JP3675070B2 - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP3675070B2
JP3675070B2 JP30907696A JP30907696A JP3675070B2 JP 3675070 B2 JP3675070 B2 JP 3675070B2 JP 30907696 A JP30907696 A JP 30907696A JP 30907696 A JP30907696 A JP 30907696A JP 3675070 B2 JP3675070 B2 JP 3675070B2
Authority
JP
Japan
Prior art keywords
heat
time
cogeneration system
amount
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30907696A
Other languages
Japanese (ja)
Other versions
JPH10148160A (en
Inventor
克昌 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP30907696A priority Critical patent/JP3675070B2/en
Publication of JPH10148160A publication Critical patent/JPH10148160A/en
Application granted granted Critical
Publication of JP3675070B2 publication Critical patent/JP3675070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱エネルギーと電気エネルギーを併給するコージェネレーションシステムに関する。
【0002】
【従来の技術】
コージェネレーションシステム(熱電併給システム)は、熱主電従運転方式あるいは電主熱従運転方式が選択される。現状では、電力単価が高価なため、電主熱従運転方式が多く採用されている。つまり、電力負荷さえあればコージェネレーションシステムを運転し、廃熱の回収利用用途がない場合はクーリングタワー、ラジエータ等で放熱している。
【0003】
【発明が解決しようとする課題】
コージェネレーションシステムを運転する際、電力負荷は必要としても、電気も熱も有効利用するところにシステムの省エネルギー性や経済性が生まれるが、現状では電力が主体であり、電気負荷さえ確保できればコージェネレーションシステムからの回収熱が利用できなくても運転し、その廃熱はクーリングタワー等により大気中に放熱している。
【0004】
このため、回収熱を大気放熱する機会が多い需要形態のシステムにおいては、廃熱回収機器の施設に多額の費用を掛けるよりも、通常の常用発電機だけでよい、と判断することが多くなる。また、仮にある程度廃熱回収ができたとしても、やはり、大気放熱を行わなければならない需要家においては、その補機電力(クーリングタワー、冷却水ポンプ等に要する電力)の消費によるデメリットが生じる。
【0005】
そこで本発明は、上記課題を解決し、熱利用の少ない需要形態でも運用効率の向上が図れるコージェネレーションシステムを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、熱エネルギーと電気エネルギーを併給するコージェネレーションシステムにおいて、自家用発電機の出力信号と受電電力を取り込み、システムの起動・停止制御を行うとともに、熱の利用状況をも取り込むシーケンサによってシステムの運転制御を助勢する運転制御方式であって、需要形態に応じて設定する基準運転時間帯に対し、熱利用状況による運転開始補正時間Tを、
T={(前日の熱使用量×K)/定格発生熱量}−基準運転時間
ここに、K:補正係数(0〜1.0)
の簡易演算式の演算によって求め、その結果に基づいて運転開始時刻を決めることを特徴とする。
【0007】
【発明の実施の形態】
図1に本発明の一実施形態を示す。図中、1は交流発電機、2はディーゼルエンジン、3はこのエンジン2の排気路に設置したガス−水熱交換器、4は前記エンジン2の冷却水ジャケットに3方弁5を介して接続した水−水熱交換器、6は貯湯槽、7は移送ポンプで、前記両熱交換器3及び4の受熱側と貯湯槽6により形成した循環路に設置している。8は放熱用の水−水熱交換器、9はクーリングタワー、10は移送ポンプで、前記熱交換器8の受熱側とクーリングタワー9の間の循環路に設置している。11は自家発電電力(交流発電機1の出力)を計測する発電電力計測部、12は商用電源からの受電電力を計測する受電電力計測部、13は熱量計測部、14は前記各計測部11〜13から計測信号を受け、所定動作となるように各部を制御する制御盤で、これにはシーケンサ14Aを設けている。シーケンサ14Aは、電気の利用状況、熱の利用状況から簡易的に運転開始補正時間を演算して、電気も熱も有効に利用するように起動及び停止を行わせるためのものである。
【0008】
上記構成のコージェネレーションシステムにおいては、発電中にエンジン2の廃熱により貯湯槽6内の貯湯温度が一定値以上になると3方弁5が動作し、エンジン2のジャケット冷却水が放熱用の熱交換器8にも流れるようになる。そして、給湯設備に利用されない廃熱が、熱交換器8での熱交換後、クーリングタワー9から大気中に放熱される。
【0009】
次に、運転制御について述べる。まず、基準運転時間を設定する。この基準運転時間は、熱の利用が最も高い時間帯に設定する。例えば、図2に示すように12時〜23時とする。そして、この時間帯を中心に、前日の熱利用実績とシステムの能力に基づいて運転開始補正時間Tを下式により演算し、起動時刻を決定する。これは、需要家においてその需要形態に応じて個々に実施する。
【0010】
T={(前日の熱使用量×K)/定格発生熱量}−基準運転時間
ここに、K:補正係数(0〜1.0)
例えば、運転開始補正時間Tが2時間であれば、運転開始時刻は図2に示すように10時となり、この時刻に運転が開始される。
【0011】
このように、前日の熱利用実績を含む簡易演算により運転開始補正時間Tを求め、基準運転時間に加減算して運転開始時刻を決めると、電力負荷が中心であるものの、熱利用についても制御されるため、システムの運用効率が50〜60%程度まで高まる。しかも、簡易演算であるため、イニシャルコストの増加も最小限となる。
【0012】
因に、コージェネレーションシステムの運用効率は、本来70%以上であるものの、電気主体での運用のために40〜50%程度である。
【0013】
【発明の効果】
以上のように本発明によれば、電力負荷が中心であるものの、熱利用についても制御するため、システムの運用効率を50〜60%程度まで高めることが可能となり、経済性・省エネルギー性の向上が図れる。また、この運転制御方式は簡易的であるため、イニシャルコストの増加を最小限に止めることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す配管及び制御系の系統構成図。
【図2】一実施形態のタイムチャート。
【符号の説明】
1…交流発電機
2…ディーゼルエンジン
3…ガス−水熱交換器
4…水−水熱交換器
5…3方弁
6…貯湯槽
7…移送ポンプ
8…水−水熱交換器
9…クーリングタワー
10…移送ポンプ
11…発電電力計測部
12…受電電力計測部
13…熱量計測部
14…制御盤
14A…シーケンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cogeneration system that supplies heat energy and electric energy together.
[0002]
[Prior art]
For the cogeneration system (cogeneration system), the main heat operation mode or the main heat operation mode is selected. At present, since the unit price of electric power is expensive, the electric main heat slave operation method is often employed. In other words, the cogeneration system is operated as long as there is an electric power load, and when there is no use for collecting and recovering waste heat, heat is radiated by a cooling tower, a radiator or the like.
[0003]
[Problems to be solved by the invention]
When operating a cogeneration system, the power load is necessary, but the energy and efficiency of the system are born where the electricity and heat are effectively used. The system operates even when the heat recovered from the system is not available, and the waste heat is dissipated into the atmosphere by a cooling tower or the like.
[0004]
For this reason, in a demand-type system where the recovered heat is often dissipated to the atmosphere, it is often judged that only a normal utility generator is required rather than spending a large amount of money on the facility of the waste heat recovery equipment. . Even if waste heat can be recovered to some extent, a consumer who has to perform heat radiation to the atmosphere still has a demerit due to consumption of auxiliary power (electric power required for a cooling tower, a cooling water pump, etc.).
[0005]
Then, this invention solves the said subject and aims at providing the cogeneration system which can aim at the improvement of operation efficiency also with the demand form with little heat utilization.
[0006]
[Means for Solving the Problems]
The present invention relates to a cogeneration system that supplies both heat energy and electric energy, and captures the output signal and received power of a private generator to control the start / stop of the system, and also uses a sequencer that captures the heat utilization status. It is an operation control method for assisting operation control, and an operation start correction time T according to a heat utilization state is set with respect to a reference operation time zone set according to a demand form.
T = {(the amount of heat used on the previous day × K) / the amount of heat generated at the rated value} −the reference operation time, where K is a correction coefficient (0 to 1.0)
The operation start time is determined based on the result obtained by the calculation of the simple calculation formula.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of the present invention. In the figure, 1 is an AC generator, 2 is a diesel engine, 3 is a gas-water heat exchanger installed in the exhaust passage of the engine 2, and 4 is connected to a cooling water jacket of the engine 2 via a three-way valve 5. The water-water heat exchanger 6, a hot water storage tank 6, and a transfer pump 7 are installed in a circulation path formed by the heat receiving side of the heat exchangers 3 and 4 and the hot water storage tank 6. 8 is a water-water heat exchanger for heat radiation, 9 is a cooling tower, 10 is a transfer pump, and is installed in the circulation path between the heat receiving side of the heat exchanger 8 and the cooling tower 9. 11 is a generated power measuring unit that measures privately generated power (output of the AC generator 1), 12 is a received power measuring unit that measures received power from a commercial power source, 13 is a heat quantity measuring unit, and 14 is each of the measuring units 11 A control panel that receives measurement signals from .about.13 and controls each part so as to perform a predetermined operation, and is provided with a sequencer 14A. The sequencer 14A is for calculating the operation start correction time simply from the electricity usage status and the heat usage status, and starting and stopping so as to effectively use both electricity and heat.
[0008]
In the cogeneration system having the above configuration, the three-way valve 5 operates when the hot water storage temperature in the hot water storage tank 6 exceeds a certain value due to the waste heat of the engine 2 during power generation, and the jacket cooling water of the engine 2 is used as heat for radiating heat. It also flows to the exchanger 8. Then, waste heat that is not used in the hot water supply facility is radiated from the cooling tower 9 to the atmosphere after heat exchange in the heat exchanger 8.
[0009]
Next, operation control will be described. First, a reference operation time is set. This reference operation time is set to a time zone in which heat is most utilized. For example, as shown in FIG. Then, centering on this time zone, the operation start correction time T is calculated by the following formula based on the heat utilization record of the previous day and the system capability, and the start time is determined. This is performed individually in the consumer according to the demand pattern.
[0010]
T = {(the amount of heat used on the previous day × K) / the amount of heat generated at the rated value} −the reference operation time, where K is a correction coefficient (0 to 1.0)
For example, if the operation start correction time T is 2 hours, the operation start time is 10:00 as shown in FIG. 2, and the operation is started at this time.
[0011]
As described above, when the operation start correction time T is obtained by a simple calculation including the heat utilization record of the previous day and the operation start time is determined by adding to or subtracting from the reference operation time, although the power load is the center, heat utilization is also controlled. Therefore, the operation efficiency of the system is increased to about 50 to 60%. In addition, since it is a simple calculation, an increase in initial cost is also minimized.
[0012]
Incidentally, although the operation efficiency of the cogeneration system is originally 70% or more, it is about 40 to 50% for operation by an electric subject.
[0013]
【The invention's effect】
As described above, according to the present invention, although the power load is the center, since the heat utilization is also controlled, it is possible to increase the operation efficiency of the system to about 50 to 60%, and the improvement in economic efficiency and energy saving performance. Can be planned. Moreover, since this operation control system is simple, an increase in initial cost can be minimized.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of piping and a control system showing an embodiment of the present invention.
FIG. 2 is a time chart according to an embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Alternator 2 ... Diesel engine 3 ... Gas-water heat exchanger 4 ... Water-water heat exchanger 5 ... Three-way valve 6 ... Hot water tank 7 ... Transfer pump 8 ... Water-water heat exchanger 9 ... Cooling tower 10 ... Transfer pump 11 ... Generated power measuring unit 12 ... Received power measuring unit 13 ... Heat quantity measuring unit 14 ... Control panel 14A ... Sequencer

Claims (1)

熱エネルギーと電気エネルギーを併給するコージェネレーションシステムにおいて、自家用発電機の出力信号と受電電力を取り込み、システムの起動・停止制御を行うとともに、熱の利用状況をも取り込むシーケンサによってシステムの運転制御を助勢する運転制御方式であって、需要形態に応じて設定する基準運転時間帯に対し、熱利用状況による運転開始補正時間Tを、
T={(前日の熱使用量×K)/定格発生熱量}−基準運転時間
ここに、K:補正係数(0〜1.0)
の簡易演算式の演算によって求め、その結果に基づいて運転開始時刻を決めることを特徴とするコージェネレーションシステム。
In a cogeneration system that supplies both heat energy and electric energy, it takes in the output signal and received power of the private generator, controls the start / stop of the system, and assists the operation control of the system with a sequencer that also captures the heat usage status The operation start correction time T according to the heat utilization status is set to a reference operation time zone set according to the demand mode.
T = {(the amount of heat used on the previous day × K) / the amount of heat generated at the rated value} −the reference operation time, where K is a correction coefficient (0 to 1.0)
The cogeneration system is characterized in that the operation start time is determined on the basis of the result of the calculation of the simple calculation formula.
JP30907696A 1996-11-20 1996-11-20 Cogeneration system Expired - Lifetime JP3675070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30907696A JP3675070B2 (en) 1996-11-20 1996-11-20 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30907696A JP3675070B2 (en) 1996-11-20 1996-11-20 Cogeneration system

Publications (2)

Publication Number Publication Date
JPH10148160A JPH10148160A (en) 1998-06-02
JP3675070B2 true JP3675070B2 (en) 2005-07-27

Family

ID=17988600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30907696A Expired - Lifetime JP3675070B2 (en) 1996-11-20 1996-11-20 Cogeneration system

Country Status (1)

Country Link
JP (1) JP3675070B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008695A (en) * 2000-06-27 2002-01-11 Idemitsu Kosan Co Ltd Running time setting method of combined heat and power generation equipment
JP4889167B2 (en) * 2001-08-09 2012-03-07 大阪瓦斯株式会社 Cogeneration system operation planning method
JP4560253B2 (en) * 2001-09-17 2010-10-13 大阪瓦斯株式会社 Cogeneration facility operation method
JP4087301B2 (en) * 2003-07-08 2008-05-21 リンナイ株式会社 Cogeneration system and its operation plan creation method
CN107203826A (en) * 2017-05-19 2017-09-26 浙江大学 A kind of power program optimization method of industrial user

Also Published As

Publication number Publication date
JPH10148160A (en) 1998-06-02

Similar Documents

Publication Publication Date Title
JP2821760B2 (en) Optimal control method for cogeneration system
JP3675070B2 (en) Cogeneration system
JPS60156914A (en) Method for performing heat and power generation in industrial power plant
JPH06176792A (en) Power storage type heat-electricity combined supply system
CN209540991U (en) A kind of thermal power plant unit thermoelectricity decoupled system
JP3653256B2 (en) Hybrid energy system
JP3624275B2 (en) Cold and hot water generation method that does not require external power supply
CN206071749U (en) A kind of marine generator waste heat cyclic utilization system
JP2628218B2 (en) Optimal control method for cogeneration system
JPH11351056A (en) Small-sized energy plant device
JP2002048005A (en) Cogeneration system
JP2726463B2 (en) Fuel cell power generation system
JP2004257276A (en) Cogeneration system
JPH10141137A (en) System for supplying both heat and electricity
JP3979770B2 (en) Hot water storage hot water supply system
JPH0828955A (en) Cogeneration system
JPH0117010Y2 (en)
CN113914995B (en) Control method of distributed energy system based on water energy storage
JP3301784B2 (en) Control method of heat storage tank in combined heat and power system
JPH11351057A (en) Hybrid energy supply system
JPH0474531B2 (en)
JPH0786338B2 (en) Cogeneration system
JPH10185313A (en) Waste heat input type electronic water heater
JPS627976Y2 (en)
JPH06281289A (en) Cogeneration apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term