JPS58111268A - Electric active substance for power battery - Google Patents

Electric active substance for power battery

Info

Publication number
JPS58111268A
JPS58111268A JP57223651A JP22365182A JPS58111268A JP S58111268 A JPS58111268 A JP S58111268A JP 57223651 A JP57223651 A JP 57223651A JP 22365182 A JP22365182 A JP 22365182A JP S58111268 A JPS58111268 A JP S58111268A
Authority
JP
Japan
Prior art keywords
power battery
active substance
electroactive material
electroactive
electric active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57223651A
Other languages
Japanese (ja)
Inventor
アンドルゼユ・カプツルキエウイクズ
バ−バラ・ベ−ル
ウロドジミエルツ・クトネル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polska Akademia Nauk Instytut
Original Assignee
Polska Akademia Nauk Instytut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polska Akademia Nauk Instytut filed Critical Polska Akademia Nauk Instytut
Publication of JPS58111268A publication Critical patent/JPS58111268A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、動力電池、41に二次電気化学的動力生成電
池用の電気活性物質に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electroactive materials for power cells, 41 secondary electrochemical power generation cells.

電力電池の動作は、電気活性物質の不均一酸化還元反応
に基づいている。電気工ネルイーの放出は、アノードお
よびカッーV電位の範囲内の電極反応を行うレドックス
系の標準電極の差が十分に高くしかも電流密度が十分に
高い場合に可能である。
The operation of power cells is based on heterogeneous redox reactions of electroactive materials. The release of electrical energy is possible if the difference between the anode and the standard electrode of the redox system with an electrode reaction in the range of the KaV potential is sufficiently high and the current density is sufficiently high.

動力電池の電極反応の間、電気活性物質は7ノード上で
酸化され、カソード上で還元される。
During the electrode reaction of the power cell, the electroactive material is oxidized on the 7 nodes and reduced on the cathode.

代表的に使用される電気活性物質は例えばナトリウムイ
オンを含有する固体電解質中のアノード用液体ナトリウ
ムおよびカッーr用の液体硫黄である。
Typically used electroactive materials are, for example, liquid sodium for the anode and liquid sulfur for the anode in a solid electrolyte containing sodium ions.

しかしながら、このような物質の使用は不適轟であシし
かも有害である。なぜならば他の理由の中で液体ナトリ
ウムは高毒性だからである。
However, the use of such substances is inappropriate and harmful. Among other reasons, liquid sodium is highly toxic.

米at4I−許第3791867号、第3827910
号、第5864167号明細書、ドイツ公開特許第29
57717号明細書による設計において、低電気陰性度
のアルカリ金属またはアルカリ土類金属を非水性可逆電
池中のアノード物質として用い、一方力ソー−電気活性
物質は導電性マトリックスに固定されたハロゲンまえは
カルコゲノの混合物からなる。使用する電解質はアルカ
リ金属イオンまたはアルカリ土類金属イオンを含有する
塩からなる。多くの場合、一層大規模にこれらの電気活
性物質の使用を妨げる、電極反応の生成物を電極または
その直ぐ近傍から除く必要がある。
US AT4I-Grant No. 3791867, No. 3827910
No. 5864167, German Published Patent No. 29
In the design according to No. 57717, a low electronegative alkali metal or alkaline earth metal is used as the anode material in a non-aqueous reversible cell, while the electroactive material is a halogen precursor fixed to a conductive matrix. Consists of a mixture of chalcogenos. The electrolyte used consists of a salt containing alkali metal ions or alkaline earth metal ions. In many cases, it is necessary to remove the products of the electrode reactions from the electrodes or their immediate vicinity, which precludes the use of these electroactive materials on a larger scale.

最もよく知られた動力電池の場合、電池の不可逆的失活
を生じる電解質物質の混合を避けるためにカッ−rおよ
びアノーV帯域を注意深く分離する必要がある。
For most known power batteries, it is necessary to carefully separate the Ka-R and Ano-V bands to avoid mixing of the electrolyte materials which would result in irreversible deactivation of the battery.

可逆鉛電池のような、このような既知のしかも広く使用
される動力電池においては、アノ−rおよびカッ、−r
の両者の電気活性物質は3〇−硫酸溶液中のpb(1)
からなる6充電サイクルの間、Pb(II)はアノ−r
およびカソード上でそれぞれPb (Q)に還元されま
たPb(IV) K酸化される。このような電池の主な
欠点は、電極が重くしかも電解質溶液が非常に腐食性な
ことである。
In such known and widely used power batteries, such as reversible lead-acid batteries, anor-r and k-r
Both electroactive substances are 30-pb(1) in sulfuric acid solution.
During 6 charging cycles consisting of
and Pb(IV) are reduced to Pb(Q) and oxidized to Pb(IV)K on the cathode, respectively. The main disadvantages of such cells are that the electrodes are heavy and the electrolyte solution is highly corrosive.

本発明による動力電池用電気活性物質は作動電位に関し
て十分な標準電極電位差および低い充電過電圧を示すこ
とが分った。また、この電気活性物質は低コストおよび
軽量電極物質の使用を可能にし、かつ金属腐食性を有し
ていない。さらに、この電気活性物質は電極上に沈積せ
ず、ま九電極帯域内にも沈殿しないので、電極反応の生
成物を除く必要がない。
It has been found that the electroactive material for power cells according to the invention exhibits a sufficient standard electrode potential difference with respect to the operating potential and a low charging overpotential. The electroactive material also allows the use of low cost and lightweight electrode materials and is not corrosive to metals. Furthermore, since the electroactive material does not deposit on the electrode or within the electrode zone, there is no need to remove the products of the electrode reaction.

本発明による、動力電池、%に二次電池用の電気活性物
質は極性有機溶媒、水またはそれらの混合物中に溶解さ
れた、遷移金属と塩基性有機配位子、4IKシツフ塩基
の錯化台゛物、からなる。
According to the present invention, the electroactive material for power batteries, secondary batteries is a complex base of transition metals and basic organic ligands, 4IK Schiff bases, dissolved in polar organic solvents, water or mixtures thereof. Consists of things.

本発明による電気活性物質を構成するに用いられる遷移
金属はニッケル、コバルト、鉄、クロム、マンガン、銅
、チタンおよびバナジウムのような金属である。
The transition metals used in constructing the electroactive materials according to the present invention are metals such as nickel, cobalt, iron, chromium, manganese, copper, titanium, and vanadium.

シック塩基は有機配位子として用いられ、最も有利なも
のはエチレンジアミン誘導体である。
Thick bases are used as organic ligands, the most advantageous being ethylenediamine derivatives.

本発明による電気活性物質をMeL (式中、 Meは
遷移金属、Lは配位子)として示して、この電気活性物
質は動力電池充電サイクル中にカソード上でMeL−i
c還元される。動作サイクル間に、逆反応が起こる。同
様に、充電サイクル間にMeLはアノーr上でMeL+
に酸化され、この反応は動作管イクル関に逆になる。
An electroactive material according to the present invention is designated as MeL (where Me is a transition metal and L is a ligand), and the electroactive material is expressed as MeL-i on the cathode during a power battery charging cycle.
c is reduced. During the operating cycle, a reverse reaction occurs. Similarly, during the charging cycle, MeL+ on the anor
This reaction is reversed in relation to the operating cycle.

カソードおよびアノード反応は電気化学的に可逆的であ
る、すなわち同じ電気活性物質は充電サイクル関に反応
体として作用し、しかも動作サイクル間は両電極上で生
成物として作用する。これら両反応の速度は輸率によっ
て制御される。
The cathodic and anodic reactions are electrochemically reversible, ie, the same electroactive material acts as a reactant during the charging cycle and as a product on both electrodes during the operating cycle. The rates of both of these reactions are controlled by the transport number.

本発明による電気活性物質のこれ以上の利点は、単位重
量からの比較的高いエネルギー出力、および低温条件に
おいてこのような物質を含有する動力電池の応用の可能
性である。さらに、アノードとカッーr帯域内に含まれ
た、本発明による電気活性物質を混合することによって
、動力電池の不可逆的失活は生じることなく、繰シ返し
充電ができるO 本発明の主体は、本発明の範囲を制限しない、好ましい
実施態様の下記の例に一層詳しく記載される。同封した
第1図および第2図は、それぞれ例1および例2に記載
された条件で得られた環状電圧電流曲線を示す。
Further advantages of the electroactive materials according to the invention are the relatively high energy output from a unit weight and the possibility of application of power cells containing such materials at low temperature conditions. Furthermore, by mixing the anode with the electroactive material according to the invention, which is contained within the curvature band, the power battery can be charged repeatedly without irreversible deactivation. The following examples of preferred embodiments are described in more detail without limiting the scope of the invention. The enclosed FIGS. 1 and 2 show the annular voltage-current curves obtained under the conditions described in Examples 1 and 2, respectively.

例1 N、N−ジメチルホルムアミド(I)MP )中の0.
1 M (02Hs)Mcto、−(TRAP)溶液中
に溶解され物からなる動力電池用電気活性物質・この溶
液を乾燥窒素をもってパージすることKよって脱酸しM
TIムP)しtであった! この電池の標準電極電位差は△Ko−2,46Vであっ
た。
Example 1 0.0% in N,N-dimethylformamide (I) (MP).
An electroactive material for power cells consisting of 1 M (02Hs) Mcto, -(TRAP) dissolved in a solution; deoxidized by purging this solution with dry nitrogen to M
TIP) It was! The standard electrode potential difference of this battery was ΔKo-2, 46V.

充電と動作量に1力y−y上で10= −1,59vお
よびに、 w O,71X 10−” as/a %か
つアノーr上でEo 寓+o、137 Vおよびに、 
−0,72x 10−”飽和カロメル電極5aBK関す
る標準電位1!iQはアノードビーク電位およびカン−
Pf−り電位の算術平均として矛b(第1図)、一方充
電交換の標準速度定数ksをニコルソン(N1ahol
aon )法〔ムna1. Ohem、 44.194
6(1965))を用いてアノードビーク電位およびカ
ソードピーク電位間の関係から計算した。
10 = −1,59 v and on the charge and operating quantity y-y, w O, 71
-0,72x 10-" standard potential 1!iQ for saturated calomel electrode 5aBK
The arithmetic mean of the Pf potential is expressed by b (Fig. 1), while the standard rate constant for charge exchange, ks, is expressed by Nicholson (N1ahol).
aon) law [mna1. Ohem, 44.194
6 (1965)) from the relationship between the anodic peak potential and the cathodic peak potential.

例2 ヘキサメチルホスホトリアミド(HMPT )中の0.
1 M Tll1AP溶液に溶解され九M 、 M’−
エチレン/ptで6つ九二 この電池の標準電極電位の差はΔmosg1.35vで
あった。
Example 2 0.00% in hexamethylphosphotriamide (HMPT).
9M, M'- dissolved in 1M Tll1AP solution
The difference in standard electrode potential of this battery was Δmosg 1.35v.

電極(充電および動作)を結合後K。K after coupling the electrodes (charging and operation).

カフ −1&上Kmom 1.20 vおよびに、=0
.46×10−l1cm/・、しかもアノーr上でJi
o−+〇、15 V、 k、 sw O,20X 10
−”傭/sであった。
Cuff −1 & upper Kmom 1.20 v and to, = 0
.. 46×10-l1cm/·, and Ji on the anor r
o-+○, 15 V, k, sw O, 20X 10
-”It was mercenary/s.

電位IBoおよび充電交換の速度定数に、を例1のよう
に求めた。
The potential IBo and the rate constant of charge exchange were determined as in Example 1.

環状電圧電流曲線(第2図)は下記の条件で記電位掃引
速度: 5 Q mV/s 温度:20℃
The annular voltage-current curve (Figure 2) was plotted under the following conditions: potential sweep rate: 5 Q mV/s temperature: 20°C

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ例1および例2に記載
された条件で得られた環状電圧電流曲線を示す。 代理人 浅  村   皓 外4名
Figures 1 and 2 show the annular voltage-current curves obtained under the conditions described in Example 1 and Example 2, respectively. Representatives: Asamura and 4 people

Claims (1)

【特許請求の範囲】[Claims] 極性有機溶媒、水またはそれらの混合物中に溶解された
、遷移金属と塩基性有機配位子、特にシッフ塩基の錯化
合物からなる、動力電池、41に二次電池用電気活性物
質・
41. Electroactive material for secondary batteries, comprising a complex compound of a transition metal and a basic organic ligand, in particular a Schiff base, dissolved in a polar organic solvent, water or a mixture thereof.
JP57223651A 1981-12-21 1982-12-20 Electric active substance for power battery Pending JPS58111268A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PL1981234354A PL134200B1 (en) 1981-12-21 1981-12-21 Electroactive material for supply sources
PL234354 1981-12-21

Publications (1)

Publication Number Publication Date
JPS58111268A true JPS58111268A (en) 1983-07-02

Family

ID=20010961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57223651A Pending JPS58111268A (en) 1981-12-21 1982-12-20 Electric active substance for power battery

Country Status (6)

Country Link
JP (1) JPS58111268A (en)
CA (1) CA1192946A (en)
DE (1) DE3247309C2 (en)
GB (1) GB2113208B (en)
IT (1) IT1155433B (en)
PL (1) PL134200B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006501668A (en) * 2002-10-03 2006-01-12 ゲン3 パートナーズ インコーポレイテッド Electrochemical capacitor and method of using the same
JP2006502569A (en) * 2002-10-07 2006-01-19 ゲン3 パートナーズ インコーポレイテッド Method for producing electrode for electrochemical device
US7888229B2 (en) 2006-03-24 2011-02-15 Gen 3 Partners, Inc. Method for manufacturing an energy storage device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU696452B2 (en) * 1993-11-17 1998-09-10 Jd Holding Inc. Stabilised electrolyte solutions, methods of preparation thereof and redox cells and batteries containing stabilised electrolyte solutions
NZ306364A (en) 1995-05-03 1999-04-29 Unisearch Ltd High energy density vanadium electrolyte solutions, preparation thereof and redox cells and batteries containing the electrolyte solution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2070648A1 (en) * 1969-10-27 1971-09-17 Usm Corp Redox fuel element
FR2309046A1 (en) * 1975-04-24 1976-11-19 Alsthom Cgee PROCESS FOR THE REGULATION OF AN ELECTROCHEMICAL SYSTEM OF THE REDOX TYPE AND IMPLEMENTATION DEVICE
US4192910A (en) * 1978-11-29 1980-03-11 Nasa Catalyst surfaces for the chromous/chromic redox couple

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006501668A (en) * 2002-10-03 2006-01-12 ゲン3 パートナーズ インコーポレイテッド Electrochemical capacitor and method of using the same
JP2006502569A (en) * 2002-10-07 2006-01-19 ゲン3 パートナーズ インコーポレイテッド Method for producing electrode for electrochemical device
US7888229B2 (en) 2006-03-24 2011-02-15 Gen 3 Partners, Inc. Method for manufacturing an energy storage device

Also Published As

Publication number Publication date
IT8224868A1 (en) 1984-06-20
CA1192946A (en) 1985-09-03
PL134200B1 (en) 1985-07-31
GB2113208A (en) 1983-08-03
IT1155433B (en) 1987-01-28
PL234354A1 (en) 1983-07-04
GB2113208B (en) 1985-09-04
DE3247309C2 (en) 1985-04-25
DE3247309A1 (en) 1983-06-30
IT8224868A0 (en) 1982-12-20

Similar Documents

Publication Publication Date Title
Takeuchi et al. The reduction of silver vanadium oxide in lithium/silver vanadium oxide cells
Besenhard et al. High energy density lithium cells: Part I. Electrolytes and anodes
Jayalakshmi et al. Performance characteristics of zinc hexacyanoferrate/Prussian blue and copper hexacyanoferrate/Prussian blue solid state secondary cells
JP3525403B2 (en) Electrode materials and secondary batteries
SU489367A3 (en) Primary element
CA2050886A1 (en) Lithium/organosulfur redox cell having protective solid electrolyte barrier formed on anode and method of making same
US6090504A (en) High capacity composite electrode and secondary cell therefrom
WO1998050970A1 (en) An iron-based storage battery
AU593980B2 (en) Electrolyte for lithium-sulfur dioxide electrochemical cell
JPS58111268A (en) Electric active substance for power battery
JPH09270273A (en) Polysulfide, carbon electrode material, and association method
US3681143A (en) Lithium-metal vanadate organic electrolyte cell
JPS638588B2 (en)
JP7122698B2 (en) flow battery
Di Stefano et al. Advanced rechargeable sodium batteries with novel cathodes
Lau et al. Lipophilic additives for highly concentrated electrolytes in lithium-sulfur batteries
US11145885B2 (en) High capacity organic radical mediated phosphorous anode for redox flow batteries
US3367800A (en) High energy-density heat-activated voltaic cells at intermediate temperatures
JPH02204976A (en) Electrochenical battery and its manufacture
USH829H (en) Rechargeable lithium-organic electrolyte battery having overcharge protection and method of providing overcharge protection for a lithium-organic electrolyte battery
US4784925A (en) Primary electrochemical cell containing molecular iodine
JPH06310173A (en) Electrochemical device and secondary battery
RU2303841C1 (en) Storage battery and its operating process
JP2558957B2 (en) Non-aqueous electrolyte secondary battery
US3711334A (en) Lithium-metal molybdate organic electrolyte cell