JPH0658314B2 - Particle size distribution measuring device using laser light diffraction - Google Patents

Particle size distribution measuring device using laser light diffraction

Info

Publication number
JPH0658314B2
JPH0658314B2 JP60242064A JP24206485A JPH0658314B2 JP H0658314 B2 JPH0658314 B2 JP H0658314B2 JP 60242064 A JP60242064 A JP 60242064A JP 24206485 A JP24206485 A JP 24206485A JP H0658314 B2 JPH0658314 B2 JP H0658314B2
Authority
JP
Japan
Prior art keywords
detector
light
lens
size distribution
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60242064A
Other languages
Japanese (ja)
Other versions
JPS62100637A (en
Inventor
和弘 林田
猛 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60242064A priority Critical patent/JPH0658314B2/en
Publication of JPS62100637A publication Critical patent/JPS62100637A/en
Publication of JPH0658314B2 publication Critical patent/JPH0658314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N15/0211Investigating a scatter or diffraction pattern

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、フラウンホーファ回折を利用した粒度分布測
定装置に関する。
The present invention relates to a particle size distribution measuring apparatus using Fraunhofer diffraction.

<従来の技術> コヒーレントな光がスリット,円形開口,あるいはディ
スク等を通過したときに生ずる回折現象、すなわちフラ
ウンホーファ回折を利用して、粒子群の粒度分布を測定
する方法は既に知られている。実際には、飛しょう状態
の粒子群にレーザ光を照射し、各粒子の大きさに応じて
回折される光をレンズで受け、そのレンズの焦点面上に
回折像を結ばせる。そしてこの回折像の光強度分布の実
測値から、粒子群の粒度分布を算出する。
<Prior Art> A method for measuring the particle size distribution of a particle group using a diffraction phenomenon that occurs when coherent light passes through a slit, a circular aperture, a disk, or the like, that is, Fraunhofer diffraction is already known. In practice, a particle group in a flying state is irradiated with laser light, light diffracted according to the size of each particle is received by a lens, and a diffraction image is formed on the focal plane of the lens. Then, the particle size distribution of the particle group is calculated from the measured value of the light intensity distribution of this diffraction image.

従来、上述の光強度分布を測定する方法の一つとして、
第3図に示す如く、ホトダイオード等の受光素子を複数
個リング状に組み合わせたリングデテクタを用いる方法
がある。この方法による利点は、回折光には若干のゆ
らぎが存在し、測定に際しては強度信号を平均化する必
要があるが、この平均化が、それぞれの素子について時
間的に平行して行えるので、測定時間が短縮できる。
可動部がない。回折角度の大きい部分は光強度が弱く
なるが、リングデテクタの場合、回折角度が大きくなる
程受光受面積が大きくなるので、測定精度が向上する、
等がある。
Conventionally, as one of the methods for measuring the above-mentioned light intensity distribution,
As shown in FIG. 3, there is a method of using a ring detector in which a plurality of light receiving elements such as photodiodes are combined in a ring shape. The advantage of this method is that there are some fluctuations in the diffracted light and it is necessary to average the intensity signals during measurement, but this averaging can be performed in parallel in time for each element. Time can be shortened.
There are no moving parts. Although the light intensity becomes weaker in the portion where the diffraction angle is large, in the case of a ring detector, the larger the diffraction angle, the larger the light receiving and receiving area, and therefore the measurement accuracy improves.
Etc.

<発明が解決しようとする問題点> リングデテクタを用いる方法の欠点としては、透過光
はデテクタの中心に集光するが、この光強度は極めて大
きく、デテクタ面上で熱エネルギとなって中心部の受光
素子に熱影響を与える結果、素子の温度特性による測定
誤差が生ずる虞れがある。デテクタの最中心部の受光
部は、その半径が1mm以下であり、デテクタが集光用の
レンズの光軸と少しでもずれると大きな誤差を生じる
為、その位置合わせが重要となるが、その作業が困難で
ある、等があった。
<Problems to be Solved by the Invention> As a drawback of the method using the ring detector, the transmitted light is condensed at the center of the detector, but the intensity of this light is extremely large and becomes heat energy on the surface of the detector to form a central portion. As a result of the thermal effect on the light receiving element, the measurement error may occur due to the temperature characteristic of the element. The light receiving part at the center of the detector has a radius of 1 mm or less, and if the detector slightly deviates from the optical axis of the lens for condensing, a large error will occur, so alignment is important. Was difficult, and so on.

<問題点を解決するための手段> 本発明は上述の欠点を解消すべくなされたもので、その
構成を実施例図面である第1図,第2図を参照しつつ説
明すると、本発明は、分散飛しょう状態の供試粒子群W
にレーザ光を照射し、粒子の大きさに応じて回折される
レーザ光を、供試粒子群Wの後方に置かれたレンズ1に
より、そのレンズ1の焦点面に配設された複数個の受光
素子からなるデテクタ(例えばリングデテクタ)2上に
集光し、そのデテクタの半径方向の受光強度分布から供
試粒子群Wの粒度分布を求める装置において、上記デテ
クタ2の中心部に貫通小孔2aが穿設する。また、その
貫通小孔2aの後方所定距離の位置には、この小孔2a
を通過したレーザ光を受光する為の受光手段(透過光強
度測定用デテクタ)3を設けた構成とする。
<Means for Solving Problems> The present invention has been made to solve the above-mentioned drawbacks, and the configuration thereof will be described with reference to FIGS. 1 and 2 which are embodiment drawings. , Test particle group W in dispersed flight state
The lens 1 placed on the rear side of the sample particle group W causes a plurality of laser beams, which are diffracted according to the size of the particles, to be radiated onto the focal plane of the lens 1. In a device that collects light on a detector (for example, a ring detector) 2 formed of a light receiving element and obtains the particle size distribution of the sample particle group W from the received light intensity distribution in the radial direction of the detector, a small through hole is formed in the center of the detector 2. 2a is drilled. Further, at the position of a predetermined distance behind the through small hole 2a, the small hole 2a is formed.
The light receiving means (detector for measuring the transmitted light intensity) 3 for receiving the laser light passing through is provided.

<作用> レンズ1の焦点面に配設されたデテクタ2の表面中心部
に集光すべき透過レーザ光は、貫通小孔2aを通過し
て、その後方所定距離の位置の受光手段3に入射される
ことになる。貫通小孔2aを通過したレーザ光を全てこ
の受光手段3で受光しても、この受光手段3の受光面上
においては再び拡散されているので、単位面積当りのエ
ネルギが弱くなっており、熱的影響を受けにくく、測定
誤差が生じない。また、レンズ1とデテクタ2の位置合
わせについて、受光手段3の受光量が最大となるようレ
ンズ1の位置を調節することにより、レンズ1の光軸と
デテクタ2の中心が合致し、かつ、レンズ1の焦点面と
デテクタ2の受光面が一致したことになって、その調節
作業が容易となる。
<Operation> The transmitted laser light to be focused on the center of the surface of the detector 2 arranged on the focal plane of the lens 1 passes through the small through hole 2a and is incident on the light receiving means 3 at a predetermined distance behind it. Will be done. Even if all the laser light that has passed through the small through hole 2a is received by this light receiving means 3, it is diffused again on the light receiving surface of this light receiving means 3, so the energy per unit area is weakened and the heat It is less susceptible to physical influences and does not cause measurement errors. Further, regarding the alignment of the lens 1 and the detector 2, by adjusting the position of the lens 1 so that the amount of light received by the light receiving means 3 is maximized, the optical axis of the lens 1 and the center of the detector 2 coincide with each other, and the lens Since the focal plane of No. 1 and the light receiving plane of the detector 2 coincide with each other, the adjustment work becomes easy.

<実施例> 本発明の実施例を、以下、図面に基づいて説明する。<Examples> Examples of the present invention will be described below with reference to the drawings.

第1図は本発明実施例の構成図で、第2図はそのリング
デテクタ2の中心部近傍の拡大図である。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is an enlarged view of the vicinity of the center of the ring detector 2.

レーザ光源4からのレーザ光はコリメータレンズ5a,
5bによって拡大され、フローセル6に照射される。フ
ローセル6内には、後述するように、供試粒子群Wが希
釈液の中に分散してなる懸濁液が循環しており、照射さ
れたレーザ光はこの分散粒子によって、各粒子径に応じ
た角度で回折する。その回折光は次段の集光用のレンズ
1によって、レンズ1の焦点面に置かれたリングデテク
タ2上に回折像を結ぶ。このレンズ1には、リングデテ
クタ2との位置関係を調節する為の位置調節機構17が
付設されている。
The laser light from the laser light source 4 is collimator lens 5a,
It is enlarged by 5b and is irradiated on the flow cell 6. As will be described later, in the flow cell 6, a suspension in which the sample particle group W is dispersed in the diluting liquid is circulated, and the irradiated laser light is dispersed by the dispersed particles into various particle sizes. Diffract at an angle. The diffracted light is focused by the condensing lens 1 at the next stage to form a diffracted image on the ring detector 2 placed on the focal plane of the lens 1. The lens 1 is provided with a position adjusting mechanism 17 for adjusting the positional relationship with the ring detector 2.

リングデテクタ2は、ホトダイオードを複数個リング状
に組み合わせて構成されており、そのリングの中心にあ
たる位置には、所定径,例えば1mm以下の貫通小孔2a
が穿たれている。そして、その貫通小孔2aの後方、距
離lの位置には、同様にホトダイオードから構成され、
貫通小孔2aを通過したレーザ光を受光するための、透
過光強度測定用デテクタ3が配設されている。
The ring detector 2 is configured by combining a plurality of photodiodes in a ring shape, and at a position corresponding to the center of the ring, a small through hole 2a having a predetermined diameter, for example, 1 mm or less.
Is being worn. Then, behind the penetrating small hole 2a, at a position of a distance l, a photodiode is similarly formed,
A transmitted light intensity measuring detector 3 is provided for receiving the laser beam that has passed through the small through hole 2a.

リングデテクタ2上に集光されたレーザ光の半径方向へ
の強度分布は、フローセル6内の分散粒子の各粒子の大
きさに基づく回折角度の分布に対応している。すなわ
ち、回折角度の小さい光は内側の素子に、回折角度の大
きい光は外側の素子に集光される。また、回折を受けな
い光、すなわち透過光は、リングデテクタ2の中心の貫
通小孔2aを通過して、透過光強度測定用デテクタ3に
入射される。
The intensity distribution in the radial direction of the laser light focused on the ring detector 2 corresponds to the distribution of diffraction angles based on the size of each dispersed particle in the flow cell 6. That is, light having a small diffraction angle is focused on the inner element and light having a large diffraction angle is focused on the outer element. The light that is not diffracted, that is, the transmitted light passes through the small through hole 2a at the center of the ring detector 2 and is incident on the transmitted light intensity measuring detector 3.

リングデテクタ2の各半径位置にある素子への光量は、
各素子によって電気信号に変換され、マルチプレクサ
7,アンプ8およびA−D変換器9によって量子化され
た後、CPU10を介してRAM11内に格納される。
また、透過光強度測定用デテクタ3への光量、すなわ
ち、透過光量も、同様にアンプ8およびA−D変換器9
で量子化された後、RAM11内に格納される。
The amount of light to the elements at each radial position of the ring detector 2 is
It is converted into an electric signal by each element, quantized by the multiplexer 7, the amplifier 8 and the AD converter 9, and then stored in the RAM 11 via the CPU 10.
Similarly, the amount of light to the transmitted light intensity measuring detector 3, that is, the amount of transmitted light, is similarly determined by the amplifier 8 and the AD converter 9.
After being quantized by, it is stored in the RAM 11.

CPU10は、ROM12に書き込まれたプログラムに
基づいて、公知の算法により、RAM11内に格納され
ているリングデテクタ2の受光強度分布、および透過光
強度測定用デテクタ3への入射光強度、すなわち透過光
強度のデータから、供試粒子群Wの粒度分布を算出する
ことができる。
Based on the program written in the ROM 12, the CPU 10 uses a known method to calculate the received light intensity distribution of the ring detector 2 stored in the RAM 11 and the incident light intensity to the transmitted light intensity measuring detector 3, that is, the transmitted light. From the strength data, the particle size distribution of the sample particle group W can be calculated.

CPU10には、指令を与えるためのキーボード13,
粒度分布算出結果等を表示するためのCRT14,およ
び入出力ポート15が接続されており、この入出力ポー
ト15には、フローセル6内に懸濁液を循環させ、ある
いは、CPU10からの指令によって、希釈液を追加注
入する為の希釈・循環装置16が接続されている。そし
て、ROM12には、前述した粒度分布算出プログラム
のほかに、透過光強度測定用デテクタ3の出力の監視に
よる濃度制御用プログラムが書き込まれている。このプ
ログラムは測定に先立って実行され、フローセル6内の
懸濁液濃度が自動的に規定濃度になるよう、希釈・循環
装置16が制御される。
A keyboard 13 for giving commands to the CPU 10,
A CRT 14 for displaying a particle size distribution calculation result and an input / output port 15 are connected to the input / output port 15. The suspension is circulated in the flow cell 6 or a command from the CPU 10 is used. A dilution / circulation device 16 for additionally injecting the diluent is connected. Then, in the ROM 12, in addition to the above-mentioned particle size distribution calculation program, a density control program by monitoring the output of the transmitted light intensity measuring detector 3 is written. This program is executed prior to the measurement, and the dilution / circulation device 16 is controlled so that the suspension concentration in the flow cell 6 automatically becomes the specified concentration.

すなわち、透過光強度測定用デテクタ3の出力は前述し
た通り、懸濁液を透過した光量を示すもので、この出力
から透過度を求めることができる。透過度は吸光度に容
易に変換することができ、吸光度は懸濁液の面積濃度に
比例する。従って、透過光強度測定用デテクタ3の出力
を監視して、その値がROM12にあらかじめ記憶され
ている所定の値になるまで希釈液を追加してゆくことに
より、懸濁液濃度を規定濃度とすることができる。
That is, the output of the transmitted light intensity measuring detector 3 indicates the amount of light transmitted through the suspension as described above, and the transmittance can be obtained from this output. Transmittance can be easily converted to absorbance, which is proportional to the areal concentration of the suspension. Therefore, by monitoring the output of the transmitted light intensity measuring detector 3 and adding a diluting solution until the value reaches a predetermined value stored in advance in the ROM 12, the suspension concentration becomes the specified concentration. can do.

以上の本発明実施例を使用するとき、まず、レンズ1と
リングデテクタ2の位置合わせを行う。この位置合わせ
は、レンズ1の焦点面に正しくリングデテクタ2の受光
面が位置し、かつ、レンズ1の光軸が正しくリングデテ
クタ2の中心と一致するよう調整するもので、通常、レ
ンズ1は複数枚の焦点距離の異なるレンズが用意されて
おり、測定範囲に応じて交換自在となっている。このレ
ンズ1の交換時においては、その光軸とリングデテクタ
2のセンタがずれる可能性があって、センタがずれると
大きな測定誤差が発生するから、この位置合わせは重要
である。本発明実施例によると、透過光強度測定用デテ
クタ3に入射する光量が最大となるように位置調節機構
17を操作すれば、透過光が全て貫通小孔2aを通過し
て透過孔強度測定用デテクタ3に入射される状態になっ
たということであって、上述した条件を満たす位置にレ
ンズ1が位置決めされたことになり、その作業は容易で
ある。
When using the embodiment of the present invention described above, first, the lens 1 and the ring detector 2 are aligned. This alignment is performed such that the light receiving surface of the ring detector 2 is correctly positioned on the focal plane of the lens 1 and the optical axis of the lens 1 is correctly aligned with the center of the ring detector 2. Several lenses with different focal lengths are available, and they can be replaced according to the measurement range. When the lens 1 is replaced, the optical axis and the center of the ring detector 2 may be deviated from each other, and if the center is deviated, a large measurement error will occur. Therefore, this alignment is important. According to the embodiment of the present invention, if the position adjusting mechanism 17 is operated so that the amount of light incident on the detector 3 for measuring the intensity of transmitted light is maximized, all the transmitted light passes through the small through hole 2a to measure the intensity of the transmitted hole. This means that the lens 3 is incident on the detector 3, which means that the lens 1 is positioned at a position that satisfies the above-mentioned condition, and the work is easy.

次に、濃度制御用プログラムが実行される。このプログ
ラムの実行により、前述したように、フローセル3内の
懸濁液濃度が規定濃度に制御される。懸濁液濃度は、低
い場合は回折孔強度が全体的に弱くなって測定が不正確
となる。また高い場合は回折光が再び回折されるという
二重回折現象が発生し、この場合も測定が不正確とな
り、従ってこの濃度は適宜値に設定する必要がある。本
発明実施例によると、透過光強度測定用デテクタ3の出
力により、自動的に懸濁液濃度が適宜値に制御される。
Next, the density control program is executed. By executing this program, as described above, the suspension concentration in the flow cell 3 is controlled to the specified concentration. When the suspension concentration is low, the diffraction hole strength is weak overall and the measurement becomes inaccurate. If it is too high, a double diffraction phenomenon occurs in which the diffracted light is diffracted again, and the measurement becomes inaccurate in this case as well. According to the embodiment of the present invention, the suspension concentration is automatically controlled to an appropriate value by the output of the transmitted light intensity measuring detector 3.

その後、実際の測定動作が実行されるが、このとき、粒
子により回折されずにレンズ1の光軸に平行に入射され
る光、すなわち透過光は、全てリングデテクタ2の受光
面中心部に集光され、極めて大きなエネルギを持ってい
るが、透過光強度測定用デテクタ3はレンズ1の焦点面
から距離lだけ後方に配設されているので、透過光は拡
散され、このデテクタ3の受光面上では単位面積当りの
エネルギは弱くなる。
After that, the actual measurement operation is performed, but at this time, all the light that is not diffracted by the particles and is incident parallel to the optical axis of the lens 1, that is, the transmitted light, is collected at the center of the light receiving surface of the ring detector 2. The detector 3 for measuring the intensity of the transmitted light is disposed behind the focal plane of the lens 1 by a distance 1 although it receives light and has an extremely large energy. Therefore, the transmitted light is diffused and the light receiving surface of the detector 3 is diffused. Above, the energy per unit area becomes weak.

なお、以上の実施例では、液体中に供試粒子群を分散さ
せた場合の測定例を示したが、ガス中に供試粒子群を分
散させてもよいことは勿論である。また、リングデテク
タ2としては、第3図に示したようなリング一周に全て
素子を配列したものに限られることなく、半円形,扇形
に配列したもの、あるいは、直線的に素子を配列した、
ホトダイオードアレイを用いたものであっても、本発明
を適用することができる。
In addition, in the above examples, the measurement example in which the sample particle group is dispersed in the liquid has been shown, but it goes without saying that the sample particle group may be dispersed in the gas. Further, the ring detector 2 is not limited to one in which all the elements are arranged around the circumference of the ring as shown in FIG. 3, but may be arranged in a semicircular shape, a fan shape, or the elements are arranged linearly.
The present invention can be applied even to the one using a photodiode array.

<効果> 以上説明したように、本発明によれば、フランホーファ
回折を利用した粒度分布測定装置において、回折光集光
用のレンズ1の焦点面に置かれるリングデテクタ2の中
心部に貫通小孔2aを穿ち、透過光をその貫通小孔2a
を通過させて、焦点面から所定距離後方の透過光強度測
定用デテクタ3によってその強度を測定するよう構成し
たから、従来のような透過光の集光による受光素子の熱
的影響に起因する測定誤差が生じない。また、透過光が
全て貫通小孔2aを通過して透過光強度測定用デテクタ
3に入射されるようレンズ1とリングデテクタ2の位置
関係を調節することにより、すなわち、透過光強度測定
用デテクタ3への入射光が最大となるよう上述の位置関
係を調節するだけで、レンズ1とリングデテクタ2の位
置が正しく位置決めされたことになり、その調節作業が
容易となる。
<Effect> As described above, according to the present invention, in the particle size distribution measuring apparatus using the Franhofer diffraction, the through small hole is formed in the central portion of the ring detector 2 placed on the focal plane of the lens 1 for collecting diffracted light. 2a is penetrated and the transmitted light passes through the small hole 2a.
Since the intensity of the transmitted light is measured by the detector 3 for measuring the intensity of transmitted light that is behind the focal plane by a predetermined distance, the measurement caused by the thermal influence of the light receiving element due to the collection of the transmitted light as in the conventional case. There is no error. Further, the positional relationship between the lens 1 and the ring detector 2 is adjusted so that all the transmitted light passes through the small through hole 2a and is incident on the transmitted light intensity measuring detector 3, that is, the transmitted light intensity measuring detector 3 The positions of the lens 1 and the ring detector 2 are correctly positioned only by adjusting the above-mentioned positional relationship so that the incident light on the lens is maximized, and the adjustment work is facilitated.

更に、透過光強度測定用デテクタ3の出力を監視するこ
とにより、供試粒子分散系の濃度を自動的に制御するこ
とも可能となる。
Furthermore, by monitoring the output of the transmitted light intensity measuring detector 3, the concentration of the sample particle dispersion system can be automatically controlled.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例の構成図、第2図はそのリングデ
テクタ2の中心部近傍の拡大図、第3図はリングデテク
タの構成例を示す説明図である。 1……レンズ、2……リングデテクタ 2a……貫通小孔 3……透過光強度測定用デテクタ 4……レーザ光源 5a,5b……コリメータレンズ 6……フローセル、9……A−D変換器 10……CPU、11……RAM 12……ROM、16……希釈・循環装置
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is an enlarged view of the vicinity of the central portion of the ring detector 2, and FIG. 3 is an explanatory diagram showing a configuration example of the ring detector. 1 ... Lens, 2 ... Ring detector 2a ... Through hole 3 ... Transmitted light intensity measurement detector 4 ... Laser light source 5a, 5b ... Collimator lens 6 ... Flow cell, 9 ... AD converter 10 ... CPU, 11 ... RAM 12 ... ROM, 16 ... Dilution / circulation device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】分散飛しょう状態の供試粒子群にレーザ光
を照射し、粒子の大きさに応じて回折されるレーザ光
を、供試粒子群の後方に置かれたレンズにより、そのレ
ンズの焦点面に配設された複数個の受光素子からなるデ
テクタ上に集光し、そのデテクタの半径方向の受光強度
分布から供試粒子群の粒度分布を求める装置において、
上記デテクタの中心部に貫通小孔が穿設され、その貫通
小孔の後方所定距離の位置には、当該小孔を通過したレ
ーザ光を受光する為の受光手段が設けられていることを
特徴とする、レーザ光回折を利用した粒度分布測定装
置。
1. A test particle group in a dispersed flying state is irradiated with a laser beam, and a laser beam diffracted according to the size of the particle is generated by a lens placed behind the test particle group. In a device that collects light on a detector consisting of a plurality of light receiving elements arranged on the focal plane of, and obtains the particle size distribution of the test particle group from the received light intensity distribution in the radial direction of the detector,
A through hole is formed in the center of the detector, and a light receiving means for receiving the laser light passing through the hole is provided at a position a predetermined distance behind the through hole. A particle size distribution measuring device using laser light diffraction.
JP60242064A 1985-10-28 1985-10-28 Particle size distribution measuring device using laser light diffraction Expired - Lifetime JPH0658314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242064A JPH0658314B2 (en) 1985-10-28 1985-10-28 Particle size distribution measuring device using laser light diffraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242064A JPH0658314B2 (en) 1985-10-28 1985-10-28 Particle size distribution measuring device using laser light diffraction

Publications (2)

Publication Number Publication Date
JPS62100637A JPS62100637A (en) 1987-05-11
JPH0658314B2 true JPH0658314B2 (en) 1994-08-03

Family

ID=17083740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242064A Expired - Lifetime JPH0658314B2 (en) 1985-10-28 1985-10-28 Particle size distribution measuring device using laser light diffraction

Country Status (1)

Country Link
JP (1) JPH0658314B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179444A (en) * 1988-12-29 1990-07-12 Shimadzu Corp Measuring apparatus of particle size distribution
JP2687539B2 (en) * 1989-01-21 1997-12-08 株式会社島津製作所 Particle size distribution analyzer
CA2084152A1 (en) * 1992-11-30 1994-05-31 Her Majesty The Queen, In Right Of Canada, As Represented By The Ministe R Of National Defence Optical apparatus
JP4593144B2 (en) * 2004-03-26 2010-12-08 浜松ホトニクス株式会社 Method and apparatus for determining atomization conditions, and method and apparatus for producing fine particles
JP2008249724A (en) * 2008-06-06 2008-10-16 Horiba Ltd Device for measuring particle size distribution
ES2581934T3 (en) 2009-12-10 2016-09-08 The Procter & Gamble Company Method for measuring the dirt removal capacity of a cleaning product

Also Published As

Publication number Publication date
JPS62100637A (en) 1987-05-11

Similar Documents

Publication Publication Date Title
US4595291A (en) Particle diameter measuring device
US5471298A (en) Method and apparatus for measuring size of particle or defect
EP0413812B1 (en) Particle size analysis utilizing polarization intensity differential scattering
US5104221A (en) Particle size analysis utilizing polarization intensity differential scattering
EP0416067B1 (en) Method and apparatus for particle size analysis
US4655589A (en) Apparatus for automatic measurement of stress in a transparent body by means of scattered light
JPH0237536B2 (en)
JPH0658314B2 (en) Particle size distribution measuring device using laser light diffraction
JP3258889B2 (en) Optical axis adjustment method in scattering particle size distribution analyzer
US6061131A (en) Optical axis adjustment apparatus and method for particle size distribution measuring equipment
JP2910596B2 (en) Particle size distribution analyzer
US4037964A (en) Method and apparatus for measuring the sum of the radii of particles in a collection
GB1298658A (en) Photometer for measuring total radiant energy at selected angles
CN105547970A (en) A flow cytometer excitation light source system and a correction method
JPH09126984A (en) Particle size distribution measuring device
JPH05172730A (en) Measurement of particle-size distribution
JPH0225448B2 (en)
JP2536475B2 (en) Laser diffraction particle size analyzer
JP2626009B2 (en) Particle size distribution analyzer
JPH02193041A (en) Particle size distribution apparatus
JPH0623921Y2 (en) Ring detector
JP2674128B2 (en) Particle size distribution analyzer
CN107449585A (en) A kind of measurement apparatus and measuring method of acousto-optic filter angular aperture
SU535485A1 (en) Device for measuring the average Sauter diameter of aerosol particles
JPH0534259A (en) Device for measuring particle size distribution