JPH0657610B2 - How to recover Ru - Google Patents

How to recover Ru

Info

Publication number
JPH0657610B2
JPH0657610B2 JP60234898A JP23489885A JPH0657610B2 JP H0657610 B2 JPH0657610 B2 JP H0657610B2 JP 60234898 A JP60234898 A JP 60234898A JP 23489885 A JP23489885 A JP 23489885A JP H0657610 B2 JPH0657610 B2 JP H0657610B2
Authority
JP
Japan
Prior art keywords
oxide
base metal
chloride
temperature
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60234898A
Other languages
Japanese (ja)
Other versions
JPS6296322A (en
Inventor
亨 庄司
千博 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP60234898A priority Critical patent/JPH0657610B2/en
Publication of JPS6296322A publication Critical patent/JPS6296322A/en
Publication of JPH0657610B2 publication Critical patent/JPH0657610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明の方法は、反応部分においてRu又はRu酸化物
および基体金属酸化物の塩素化反応とRu酸化物の解離
反応および基体金属酸化物の揮発分離とを全て行なうこ
とによるRuを回収方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field The method of the present invention comprises a chlorination reaction of Ru or Ru oxide and a base metal oxide, a dissociation reaction of Ru oxide and a base metal oxide in the reaction portion. The present invention relates to a method for recovering Ru by performing all the volatile separation.

(従来の技術と問題点) 近年チタン、酸化チタン、酸化コバルト、酸化銅、酸化
すず、アルミナ、シリカ等の金属や金属酸化物基体上
に、ルテニウム酸化物被膜を設けた不溶性金属電極や酸
化触媒が、種々の電気化学の分野、特に食塩電解工業に
おける不溶性電極として大量に使用されている。またチ
タン酸化物等に白金族金属を被覆した電子材料が広く使
用されている。
(Prior arts and problems) In recent years, insoluble metal electrodes and oxidation catalysts in which a ruthenium oxide film is provided on a metal or metal oxide substrate such as titanium, titanium oxide, cobalt oxide, copper oxide, tin oxide, alumina, or silica. However, it is used in large quantities as an insoluble electrode in various fields of electrochemistry, especially in the salt electrolysis industry. In addition, electronic materials in which titanium oxide or the like is coated with a platinum group metal are widely used.

このような金属電極や触媒等は、かなりの長寿命を有す
るものであるが、使用中にRu酸化物被膜が徐々に消
耗、低活性化し、一定の性能を維持できなくなった際に
は、新しい電極等に取り替える必要がある。こうした使
用済の金属電極等には、尚相当量の高価なルテニウムを
被膜中に残存し、これを回収し有効利用することは工業
上重要である。
Such metal electrodes, catalysts, etc. have a considerably long life, but when the Ru oxide film gradually wears down during use and becomes less active, it becomes impossible to maintain a certain level of performance. It is necessary to replace it with an electrode. In such a used metal electrode and the like, a considerable amount of expensive ruthenium still remains in the coating film, and it is industrially important to collect and effectively utilize the ruthenium.

従来、この種の技術に関連するものとして特開51−6
8493号には、ルテニウム又はその化合物を含む難溶
性物質の可溶化性が、特開51−68499号にはルテ
ニウム又はその化合物を含む難溶性物質を処理してルテ
ニウムを回収する方法が示されている。しかし、これら
の方法は、剥離物に対するアルカリ溶融塩処理、酸化溶
液溶解工程に複雑かつ長時間の処理を要する。また、基
体金属酸化物をも溶融するため大型の高温加熱装置が必
要となり、さらにルテニウムと基体金属を分離する際、
基体金属水酸化物が析出し、効率が悪く工業的に最適な
ルテニウムの回収方法とは言えない。
Conventionally, Japanese Patent Application Laid-Open No. 51-6 has been disclosed as related to this type of technology.
No. 8493 shows the solubilization property of a poorly soluble substance containing ruthenium or a compound thereof, and JP-A-51-68499 shows a method of treating a poorly soluble substance containing ruthenium or a compound thereof to recover ruthenium. There is. However, these methods require complicated and long-time treatment for the alkali molten salt treatment and the oxidizing solution dissolving process for the peeled material. In addition, a large high-temperature heating device is required because it also melts the base metal oxide, and when separating ruthenium and the base metal,
Since the base metal hydroxide is precipitated, the efficiency is poor and it cannot be said to be the industrially optimal method for recovering ruthenium.

(発明の目的) 本発明は、叙上の事情に鑑みなされたもので、その目的
は、Ru又はRu酸化物と基体金属酸化物を含む回収物
から簡便かつ効率良くルテニウムを回収する方法を提供
することにある。
(Object of the Invention) The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for recovering ruthenium easily and efficiently from a recovered material containing Ru or Ru oxide and a base metal oxide. To do.

(発明の構成) 本発明は、Ruを回収する方法において、Ru又はRu
酸化物と酸化チタン、酸化コバルト、酸化銅、酸化す
ず、アルミナ又はシリカより選ばれる1種又は2種以上
の基体金属酸化物からなる不溶性電極又は酸化触媒から
の回収物をカーボンの存在下で塩素を流しながら加熱す
ることにより、基体金属酸化物及びRu又はその酸化物
を塩化物に変え、直ちにRu化物のみを金属Ruに解離
させた後、分離回収することを特徴とする。
(Structure of the Invention) The present invention provides a method for recovering Ru, including Ru or Ru.
A product recovered from an insoluble electrode or an oxidation catalyst composed of one or more base metal oxides selected from oxides and titanium oxide, cobalt oxide, copper oxide, tin oxide, alumina or silica is chlorinated in the presence of carbon. It is characterized in that the base metal oxide and Ru or the oxide thereof are converted to chloride by heating while flowing, and only the Ru compound is immediately dissociated into metal Ru, and then separated and recovered.

塩化物化においては、Ru又はその酸化物と基体金属を
含む回収物をカーボン粉末と混合した後、塩素を流しな
がら加熱すると、Ru又はその酸化物と基体金属酸化物
は塩化物に変わるが、Ru塩化物の解離温度以上では回
収物が塩素量に対して過剰にあると、塩素は、ほぼ完全
に反応し、塩素分圧が微小となり、Ru酸化物は容易に
解離反応を起こし金属Ruになる。一般的に使用される
基体金属の酸化物は、解離反応を起こさず又沸点もRu
塩化物の解離温度に比べて低いため、気体相として反応
系外へ容易に運び出す事ができる。
In the chlorination, when a recovery product containing Ru or an oxide thereof and a base metal is mixed with carbon powder and then heated while flowing chlorine, the Ru or the oxide and the base metal oxide are converted into a chloride. If the amount of the recovered substance is excessive with respect to the amount of chlorine above the dissociation temperature of chloride, chlorine reacts almost completely, the chlorine partial pressure becomes minute, and Ru oxide easily undergoes dissociation reaction to become metal Ru. . Oxides of commonly used base metals do not undergo a dissociation reaction and have a boiling point of Ru.
Since it is lower than the dissociation temperature of chloride, it can be easily carried out of the reaction system as a gas phase.

反応部分の温度は800〜1000℃で行うのが好ましい。こ
れより低い温度では長時間を要したり、反応部分で塩化
物化が完全には行われず、塩素分圧の高い状態で保持さ
れるとRu酸化物が金属Ruに解離出来ず蒸発して系外
へ出てしまう恐れがある。ここで反応部分の温度は800
〜1000℃が好ましいが塩化物化反応が発熱反応である場
合、加熱温度が800℃未満であっても反応熱により800〜
1000℃内に保持することは可能である。
The temperature of the reaction part is preferably 800 to 1000 ° C. If the temperature is lower than this, it will take a long time, or the reaction part will not be completely chlorinated, and if the chlorine partial pressure is kept high, Ru oxide cannot be dissociated into metal Ru and evaporates outside the system. There is a risk of going out. Here, the temperature of the reaction part is 800
~ 1000 ℃ is preferable, but when the chlorination reaction is an exothermic reaction, 800 ~ due to the heat of reaction even if the heating temperature is less than 800 ℃
It is possible to keep it within 1000 ° C.

しかし、加熱温度が600℃未満になると塩化物化反応が
起こりにくく、それによる発熱が期待できなくなる。又
1000℃よりも高いい温度では高価な高温設備が必要とな
るからである。
However, when the heating temperature is lower than 600 ° C., the chlorination reaction is unlikely to occur, and heat generation due to this reaction cannot be expected. or
This is because expensive high temperature equipment is required at temperatures higher than 1000 ° C.

カーボンの存在下で加熱する理由は金属酸化物と塩素の
置換を促すためである。
The reason for heating in the presence of carbon is to promote the replacement of metal oxide with chlorine.

なお、Ru及び基体金属の代表的な塩化物の諸性質は以
下の通りである。
The properties of typical chlorides of Ru and the base metal are as follows.

RuCl3解離塩素圧450℃で24mmHg740℃で389mmHg AlCl3沸 点 182.7℃ TiCl4沸 点 136.4℃ ZrCl4 〃 331℃ TaCl4沸 点 242℃ SiCl4 〃 57.57℃ SnCl4 〃 114.1℃ 以下図面にもとずいて実施例と従来例に付いて説明す
る。
RuCl 3 dissociation chlorine pressure at 450 ℃ 24mmHg at 740 ℃ 389mmHg AlCl 3 boiling point 182.7 ℃ TiCl 4 boiling point 136.4 ℃ ZrCl 4 〃 331 ℃ TaCl 4 boiling point 242 ℃ SiCl 4 〃 57.57 ℃ SnCl 4 〃 114.1 ℃ First, the example and the conventional example will be described.

(実施例1) 二酸化チタン3.5kg、二酸化ルテニウム200g、カーボン
粉末1.05kgを混合し、図にに示す如くこの混合物1を底
部にガラス繊維3を装着した塩化物化容器4中に入れ、
電気炉2により塩化物化容器4を800℃に加熱し、塩素
ガスを塩素ガス導入管5から5/min流すことにより
基体金属酸化物を塩化物にして蒸発させ、それを冷却管
6を通して液化し、基体塩化物捕集タンク7に移した。
これを5時間続けた後、残材料を取り出し、比重分離に
よりカーボン粉末を分離して金属Ru粉末を回収したと
ころ金属Ruの純度は99%以上で回収率も99%以上であ
った。
(Example 1) 3.5 kg of titanium dioxide, 200 g of ruthenium dioxide and 1.05 kg of carbon powder were mixed, and as shown in the figure, the mixture 1 was put into a chlorination container 4 equipped with glass fiber 3 at the bottom,
The chlorination container 4 was heated to 800 ° C. by the electric furnace 2, and chlorine gas was flowed from the chlorine gas introduction pipe 5 at a rate of 5 / min to vaporize the base metal oxide as chloride, which was liquefied through the cooling pipe 6. Then, it was transferred to the substrate chloride collection tank 7.
After continuing this for 5 hours, the residual material was taken out, the carbon powder was separated by specific gravity separation, and the metal Ru powder was recovered. The purity of the metal Ru was 99% or more and the recovery rate was 99% or more.

(従来例) 二酸化チタン36.7kg、二酸化ルテニウムム4.0kgを混合
したものをKOH+KNOを用い800℃で融解したと
ころKOH58.4kg、KNO6.1kgを要し、ルテニウム
の回収率は90%であった。
(Conventional example) A mixture of 36.7 kg of titanium dioxide and 4.0 kg of ruthenium dioxide was melted at 800 ° C. using KOH + KNO 3 to require 58.4 kg of KOH and 6.1 kg of KNO 3 , and the recovery rate of ruthenium was 90%. It was

上記実施例及び従来例で明らかなように本発明は回収効
率が99%以上であるのに対し、従来例は90%と低いこと
がわかる。また、従来例では溶融塩処理工程、酸性溶液
溶解工程等の複雑かつ、長時間の処理を必要としてい
た。
As is clear from the above examples and conventional examples, the recovery efficiency of the present invention is 99% or more, whereas the conventional example has a low efficiency of 90%. Further, in the conventional example, complicated and long-time treatments such as a molten salt treatment step and an acidic solution dissolving step were required.

(発明の効果) 以上詳述したように、本発明によれば従来例に比し、効
率良く、Ruを基体金属酸化物から分離、回収すること
ができしかも従来のように多段の湿式処理工程を必要と
しないため、経済的にしかも短時間で回収することがで
きるという効果がある。
(Effects of the Invention) As described in detail above, according to the present invention, Ru can be separated and recovered from the base metal oxide more efficiently than in the conventional example, and moreover, a multi-step wet treatment process as in the conventional case can be performed. Since it is not necessary, there is an effect that it can be recovered economically and in a short time.

【図面の簡単な説明】[Brief description of drawings]

図は本発明のRuを回収方法に用いる回収装置の概略図
である。
The figure is a schematic view of a recovery apparatus using Ru of the present invention in a recovery method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Ru又はその酸化物と酸化チタン、酸化コ
バルト、酸化銅、酸化すず、アルミナ又はシリカより選
ばれる1種又は2種以上の基体金属酸化物からなる不溶
性電極又は酸化触媒からの回収物をカーボンの存在下
で、加熱しながら塩素ガスを流すことにより基体金属酸
化物を塩化物にして蒸発分離することを特徴とするRu
を回収する方法。
1. Recovery from an insoluble electrode or an oxidation catalyst comprising Ru or an oxide thereof and one or more base metal oxides selected from titanium oxide, cobalt oxide, copper oxide, tin oxide, alumina or silica. In the presence of carbon, Ru is characterized in that chlorine gas is caused to flow while being heated so that the base metal oxide is converted to chloride to evaporate and separate.
How to recover.
【請求項2】加熱温度がRu塩化物の解離温度以上で、
かつ基体金属塩化物の沸点以上の温度であることを特徴
とする特許請求の範囲の第1項記載の方法。
2. The heating temperature is above the dissociation temperature of Ru chloride,
The method according to claim 1, wherein the temperature is equal to or higher than the boiling point of the base metal chloride.
【請求項3】加熱温度が600℃〜1000℃であることを特
徴とする特許請求の範囲第1項又は第2項記載の方法。
3. The method according to claim 1 or 2, wherein the heating temperature is 600 ° C to 1000 ° C.
JP60234898A 1985-10-21 1985-10-21 How to recover Ru Expired - Lifetime JPH0657610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60234898A JPH0657610B2 (en) 1985-10-21 1985-10-21 How to recover Ru

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60234898A JPH0657610B2 (en) 1985-10-21 1985-10-21 How to recover Ru

Publications (2)

Publication Number Publication Date
JPS6296322A JPS6296322A (en) 1987-05-02
JPH0657610B2 true JPH0657610B2 (en) 1994-08-03

Family

ID=16978027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60234898A Expired - Lifetime JPH0657610B2 (en) 1985-10-21 1985-10-21 How to recover Ru

Country Status (1)

Country Link
JP (1) JPH0657610B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132432A (en) * 1994-11-09 1996-05-28 Kyowa Seisakusho:Kk Boring working-machine for lithic material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189348A (en) * 1988-01-22 1989-07-28 Agency Of Ind Science & Technol Recovery of catalytically active component and carrier from waste catalyst
WO2007064027A1 (en) 2005-11-30 2007-06-07 Sumitomo Chemical Company, Limited Method for production of supported ruthenium and method for production of chlorine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132432A (en) * 1994-11-09 1996-05-28 Kyowa Seisakusho:Kk Boring working-machine for lithic material

Also Published As

Publication number Publication date
JPS6296322A (en) 1987-05-02

Similar Documents

Publication Publication Date Title
US9926636B2 (en) Method and apparatus for producing metal by electrolytic reduction
JPH0438826B2 (en)
US4002470A (en) Process for recovering ruthenium
JPH0339494A (en) Method for obtaining uranium by using chloride method
US3453187A (en) Apparatus and process for reduction of hydrogen chloride
JPH0657610B2 (en) How to recover Ru
JPS6261538B2 (en)
JPS6179736A (en) Recovering method of platinum group metal
JPH0524207B2 (en)
JPS62256931A (en) Method for recovering ruthenium
CN113463135B (en) Method for preparing metal titanium by dissolving and electrolyzing titanium dioxide in fluoride molten salt
CN113860363B (en) Method for removing vanadium impurities in titanium tetrachloride
JPH01142040A (en) Method for recovering ru
JPH01108101A (en) Separation and recovery of iodine
JPS62280336A (en) Recovering method for ruthenium
JP5432978B2 (en) High efficiency ruthenium recovery equipment
JPH02197532A (en) Method for recovering ru from metallic electrode
JPS62280337A (en) Recovering method for ir
JP7270224B2 (en) METHOD FOR PRODUCING METAL CARBIDE AND HYDROCARBON, AND METAL CARBIDE COMPOSITION
JPH01142039A (en) Method for recovering ru
JPS63274725A (en) Method for recovering nb and ti from superconductive material
JP7270223B2 (en) METHOD FOR PRODUCING METAL CARBIDE AND HYDROCARBON, AND METAL CARBIDE COMPOSITION
JP2698424B2 (en) Liquefaction method of iridium
JPS62280338A (en) Recovering method for rh
JPS62256936A (en) Method for recovering au