JPH0659747A - Operation control method of cogeneration system - Google Patents

Operation control method of cogeneration system

Info

Publication number
JPH0659747A
JPH0659747A JP4214166A JP21416692A JPH0659747A JP H0659747 A JPH0659747 A JP H0659747A JP 4214166 A JP4214166 A JP 4214166A JP 21416692 A JP21416692 A JP 21416692A JP H0659747 A JPH0659747 A JP H0659747A
Authority
JP
Japan
Prior art keywords
heat
thermoelectric
storage tank
cogeneration system
demand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4214166A
Other languages
Japanese (ja)
Other versions
JP3258998B2 (en
Inventor
Masayoshi Sato
政義 佐藤
Fumio Matsuoka
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
East Japan Railway Co
Original Assignee
Mitsubishi Electric Corp
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, East Japan Railway Co filed Critical Mitsubishi Electric Corp
Priority to JP21416692A priority Critical patent/JP3258998B2/en
Publication of JPH0659747A publication Critical patent/JPH0659747A/en
Application granted granted Critical
Publication of JP3258998B2 publication Critical patent/JP3258998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To perform the backup of heat reservoir equipment groups by a simple control and to realize an arbitrary thermoelectric ratio by purchasing power, in a system including an engine driving cogeneration system, a heat pump and a heat storage tank. CONSTITUTION:An arbitrary thermoelectric ratio is realized by a cogeneration system CGS and a heat pump H by composing the side of heat load QL and the heat output side of heat reservoir equipment groups via a heat storage tank ST, by arranging the cogeneration system CGS and the heat pump H as heat reservoir equipments in parallel, by executing the power followup operation when the thermoelectric ratio is small, by storing excess heat in the heat storage tank ST, by utilizing the heat of the heat storage tank ST when the thermoelectric ratio is large and by purchasing power corresponding to the remaining heat load QL and power load WL.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジン駆動コジェネ
レーションシステムとヒートポンプ及び蓄熱槽とを組み
合わせた熱電併給システムにおけるコジェネレーション
システムの運転制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control method for a cogeneration system in a combined heat and power supply system in which an engine driven cogeneration system is combined with a heat pump and a heat storage tank.

【0002】[0002]

【従来の技術】図3は例えば「コジェネレーション」
(Vol.4,No2,1989,P25〜P30)に
示された従来のコジェネレーション・システムにおける
蓄熱槽の最適運用を示すシステム図であり、図におい
て、DGはディゼルエンジン発電機、REは電動ターボ
冷凍機、RWは温水吸収冷凍機、BAは温水ボイラ、R
Aは油焚冷暖房機、PC,PD,PH,PT,PWは各
種ポンプ、CTは冷却塔、STは蓄熱槽である。
2. Description of the Related Art FIG. 3 shows, for example, "cogeneration".
(Vol. 4, No. 2, 1989, P25 to P30) is a system diagram showing the optimum operation of the heat storage tank in the conventional cogeneration system shown in the figure, in which DG is a diesel engine generator and RE is an electric turbo. Refrigerator, RW is hot water absorption refrigerator, BA is hot water boiler, R
A is an oil-fired air conditioner, PC, PD, PH, PT, PW are various pumps, CT is a cooling tower, and ST is a heat storage tank.

【0003】次に動作について説明する。図3中、二点
鎖線は燃料の流れを示し、A重油はディゼルエンジン発
電機DGと温水ボイラBAと油焚冷暖房機RAとに投入
される。ディゼルエンジン発電機DGで電力を発生し、
排熱が回収されて蓄熱槽STに蓄えられる。また、蓄熱
槽内の温水を使って温水吸収冷凍機RWで冷水が得られ
冷房需要を賄う。さらに、蓄熱槽STの温水が暖房需要
と給湯需要に供される。それでも余る場合は、冷却塔C
Tで余剰熱は捨てられる。暖房需要と給湯需要に応じ切
れない時は、上記油焚冷房機RAと温水がボイラBAと
から供給され、冷房需要に対しては、上記油焚冷暖房機
RAと電動ターボ冷凍機REにより賄われる。
Next, the operation will be described. In FIG. 3, the chain double-dashed line indicates the flow of fuel, and the heavy fuel oil A is input to the diesel engine generator DG, the hot water boiler BA, and the oil-fired air conditioner RA. Electric power is generated by the diesel engine generator DG,
Exhaust heat is recovered and stored in the heat storage tank ST. Further, the hot water in the heat storage tank is used to obtain cold water in the hot water absorption refrigerator RW to meet the cooling demand. Furthermore, the hot water in the heat storage tank ST is used for heating and hot water supply. If it still remains, cooling tower C
At T, excess heat is discarded. When the demand for heating and the demand for hot water supply cannot be met, the oil-cooling machine RA and hot water are supplied from the boiler BA, and the cooling demand is covered by the oil-cooling machine RA and the electric turbo chiller RE. .

【0004】[0004]

【発明が解決しようとする課題】従来のコジェネレーシ
ョンシステムにおける蓄熱槽の運転方法は、以上のよう
に構成されているので、負荷側と熱源側のつなぎとして
の機能を果たしているのではなく、コジェネレーション
システムのみの緩衝機能でしかありえず、他の熱源機を
も含めた熱源機群の選択に寄与してないという欠点があ
り、さらに、故障時などのバックアップ体制が考慮され
ていないので、制御が複雑で信頼性に乏しく、買電との
制御の組合せが明確でないという問題点があった。
Since the conventional method for operating the heat storage tank in the cogeneration system is configured as described above, it does not function as a joint between the load side and the heat source side, but rather as a joint. There is a drawback that it can only serve as a buffer function of the generation system and does not contribute to the selection of heat source groups including other heat source machines, and further, because the backup system at the time of failure etc. is not considered, control However, there is a problem in that the combination of control with power purchase is not clear because it is complicated and unreliable.

【0005】本発明は、上記のような問題点を解消する
ためになされたもので、負荷側と熱源側の中間に蓄熱槽
を配し、両者のつなぎとしての機能を果たし、熱源機群
全体の能力制御を実行でき、熱源機種の選択、故障時の
バックアップ等簡単な制御で負荷側の需要に応ずること
が可能なコジェネレーションシステムの運転制御方法を
提供することを目的とする。
The present invention has been made in order to solve the above problems, and a heat storage tank is arranged between the load side and the heat source side to serve as a joint between the two, and the entire heat source unit group is provided. It is an object of the present invention to provide an operation control method of a cogeneration system capable of executing the capacity control, and capable of meeting the demand on the load side with simple control such as selection of a heat source model and backup at the time of failure.

【0006】[0006]

【課題を解決するための手段】本発明に係るコジェネレ
ーションシステムにおける蓄熱槽の温度制御方法は、エ
ンジン駆動コジェネレーションシステムとヒートポンプ
及び蓄熱槽とを組み合わせた熱電併給システムにおい
て、コジェネレーションシステムにおける熱電発生比率
に対し、需要側熱電比率が小さい時は、電力需要に合わ
せてコジェネレーションシステムを運転し、余剰熱を蓄
熱槽に蓄熱し、需要側熱電比率が大きい時は、所望熱電
需要量から蓄熱槽からの利用熱量を差し引いたみなし熱
需要量を求め、上記みなし熱需要量と所望電力需要量と
から成る熱電需要点を求め、上記コジェネレーションシ
ステムの熱電発生図中の上記熱電需要点を通り傾きが成
績係数の逆数となる熱電実現直線と上記コジェネレーシ
ョンシステムの熱電発生図中の熱電発生直線の上に買電
直線を重ねた熱電供給線を作成し、上記熱電実現直線と
上記熱電供給線との交点で上記コジェネレーションシス
テムとヒートポンプを運転するものである。
A method for controlling the temperature of a heat storage tank in a cogeneration system according to the present invention is a thermoelectric generation system in a cogeneration system in which an engine driven cogeneration system, a heat pump and a heat storage tank are combined. When the demand-side thermoelectric ratio is smaller than the ratio, the cogeneration system is operated according to the electric power demand, and excess heat is stored in the heat storage tank. Determining the deemed heat demand minus the amount of heat used, the thermoelectric demand point consisting of the deemed heat demand and the desired power demand is obtained, and the slope is passed through the thermoelectric demand point in the thermoelectric generation diagram of the cogeneration system. Is the reciprocal of the coefficient of performance and the thermoelectric realization line Create a thermoelectric supply line of extensive power purchase straight over the thermoelectric generating straight line in the raw figure, it is intended to operate the cogeneration system and the heat pump at the intersection between the thermoelectric realized line and the thermoelectric supply line.

【0007】[0007]

【作用】本発明においては、エンジン駆動コジェネレー
ションシステムとヒートポンプ及び蓄熱槽を組み合わせ
た熱電併給システムにおいて、蓄熱槽を介して負荷側と
熱源側に分離し、熱電負荷比が小さい時は、コジェネレ
ーションシステムのみを運転し余剰熱を蓄熱槽内に蓄熱
し、熱電負荷比が大の時は、一部の熱を蓄熱槽からの熱
で賄いつつ、残りの熱電負荷量に対し、コジェネレーシ
ョンシステムとヒートポンプで熱電供給線と熱電実現直
線の交点で運転する。
In the present invention, in a combined heat and power system in which an engine-driven cogeneration system, a heat pump and a heat storage tank are combined, the load side and the heat source side are separated via the heat storage tank, and when the thermoelectric load ratio is small, cogeneration is performed. When only the system is operated and surplus heat is stored in the heat storage tank, and when the thermoelectric load ratio is large, part of the heat is covered by the heat from the heat storage tank while the cogeneration system is used for the remaining thermoelectric load. The heat pump operates at the intersection of the thermoelectric supply line and the thermoelectric realization line.

【0008】[0008]

【実施例】以下、本発明の一実施例を図について説明す
る。図1において、CGSはエンジン駆動コジェネレー
ションシステム、Hはヒートポンプ、WL は電力負荷、
L は熱負荷、STは蓄熱槽、θSTは蓄熱槽内温度レベ
ル、PC ,PH ,PL はそれぞれポンプ、VC ,VH
L はそれぞれ三方弁、WA は補機電力、WB は買電で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, CGS is an engine-driven cogeneration system, H is a heat pump, W L is an electric load,
Q L is the thermal load, ST is the heat storage tank, theta ST heat storage tank temperature level, P C, P H, P L respectively pump, V C, V H,
V L is a three-way valve, W A is auxiliary power, and W B is power purchase.

【0009】また、図2はエンジン駆動コジェネレーシ
ョンシステムCGSの熱電発生図であり、横軸Qh は熱
発生量、縦軸Wは電力発生量、aは熱電発生直線、X
1 ,X2 は熱電負荷需要点、Y1 ,Y2 ’’はコジェネ
レーションシステムのそれぞれの運転点を示す。QST1
は発生熱が余ることを示し、QST2 は蓄熱槽からの採取
熱量を示している。また、買電直線はbであり、a+b
の折れ線全体が熱電供給線である。
FIG. 2 is a thermoelectric generation diagram of the engine-driven cogeneration system CGS. The horizontal axis Q h is the heat generation amount, the vertical axis W is the power generation amount, a is the thermoelectric generation straight line, X
1 and X 2 are thermoelectric load demand points, and Y 1 and Y 2 ″ are operating points of the cogeneration system. Q ST1
Indicates that excess heat is generated, and QST2 indicates the amount of heat collected from the heat storage tank. The power purchase line is b, and a + b
The whole polygonal line is the thermoelectric supply line.

【0010】図1に示すように、蓄熱槽STを介して、
負荷側と熱源機群側とに分離されて構成される。蓄熱槽
ST内は左端が高温槽で右端が低温槽になるように構成
されている。熱負荷QL 側には定流量ポンプPL に三方
弁VL を介して任意の温水が作れるようになっている。
熱源機側はコジェネレーションシステムCGSとヒート
ポンプHが並列に接続されており、それぞれ定流ポンプ
C とPH が各々三方弁VC とVH を介して接続され、
出口水温が一定の高温になるように制御されている。
As shown in FIG. 1, through the heat storage tank ST,
It is configured by being separated into a load side and a heat source machine group side. In the heat storage tank ST, the left end is a high temperature tank and the right end is a low temperature tank. The heat load Q L side so make any hot water through the three-way valve V L to the constant flow rate pump P L.
On the heat source side, a cogeneration system CGS and a heat pump H are connected in parallel, and constant flow pumps P C and P H are connected via three-way valves V C and V H , respectively.
The outlet water temperature is controlled to a constant high temperature.

【0011】従って、図2の熱電負荷比の小さいX1
需要に対し、コジェネレーションシステムCGSは電力
負荷WL に追従したY1 で運転し、余剰熱QST1 は蓄熱
槽内STに蓄えられる。一方、熱電負荷比の大きいX2
=QL /WL の時は、熱負荷の一部QST2 を蓄熱槽ST
からの放熱で賄うため、コジェネレーションシステムに
必要とされるみなし熱需要量はQh ’となり、必要な熱
電需要点はX2 ’となる。熱電需要点X2 ’を通り傾き
が1/COPとなる直線lと熱電発生直線a+bとの交
点Y2 ’がコジェネレーションシステム+買電の運転点
であり、買電がWB で、コジェネレーションシステムC
GSは定格運転点がY2 ’’であり、ヒートポンプHへ
の電気入力はWH である。
Therefore, in response to the demand for X 1 having a small thermoelectric load ratio in FIG. 2, the cogeneration system CGS operates at Y 1 following the power load W L , and the surplus heat Q ST1 is stored in the heat storage tank ST. . On the other hand, X 2 with a large thermoelectric load ratio
= Q L / W L , part of the heat load Q ST2 is stored in the heat storage tank ST
Since the heat is radiated from the heat source, the deemed heat demand required for the cogeneration system is Q h 'and the necessary thermoelectric demand point is X 2 '. An operating point of cogeneration system + power purchase 'intersection Y 2 between the line l and the thermoelectric generating linear a + b that passes through the slope becomes 1 / COP' thermoelectric demand point X 2, in purchased power is W B, cogeneration System C
GS is a rated operation point Y 2 '', the electrical input to the heat pump H is W H.

【0012】従って、上記実施例によれば、熱電負荷比
が小なる時は電力負荷追従運転で余剰熱を蓄熱槽に蓄え
ておき、熱電負荷化が大きい時は蓄熱槽内の熱を使いつ
つ買電を含めた熱電負荷需要を賄いうることが可能な制
御性のよい、信頼性のある制御方法を提供できる。
Therefore, according to the above-described embodiment, when the thermoelectric load ratio is small, the excess heat is stored in the heat storage tank in the power load following operation, and when the thermoelectric load is large, the heat in the heat storage tank is used. It is possible to provide a reliable control method with good controllability that can meet the demand for thermoelectric load including power purchase.

【0013】[0013]

【発明の効果】以上のように、本発明によれば、負荷側
と熱源機群側とを蓄熱槽を介して構成し、熱源機として
コジェネレーションシステムとヒートポンプを並列に配
置し、熱電比が小の時は電力追従運転を実行し、余剰熱
を蓄熱槽に蓄え、熱電比が大の時は蓄熱槽の熱を利用
し、残りの熱負荷と電力負荷に対し、買電を伴う運転を
するので、任意の電力負荷と任意の熱負荷に対応でき、
しかも熱源機側のバックアップが自動的に実行でき、制
御が簡単になるという効果がある。
As described above, according to the present invention, the load side and the heat source unit group side are configured via the heat storage tank, the cogeneration system and the heat pump are arranged in parallel as the heat source unit, and the thermoelectric ratio is When it is small, the power follow-up operation is executed, excess heat is stored in the heat storage tank, and when the thermoelectric ratio is large, the heat of the heat storage tank is used, and the operation with electricity purchase is performed for the remaining heat load and power load. So it can handle any power load and any heat load,
Moreover, the backup of the heat source unit can be automatically executed, which has the effect of simplifying the control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるコジェネレーションシ
ステムとヒートポンプと蓄熱槽の構成図である。
FIG. 1 is a configuration diagram of a cogeneration system, a heat pump, and a heat storage tank according to an embodiment of the present invention.

【図2】エンジン駆動方コジェネレーションシステムの
熱電発生図である。
FIG. 2 is a thermoelectric generation diagram of an engine driving cogeneration system.

【図3】従来のコジェネレーションシステムにおける蓄
熱槽を含むシステムの構成図である。
FIG. 3 is a configuration diagram of a system including a heat storage tank in a conventional cogeneration system.

【符号の説明】[Explanation of symbols]

CGS エンジン駆動コジェネレーションシステム ST 蓄熱槽 H ヒートポンプ COP 成績係数 WL 電力負荷(電力需要量) QL 熱負荷 X1 ,X2 熱電(負荷)需要点 Y1 ,Y2 コジェネレーション運転点 QST1 余剰熱 QST2 蓄熱槽からの利用熱量 Qh ’ みなし熱需要量 l 熱電実現直線 a 熱電発生直線 b 買電直線 a+b 熱電供給線 WB 買電 WH ヒートポンプへの投入電力CGS engine driven cogeneration system ST storage tank H heat pump COP COP W L power load (power demand) Q L heat load X 1, X 2 thermoelectric (load) demand point Y 1, Y 2 cogeneration operating point Q ST1 excess electric power supplied to the utilization heat Q h 'regards heat demand l thermoelectric realized line a thermoelectric generator line b power purchase straight a + b thermoelectric supply line W B power purchase W H heat pump from the heat Q ST2 storage tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H02J 3/00 Z 7509−5G 3/38 A 7373−5G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical indication location H02J 3/00 Z 7509-5G 3/38 A 7373-5G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エンジン駆動コジェネレーションシステ
ムとヒートポンプ及び蓄熱槽とを組み合わせた熱電併給
システムにおいて、コジェネレーションシステムにおけ
る熱電発生比率に対し、需要側熱電比率が小さい時は、
電力需要に合わせてコジェネレーションシステムを運転
し、余剰熱を蓄熱槽に蓄熱し、需要側熱電比率が大きい
時は、所望熱電需要量から蓄熱槽からの利用熱量を差し
引いたみなし熱需要量を求め、上記みなし熱需要量と所
望電力需要量とから成る熱電需要点を求め、上記コジェ
ネレーションシステムの熱電発生図中の上記熱電需要点
を通り傾きが成績係数の逆数となる熱電実現直線と上記
コジェネレーションシステムの熱電発生図中の熱電発生
直線の上に買電直線を重ねた熱電供給線を作成し、上記
熱電実現直線と上記熱電供給線との交点で上記コジェネ
レーションシステムとヒートポンプを運転するコジェネ
レーションシステムの運転制御方法。
1. In a combined heat and power supply system combining an engine-driven cogeneration system, a heat pump, and a heat storage tank, when the demand-side heat-electric ratio is smaller than the heat-generation ratio in the cogeneration system,
Operate the cogeneration system according to the power demand, store excess heat in the heat storage tank, and when the demand-side thermoelectric ratio is large, obtain the deemed heat demand by subtracting the heat used from the heat storage tank from the desired heat power demand. , The thermoelectric demand point consisting of the deemed heat demand amount and the desired power demand amount is obtained, and the thermoelectric realization straight line whose slope is the reciprocal of the coefficient of performance and passes through the thermoelectric demand point in the thermoelectric generation diagram of the cogeneration system Create a thermoelectric supply line by superimposing a power purchase line on the thermoelectric generation line in the thermoelectric generation diagram of the generation system, and operate the cogeneration system and the heat pump at the intersection of the thermoelectric realization line and the thermoelectric supply line. Generation system operation control method.
JP21416692A 1992-08-11 1992-08-11 Operation control method for cogeneration system Expired - Fee Related JP3258998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21416692A JP3258998B2 (en) 1992-08-11 1992-08-11 Operation control method for cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21416692A JP3258998B2 (en) 1992-08-11 1992-08-11 Operation control method for cogeneration system

Publications (2)

Publication Number Publication Date
JPH0659747A true JPH0659747A (en) 1994-03-04
JP3258998B2 JP3258998B2 (en) 2002-02-18

Family

ID=16651331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21416692A Expired - Fee Related JP3258998B2 (en) 1992-08-11 1992-08-11 Operation control method for cogeneration system

Country Status (1)

Country Link
JP (1) JP3258998B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008695A (en) * 2000-06-27 2002-01-11 Idemitsu Kosan Co Ltd Running time setting method of combined heat and power generation equipment
JP2008180473A (en) * 2007-01-26 2008-08-07 Kenji Umetsu Hybrid energy-using heat pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008695A (en) * 2000-06-27 2002-01-11 Idemitsu Kosan Co Ltd Running time setting method of combined heat and power generation equipment
JP2008180473A (en) * 2007-01-26 2008-08-07 Kenji Umetsu Hybrid energy-using heat pump device

Also Published As

Publication number Publication date
JP3258998B2 (en) 2002-02-18

Similar Documents

Publication Publication Date Title
JP2009074744A (en) Gas heat pump cogeneration apparatus
US4589262A (en) Absorption type air conditioning system
JPH0659747A (en) Operation control method of cogeneration system
JP4128054B2 (en) Fuel cell system and operating method thereof
JP3301784B2 (en) Control method of heat storage tank in combined heat and power system
JPH0659748A (en) Temperature control method of heat storage tank in cogeneration system
JP3624275B2 (en) Cold and hot water generation method that does not require external power supply
JPS6046251B2 (en) Heating and cooling system with emergency power generator
JPH0658692A (en) Control system of heat storage tank for cogeneration system
JPH0666110A (en) Control method of heat pump in heat and electric power double supplying system
JPH0329523Y2 (en)
JP3675070B2 (en) Cogeneration system
JPH0814104A (en) Cogeneration system
JP6075181B2 (en) Thermoelectric supply system
JPH11351056A (en) Small-sized energy plant device
JP2695210B2 (en) Air conditioning
JP3182633U (en) Building energy plant
EP2188878B1 (en) Method and apparatus for providing heat and power
JP2628218B2 (en) Optimal control method for cogeneration system
JPH0117010Y2 (en)
JPH08232681A (en) Cogeneration device
JPH01131859A (en) Cold and hot water controller
JP2005341797A (en) Operation system for thermal power station
JPH0474531B2 (en)
JPH0264255A (en) Cogeneration system by internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees