as the positive electrode active material,
A battery using metallic lithium for the negative electrode is constructed. An electrolyte solution in which an alkali metal salt is dissolved is used for the electrolyte portion, and its composition is propylene carbonate, or a mixed solution of propylene carbonate and dimethoxyethane. As a result, sufficient ionic conductivity is obtained at room temperature, and charging / discharging with a large current becomes possible. Further, since the electrolytic solution soaks into the composite positive electrode, a substantial contact area is significantly increased, and a positive electrode capacity close to 100% can be obtained.
Further, the reversibility of the reaction is improved and the cycle characteristics are stable. As a preferable example, charging / discharging can be performed at room temperature with a large current of 1 mA / cm 2 or more, the utilization factor of the positive electrode can be improved, and the cycle life can be improved.

【0051】[0051]

【発明の効果】以上説明した通り、本発明によれば、ジ
スルフィド系化合物を活物質とした正極において、高エ
ネルギー密度を有するという特徴を損なわず、かつ室温
でも大電流充放電が可能で可逆性に優れた電池を提供す
ることができた。
As described above, according to the present invention, a positive electrode using a disulfide compound as an active material does not impair the feature of having a high energy density, and can be charged and discharged at a large current even at room temperature and is reversible. It was possible to provide excellent batteries.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のコイン型電池の構成図であ
る。
FIG. 1 is a configuration diagram of a coin-type battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 負極ケース 3 負極 4 ガスケット 5 正極 6 正極ケース 1 Separator 2 Negative electrode case 3 Negative electrode 4 Gasket 5 Positive electrode 6 Positive electrode case

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ジスルフィド系有機化合物を正極活物質
に用いた電池であって、アルカリ金属塩を溶解した電解
液として、プロピレンカーボネート、プロピレンカーボ
ネートとジメトキシエタンの混合液、プロピレンカーボ
ネートとテトラヒドロフランの混合液、スルホランとジ
メトキシエタンの混合液、スルホランとテトラヒドロフ
ランの混合液から選ばれる少なくとも一つの溶液を用い
ることを特徴とする有機化合物電池。
1. A battery using a disulfide organic compound as a positive electrode active material, wherein propylene carbonate, a mixed solution of propylene carbonate and dimethoxyethane, a mixed solution of propylene carbonate and tetrahydrofuran is used as an electrolytic solution in which an alkali metal salt is dissolved. An organic compound battery comprising at least one solution selected from a mixed solution of sulfolane and dimethoxyethane and a mixed solution of sulfolane and tetrahydrofuran.
【請求項2】 アルカリ金属塩が、過塩素酸リチウム、
トリフルオロメタンスルホン酸リチウム、四フッ化ホウ
酸リチウム、六フッ化リン酸リチウムから選ばれる少な
くとも一つである請求項1に記載の有機化合物電池。
2. The alkali metal salt is lithium perchlorate,
The organic compound battery according to claim 1, which is at least one selected from lithium trifluoromethanesulfonate, lithium tetrafluoroborate, and lithium hexafluorophosphate.
【請求項3】 ジスルフィド系有機化合物が、2,5−
ジメルカプト−1,3,4−チアジアゾールの単量体
(化1)またはその重合体(化2)である請求項1に記
載の有機化合物電池。 【化1】 【化2】
3. The disulfide organic compound is 2,5-
The organic compound battery according to claim 1, which is a monomer (chemical formula 1) of dimercapto-1,3,4-thiadiazole or a polymer thereof (chemical formula 2). [Chemical 1] [Chemical 2]
JP4208014A 1992-08-04 1992-08-04 Organic compound battery Pending JPH0660906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4208014A JPH0660906A (en) 1992-08-04 1992-08-04 Organic compound battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4208014A JPH0660906A (en) 1992-08-04 1992-08-04 Organic compound battery

Publications (1)

Publication Number Publication Date
JPH0660906A true JPH0660906A (en) 1994-03-04

Family

ID=16549250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4208014A Pending JPH0660906A (en) 1992-08-04 1992-08-04 Organic compound battery

Country Status (1)

Country Link
JP (1) JPH0660906A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334698A (en) * 2001-05-07 2002-11-22 Hitachi Maxell Ltd Electrode and non-aqueous electrolyte battery using the same
JP2008066125A (en) * 2006-09-07 2008-03-21 Fuji Heavy Ind Ltd Electrode material, its manufacturing method, and storage battery using it
US8329343B2 (en) 2008-08-05 2012-12-11 Sony Corporation Battery and electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334698A (en) * 2001-05-07 2002-11-22 Hitachi Maxell Ltd Electrode and non-aqueous electrolyte battery using the same
JP2008066125A (en) * 2006-09-07 2008-03-21 Fuji Heavy Ind Ltd Electrode material, its manufacturing method, and storage battery using it
US8329343B2 (en) 2008-08-05 2012-12-11 Sony Corporation Battery and electrode

Similar Documents

Publication Publication Date Title
US6174621B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
US5529860A (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
JPH0520874B2 (en)
JP2003208897A (en) Lithium battery and manufacturing method thereof
JP2003531455A (en) Redox reaction material for anode in non-aqueous battery
JP3257018B2 (en) Battery charge / discharge method
JPH0660906A (en) Organic compound battery
JP4139960B2 (en) Electricity storage device
JP2940198B2 (en) Solid electrode composition
JPH0660907A (en) Organic compound battery
JPH06283175A (en) Reversible electrode
US6309778B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
JP4476788B2 (en) Polymer compound for electrode material, electrode using the same and non-aqueous battery
JP3239374B2 (en) Electrode composition
JP3237261B2 (en) Reversible composite electrode and lithium secondary battery using the same
JPH06310173A (en) Electrochemical device and secondary battery
JP3048798B2 (en) Reversible electrode and lithium secondary battery comprising the same
JPS58111268A (en) Electric active substance for power battery
JPH0821430B2 (en) Secondary battery
WO2021187417A1 (en) Electrode active material, electrode and secondary battery
JP3047492B2 (en) Solid electrode composition
JP2553920B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein
JP4343819B2 (en) Redox-active polymer, electrode using the same, and non-aqueous battery
GB2038078A (en) Sulfur trioxide soluble cathode primary cell
JP2005194511A (en) Oxidation-reduction active polymer, electrode given by using the same, and nonaqueous solution-based battery