JPH0657520A - Production of sheath-core conjugated fiber - Google Patents

Production of sheath-core conjugated fiber

Info

Publication number
JPH0657520A
JPH0657520A JP21513992A JP21513992A JPH0657520A JP H0657520 A JPH0657520 A JP H0657520A JP 21513992 A JP21513992 A JP 21513992A JP 21513992 A JP21513992 A JP 21513992A JP H0657520 A JPH0657520 A JP H0657520A
Authority
JP
Japan
Prior art keywords
polymer
sheath
island
cross
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21513992A
Other languages
Japanese (ja)
Inventor
Yoshihiro Konno
吉宏 近野
Hiroshi Takahashi
洋 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP21513992A priority Critical patent/JPH0657520A/en
Publication of JPH0657520A publication Critical patent/JPH0657520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain sheath-core type conjugated fibers which can give the fibers of excellent color-developing properties by putting together the core polymer flow with the eccentrically conjugated flow from the island polymer flow and the sheath polymer flow in a specific manner and extruding the resultant polymer flow. CONSTITUTION:Three or more of eccentrically conjugated polymer flows from the island polymer flow 2 and the sheath polymer flow (the flow rate ratio of the island polymer to the sheath polymer is less than 1/3) are formed around the core polymer flow 1. The island polymer flow is allowed to contain more than 0.2wt.% of fine particles of less than 100mum sizes and the proportion of the cross section of the island flow is made less than 2% to the total cross section and they are extruded into fibers after they have been joined. The conjugated structure having stabilized conjugate cross section is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は芯鞘複合繊維の製造方法
に関し、更に詳しくは発色性が良好な多溝繊維を得るた
めの芯鞘複合繊維の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a core-sheath composite fiber, and more particularly to a method for producing a core-sheath composite fiber for obtaining a multi-groove fiber having good color developability.

【0002】[0002]

【従来の技術】合成繊維、特にポリエステル繊維は衣料
用途を中心に広く利用されているが内部構造が緻密なこ
とと、屈折率が他の繊維よりも大きいことから染色後の
発色性が不良であり、用途上も制約を受けている。ポリ
ステル繊維の染色後の発色性を改善する技術に関し、過
去において多くの検討がなされている。
2. Description of the Related Art Synthetic fibers, especially polyester fibers, are widely used mainly for clothing, but their internal structure is dense and their refractive index is larger than that of other fibers, resulting in poor coloring properties after dyeing. Yes, there are restrictions on the application. Many studies have been made in the past regarding a technique for improving the color developability of a polyester fiber after dyeing.

【0003】例えば、特公昭34−10497号公報に
提案されているように、ポリエステルを塩基性染料に可
染とするための染着座席を導入し、塩基性染料による染
色を可能にする技術がある。しかしかかる提案では、発
色性を向上するためには共重合率を高くする必要があ
り、その結果ポリマの融点が低下してしまう欠点があ
る。
For example, as proposed in Japanese Examined Patent Publication No. 34-10497, a technique for introducing a dyeing seat for making polyester dyeable with a basic dye to enable dyeing with a basic dye has been proposed. is there. However, in such a proposal, it is necessary to increase the copolymerization rate in order to improve the color developability, and as a result, the melting point of the polymer is lowered.

【0004】また、特開昭52−99400号公報、特
開昭55−107544号公報、特開昭55−1075
47号公報には、ポリマ中に微細粒子を配合してアルカ
リなどで減量加工することによって微細な凹凸を生成せ
しめ、発色性を向上する技術が提案されている。しかし
ながらこの提案による方法では発色性が向上するもの
の、向上効果が小さく、求められている発色性の要求を
満たすことはできなかった。
Further, JP-A-52-99400, JP-A-55-107544 and JP-A-55-1075.
In Japanese Patent Publication No. 47, a technique is proposed in which fine particles are blended in a polymer and processed by weight reduction with an alkali or the like to generate fine irregularities, thereby improving color developability. However, although the method according to this proposal improves the color developability, the effect of the improvement is small and the demand for the desired color developability cannot be satisfied.

【0005】更に特開昭63−105114号公報に
は、複合繊維の断面において溶解性の異なる2成分とも
繊維表面に露出した形状となし、これをアルカリで減量
することによって繊維表面に多溝を形成し、該表面の吸
収光を増加させ、更にあらかじめ配合されていた粒子に
よって発色性を向上する技術が提案されているが、繊維
表面の粗面化が不十分であるためこの技術でも十分な発
色性の向上を図ることはできなかった。
Further, in Japanese Patent Application Laid-Open No. 63-105114, both components having different solubilities in the cross section of the composite fiber are formed in a shape exposed on the fiber surface, and by reducing this with an alkali, a multi-groove is formed on the fiber surface. A technique has been proposed in which the particles are formed, the absorbed light on the surface is increased, and the coloring property is improved by the particles that have been pre-blended, but this technique is also sufficient because the roughening of the fiber surface is insufficient. The color development could not be improved.

【0006】本発明者らは、特異な方法によって得られ
る複合繊維を、さらに溶出処理を施して得られる多溝繊
維は、繊維の表面が粗面化され、溝部の反射光量の減少
はもちろん、溝以外の部分の光の反射も減少し,吸収光
量が増加するので発色性が向上することをつきとめ、し
かも安定して前記形状を有する繊維を製造する方法を見
い出し本発明に至ったものである。
The present inventors have found that the multi-groove fiber obtained by further subjecting the conjugate fiber obtained by a unique method to the elution treatment has a roughened fiber surface, which reduces the amount of reflected light in the groove portion. The inventors have found a method for stably producing a fiber having the above-described shape, finding that the color development is improved because the reflection of light in the portion other than the groove is reduced and the amount of absorbed light is increased. .

【0007】[0007]

【発明が解決しようとする課題】合成繊維の発色性は天
然繊維に比較して劣性であり、合成繊維、特にポリエス
テル繊維の発色性向上技術については上述のように種々
提案があるが、未だ十分な水準の発色性を得るに至って
いない。本発明の目的は合成繊維、特にポリエステル繊
維の発色性の向上を図り、天然繊維に比較して遜色のな
い十分な発色性を有する繊維を安定して製造し得る芯鞘
複合繊維の製造方法を提供することにある。
The color developability of synthetic fibers is inferior to that of natural fibers, and various techniques have been proposed as described above for improving the color developability of synthetic fibers, especially polyester fibers, but they are still insufficient. It has not reached the desired level of color development. The object of the present invention is to improve the color developability of synthetic fibers, particularly polyester fibers, and to provide a method for producing a core-sheath composite fiber capable of stably producing fibers having sufficient color developability comparable to natural fibers. To provide.

【0008】[0008]

【課題を解決するための手段】本発明の目的は、芯ポリ
マ流の周囲に、島ポリマと、該島ポリマとの溶出速度の
比が3倍以上の鞘ポリマからなる偏心複合流を3個以上
形成し、次いで該偏心芯鞘複合流と芯ポリマ流を合流後
吐出するに際して、該島ポリマは100mμm以下の微
粒子を0.2重量%以上含有し、かつ口金孔の合流部の
断面積に対する吐出部の断面積の比率(以下口金孔断面
積比率という)を2%以下にすることを特徴とする芯鞘
複合繊維の製造方法によって達成される。
The object of the present invention is to provide three eccentric composite flows around the core polymer flow, each of which is composed of an island polymer and a sheath polymer in which the elution rate of the island polymer is three times or more. When the above-mentioned formation is carried out and then the composite flow of the eccentric core-sheath and the core polymer flow are combined and discharged, the island polymer contains 0.2% by weight or more of fine particles of 100 mμm or less, and the cross-sectional area of the confluent portion of the die hole is This is achieved by a method for producing a core-sheath composite fiber, characterized in that the ratio of the cross-sectional area of the discharge part (hereinafter referred to as the die hole cross-sectional area ratio) is 2% or less.

【0009】以下本発明を詳細に述べる。本発明におけ
る3個以上の偏心複合流によって得られる芯鞘複合繊維
は、アルカリ水溶液などの溶剤で鞘ポリマを溶出除去し
て実質的に芯ポリマおよび島ポリマを残すことによっ
て、繊維の表面に繊維軸に沿った3本以上の溝を有す
る、発色性が極めて良好な多溝繊維とすることができ
る。かかる多溝繊維は該繊維の表面が粗面化され、溝部
の反射光量の減少はもちろん、溝以外の部分の光の反射
も減少し,吸収光量が増加するので発色性が向上する。
そのためには、溝の数が3個以上必要である。つまり、
偏心複合流を3個以上とする必要がある。偏心複合流が
2個以下では多溝を形成することができず、また20個
を越えると多溝繊維の発色性は飽和に達してしまう。好
ましくは5〜20個である。
The present invention will be described in detail below. The core-sheath composite fiber obtained by three or more eccentric composite flows in the present invention is a fiber on the surface of the fiber, which is obtained by eluting and removing the sheath polymer with a solvent such as an alkaline aqueous solution to substantially leave the core polymer and the island polymer. It is possible to obtain a multi-groove fiber which has three or more grooves along the axis and which has extremely excellent color developability. In such multi-groove fibers, the surface of the fibers is roughened, the amount of reflected light at the groove portion is reduced, and the reflection of light at portions other than the groove is also reduced, so that the amount of absorbed light is increased and thus the color developability is improved.
For that purpose, the number of grooves is 3 or more. That is,
It is necessary to have three or more eccentric composite flows. If the number of eccentric composite flows is 2 or less, the multi-grooves cannot be formed, and if it exceeds 20, the color developability of the multi-groove fiber reaches saturation. It is preferably 5 to 20.

【0010】図2は本発明の合流直前の偏心複合流の一
例を示す横断面図であり、1は芯ポリマ、2は島ポリ
マ、3は鞘ポリマである。
FIG. 2 is a cross-sectional view showing an example of the eccentric composite flow just before the merging of the present invention, wherein 1 is a core polymer, 2 is an island polymer, and 3 is a sheath polymer.

【0011】島ポリマ2は100mμm以下の微粒子を
0.2重量%以上含有していることが必要である。鞘ポ
リマ3を溶出除去した後の多溝繊維の表面を粗面化する
ためには、島ポリマ2に微粒子を含有していることが有
効である。易溶出性である鞘ポリマを溶出除去すること
だけでも多数の溝が形成されるために発色性が向上する
が、島ポリマ2の表面を粗面化することで発色性が更に
向上するのである。
The island polymer 2 must contain fine particles of 100 mμm or less in an amount of 0.2% by weight or more. In order to roughen the surface of the multi-groove fiber after the sheath polymer 3 is eluted and removed, it is effective that the island polymer 2 contains fine particles. By simply eluting and removing the sheath polymer which is easily eluted, a large number of grooves are formed to improve the color developability, but by roughening the surface of the island polymer 2, the color developability is further improved. .

【0012】島ポリマ2が含有している微粒子は屈折率
が小さいシリカ、炭酸カルシウム等を挙げることがで
き、中でもシリカがより好ましく適用できる。微粒子の
含有量は製糸性、表面の粗面化の程度を左右するので重
要であり、0.3重量%以上、2.5重量%以下が好ま
しい。特に好ましい微粒子の含有量は0.4重量%以
上、1.0重量%以下である。また、微粒子の粒径が大
きすぎると製糸性を悪化させ、発色性の向上効果も小さ
くなるので微粒子の粒径は100mμm以下が必要であ
る。なお微粒子であっても屈折率の大きい場合には発色
性が逆に悪化するので屈折率は2.0以下が好ましい。
一般的に使用される屈折率の高い二酸化チタンは発色性
が悪化するので0.1重量%以下の含有量であることが
好ましい。島ポリマ2が微粒子を含有していることによ
って発色性が向上する理由は、鞘ポリマ3が複合繊維形
成後溶出除去されるときに島ポリマも一部溶出される
が、その際に微粒子を中心とした部分が優先的に溶出さ
れるため、多溝繊維の表面に微細な凹凸が形成され、吸
光量が増加するためであると推定される。
Examples of the fine particles contained in the island polymer 2 include silica and calcium carbonate having a small refractive index, and silica is more preferably applied. The content of the fine particles is important because it affects the spinnability and the degree of surface roughening, and is preferably 0.3% by weight or more and 2.5% by weight or less. A particularly preferable content of fine particles is 0.4% by weight or more and 1.0% by weight or less. Further, if the particle size of the fine particles is too large, the spinnability is deteriorated and the effect of improving the color developability is reduced, so that the particle size of the fine particles is required to be 100 mμm or less. It should be noted that even fine particles having a large refractive index are deteriorated in color developability, so that the refractive index is preferably 2.0 or less.
Titanium dioxide, which is generally used and has a high refractive index, deteriorates in color developability, so the content is preferably 0.1% by weight or less. The reason why the color development is improved by the island polymer 2 containing fine particles is that the island polymer is partially eluted when the sheath polymer 3 is eluted and removed after the formation of the composite fiber. It is presumed that this is because the portion marked with is preferentially eluted, so that fine irregularities are formed on the surface of the multi-groove fiber and the amount of light absorption increases.

【0013】島ポリマに対する鞘ポリマの溶出速度の比
(以下溶出速度比という)は3倍以上であることが必要
である。溶出速度比が3倍未満の場合には鞘ポリマが溶
出するとき島ポリマも無視できない程度に溶出してしま
い所望の断面形状を得ることができない。溶剤は特に限
定されないがポリエステルの場合、取扱い性、コストの
点からアルカリ水溶液が好ましい。アルカリ水溶液に溶
出し易くするために、鞘ポリマとしては2モル%以上の
5−ソジウムスルホイソフタル酸を共重合したポリエス
テルが好ましく使用できる。しかし、5−ソジウムスル
ホイソフタル酸の共重合率が高すぎると、ポリエステル
では融点降下が大きいこと、溶出速度が大きすぎて溶出
量の制御が困難になることから、溶出速度比は100倍
以下が好ましい。そのためには5−ソジウムスルホイソ
フタル酸の共重合率は6モル%以下が好ましい。特に好
ましい前記溶出速度比は5倍以上、50倍以下である。
そのためのポリマ組成は5−ソジウムスルホイソフタル
酸の共重合率が2.3モル%以上、5.5モル%以下と
するのが好ましい。
It is necessary that the ratio of the elution rate of the sheath polymer to the island polymer (hereinafter referred to as the elution rate ratio) is 3 times or more. When the elution rate ratio is less than 3 times, when the sheath polymer is eluted, the island polymer is also eluted to a non-negligible level and the desired cross-sectional shape cannot be obtained. The solvent is not particularly limited, but in the case of polyester, an alkaline aqueous solution is preferable from the viewpoint of handleability and cost. As the sheath polymer, a polyester obtained by copolymerizing 2 mol% or more of 5-sodium sulfoisophthalic acid can be preferably used in order to facilitate the elution in an alkaline aqueous solution. However, if the copolymerization rate of 5-sodium sulfoisophthalic acid is too high, the melting point of polyester is large and the elution rate is too high to control the elution amount. Therefore, the elution rate ratio is 100 times or less. Is preferred. For that purpose, the copolymerization rate of 5-sodium sulfoisophthalic acid is preferably 6 mol% or less. The particularly preferable elution rate ratio is 5 times or more and 50 times or less.
The polymer composition for that purpose is preferably such that the copolymerization rate of 5-sodium sulfoisophthalic acid is 2.3 mol% or more and 5.5 mol% or less.

【0014】また、発色性を向上する意味から鞘ポリマ
も微粒子を含有していることが好ましい。鞘ポリマは溶
出してしまい、溶出処理後は残存しないが、粒子による
凹凸が芯ポリマにもレプリカ効果によって影響を及ぼ
し、芯ポリマの表面を凹凸化し、発色性の向上に寄与す
るからである。好ましい粒子は粒径が100mμm以下
で、屈折率が2.0以下であり、0.2重量%以上含有
していることが好ましく、特に0.4重量%以上含有し
ていることが好ましい。
Further, it is preferable that the sheath polymer also contains fine particles from the viewpoint of improving the color developability. This is because the sheath polymer is eluted and does not remain after the elution treatment, but the unevenness due to the particles also affects the core polymer by the replica effect and makes the surface of the core polymer uneven, which contributes to the improvement of the color developability. Preferred particles have a particle size of 100 mμm or less, a refractive index of 2.0 or less, and preferably contain 0.2% by weight or more, and particularly preferably 0.4% by weight or more.

【0015】島ポリマと鞘ポリマからなる偏心複合流
は、島ポリマが偏心複合流の外周の一部を形成している
ことが好ましい。鞘ポリマが島ポリマを完全に包んでい
る形状では、島ポリマの芯ポリマへの接着性が悪くな
り、鞘ポリマを溶出除去する時に島ポリマが剥離する懸
念があるからである。そこで島ポリマと鞘ポリマの位置
関係については、図2に示すように吐出前に合流する芯
ポリマに最も近い位置に島ポリマが偏って存在している
ことが好ましい。すなわち合流後に芯ポリマと島ポリマ
が直接接触することが剥離防止の効果から最も好まし
い。
In the eccentric composite flow composed of the island polymer and the sheath polymer, the island polymer preferably forms a part of the outer circumference of the eccentric composite flow. This is because if the sheath polymer completely encloses the island polymer, the adhesion of the island polymer to the core polymer becomes poor, and the island polymer may peel off when the sheath polymer is eluted and removed. Therefore, regarding the positional relationship between the island polymer and the sheath polymer, it is preferable that the island polymer is unevenly present at a position closest to the core polymer that joins before the discharge as shown in FIG. That is, it is most preferable that the core polymer and the island polymer are in direct contact with each other after the merging from the effect of preventing peeling.

【0016】島ポリマに対する鞘ポリマの複合比率は5
0重量%以下が好ましく、20重量%以下が特に好まし
い。
The composite ratio of sheath polymer to island polymer is 5
It is preferably 0% by weight or less, particularly preferably 20% by weight or less.

【0017】本発明に用いられる芯ポリマは特に限定さ
れるものではない。例えば芯ポリマと島ポリマが共にポ
リエステル系であっても、芯ポリマと島ポリマがともに
ナイロン系であっても良い。同種のポリマの組み合わせ
の方が製糸、高次加工通過性、剥離防止の点が良好で好
ましく、最も好ましい芯ポリマは微粒子を含有している
島ポリマと同一のポリエステルである。
The core polymer used in the present invention is not particularly limited. For example, both the core polymer and the island polymer may be polyester type, or both the core polymer and the island polymer may be nylon type. A combination of polymers of the same kind is preferable in terms of yarn production, high-order processability, and prevention of peeling, and the most preferable core polymer is the same polyester as the island polymer containing fine particles.

【0018】本発明の製造方法では、芯ポリマを中心に
してその周囲に偏心複合流を配置するが、この場合芯ポ
リマを中心に偏心複合流を回転対称的に配置することが
好ましい。
In the manufacturing method of the present invention, the eccentric composite flow is arranged around the core polymer, but in this case, it is preferable that the eccentric composite flow is arranged rotationally symmetrically around the core polymer.

【0019】これら3個以上の偏心複合流と芯ポリマ流
を合流し、次いで吐出するが、口金孔断面積比率を特定
することによって安定した複合流が形成されることがわ
かった。図4は口金孔断面積比率を説明するための口金
孔の縦断面図であり、4は合流部、5は吐出部である。
口金孔断面積比率は合流部の断面積に対する吐出部の断
面積の比率をいう。安定した複合流を形成するために
は、口金孔断面積比率が2%以下であることが必要であ
る。ここで口金孔断面積比率が2%を越える場合には鞘
ポリマが芯ポリマに近い部分にも入り込んでしまい、溶
出時に剥離し易くなってしまうのである。好ましくは口
金孔断面積比率は1%以下であり、特に好ましい範囲は
0.5%以下である。口金孔断面積比率を2%以下とす
ることによって安定した断面形状が得られる理由は明か
ではないが、口金孔断面積比率が2%以下に絞られるこ
とによって隣合う偏心複合流が急激に最密充填されるた
めではないかと考えられる。
It has been found that a stable composite flow is formed by merging these three or more eccentric composite flows and the core polymer flow and then discharging them, by specifying the die hole cross-sectional area ratio. FIG. 4 is a vertical cross-sectional view of the mouthpiece hole for explaining the mouthpiece hole cross-sectional area ratio, in which 4 is a merging portion and 5 is a discharge portion.
The mouthpiece hole cross-sectional area ratio refers to the ratio of the cross-sectional area of the discharge portion to the cross-sectional area of the confluence portion. In order to form a stable composite flow, it is necessary that the die hole cross-sectional area ratio is 2% or less. Here, when the cross-sectional area ratio of the die hole exceeds 2%, the sheath polymer also enters the portion close to the core polymer, and is easily peeled off at the time of elution. The die hole cross-sectional area ratio is preferably 1% or less, and a particularly preferable range is 0.5% or less. The reason why a stable cross-sectional shape can be obtained by setting the mouthpiece hole cross-sectional area ratio to 2% or less is not clear. However, when the mouthpiece hole cross-sectional area ratio is reduced to 2% or less, the adjacent eccentric composite flow rapidly increases. It is thought that this is because it is closely packed.

【0020】本発明の製造方法によって得られる繊維
は、例えば図1に示すような形状となる。図1は本発明
で得られる芯鞘複合繊維の一例を示す横断面図であり、
1は芯ポリマ、2は島ポリマ、3は鞘ポリマである。こ
のような形状を有する繊維は、その断面において芯ポリ
マの外周の少なくとも3ケ所から内部方向に鞘ポリマの
突起を有するものとなる。この繊維を例えばアルカリ水
溶液で処理することによって鞘ポリマが溶出され、繊維
軸方向に3個以上の溝を有するいわゆる多溝繊維とな
る。鞘ポリマを溶出した後の多溝繊維は例えば図3に示
すような形状となる。図4は本発明で得られた芯鞘複合
繊維を溶出処理した後の多溝繊維の一例を示す横断面図
であり、6は溝、7は島である。本発明で得られる多溝
繊維は複合繊維の段階で鞘ポリマが島ポリマを覆ってい
るために、この多溝繊維の表面が十分な粗面化が図られ
るため光の反射率が低く、吸収率が高いため良好な発色
性を示すのである。
The fiber obtained by the production method of the present invention has, for example, a shape as shown in FIG. FIG. 1 is a cross-sectional view showing an example of a core-sheath composite fiber obtained by the present invention,
1 is a core polymer, 2 is an island polymer, and 3 is a sheath polymer. The fiber having such a shape has protrusions of sheath polymer inward from at least three locations on the outer periphery of the core polymer in its cross section. By treating this fiber with, for example, an alkaline aqueous solution, the sheath polymer is eluted and becomes a so-called multi-groove fiber having three or more grooves in the fiber axis direction. After the sheath polymer is eluted, the multi-groove fiber has a shape as shown in FIG. 3, for example. FIG. 4 is a cross-sectional view showing an example of the multi-groove fiber after the core-sheath composite fiber obtained in the present invention is subjected to the elution treatment, 6 is a groove and 7 is an island. In the multi-groove fiber obtained in the present invention, since the sheath polymer covers the island polymer at the stage of the composite fiber, the surface of the multi-groove fiber is sufficiently roughened so that the light reflectance is low and the absorption is low. Since the ratio is high, good color development is exhibited.

【0021】本発明の方法が適用できる複合繊維の断面
形状は前記した円形断面は勿論、三角断面、四角以上の
多角断面、偏平断面など非円形断面にも容易に適用可能
である。
The cross-sectional shape of the conjugate fiber to which the method of the present invention can be applied is not limited to the circular cross section described above, but can be easily applied to a non-circular cross section such as a triangular cross section, a polygonal cross section of a square or more, and a flat cross section.

【0022】このような断面形状を有する芯鞘型複合繊
維は通常の方法で紡糸、延伸することができる。即ち紡
糸した後巻取り、一旦未延伸糸を得て延伸することは勿
論、直接紡糸延伸、5000m/min以上の高速紡糸
によって直接製糸する方法でもよい。更には2000〜
3500m/min程度で紡糸して得られた未延伸繊維
を延伸と同時に仮撚り加工を行う、いわゆるIN−DR
AW方式でも発色性の効果を損なうものではない。得ら
れた延伸糸を各種の加工を施すことも発色性の効果を妨
げるものではない。例えば、流体による交絡加工、流体
による嵩高加工、擦過加工なども発色性を妨げるもので
はなく、本発明で得られた繊維同士の混繊、あるいは他
の繊維との混繊、ソフト化などの新規風合いの付与も可
能である。特に本発明の方法で得られた収縮率が異なる
混繊は風合い、発色性向上の点から好ましい。
The core-sheath type composite fiber having such a cross-sectional shape can be spun and drawn by a usual method. That is, a method of spinning, winding, and once obtaining an unstretched yarn and then stretching, may be a method of directly spinning and drawing, and directly spinning by high-speed spinning at 5000 m / min or more. Furthermore, 2000-
Unstretched fiber obtained by spinning at about 3500 m / min is subjected to false twisting at the same time as drawing, so-called IN-DR
The AW method does not impair the coloring effect. Even if the obtained drawn yarn is subjected to various kinds of processing, the effect of color developability is not hindered. For example, entanglement processing with a fluid, bulky processing with a fluid, rubbing processing, etc. do not hinder the color developability, and the fibers obtained by the present invention can be mixed with each other, or with other fibers, and new such as softening. Texture can be added. In particular, mixed fibers obtained by the method of the present invention and having different shrinkages are preferable from the viewpoints of texture and improvement of color developability.

【0023】次いで布帛とした後、アルカリ水溶液とし
て3%程度のNaOH水溶液で減量加工することによっ
て、染色後の発色性が良好な繊維を得ることができるの
である。更なる発色性向上を狙って、減量加工後に低屈
折率物質をコーティング処理することは極めて有効であ
る。
Then, after making a cloth, the weight of the cloth is reduced with an aqueous solution of about 3% NaOH as an alkaline aqueous solution, so that a fiber having good colorability after dyeing can be obtained. It is extremely effective to carry out coating treatment with a low-refractive-index substance after weight reduction processing in order to further improve the color developability.

【0024】[0024]

【実施例】以下実施例により具体的に説明する。なお実
施例におけるL値および粒子量は次の方法で測定した。
Embodiments will be specifically described below with reference to embodiments. The L value and the amount of particles in the examples were measured by the following methods.

【0025】L値:24ゲージ天竺筒編み機で2本引き
揃えて筒編地を作製して精練を行った。引き続き180
℃乾熱処理後、NaOH水溶液によって溶出処理を行
い、次いで染色を行った。染料はDianix Bla
ck BG−FS200 7%owfとした。また、助
剤としてサンソルト1200を0.5g/リットル、フ
ィクサーPH500を0.5g/リットルを使用した。
更に浴比1:100として染色温度130℃60分間染
色を行った。さらにハイドロサルファイト2g/リット
ル、サンデッド0.5g/リットル、カセイソーダ0.
5g/リットルで80℃20分間還元洗浄を行なった。
得られて染色筒編地を乾燥後スガ試験機(株)製SMカ
ラーコンピューターSM−3を使用して明度(L値)を
求めた。
L value: Two pieces were aligned with a 24-gauge tenjiku knitting machine to prepare a tube knitted fabric, which was then scoured. Continue 180
After the dry heat treatment at ℃, an elution treatment was carried out with an aqueous solution of NaOH, followed by dyeing. The dye is Dianix Bla
ck BG-FS200 7% owf. Further, as an auxiliary agent, 0.5 g / liter of Sun Salt 1200 and 0.5 g / liter of Fixer PH500 were used.
Further, dyeing was carried out at a dyeing temperature of 130 ° C. for 60 minutes with a bath ratio of 1: 100. Furthermore, hydrosulfite 2 g / l, sun dead 0.5 g / l, caustic soda 0.
Reduction washing was carried out at 80 ° C. for 20 minutes at 5 g / liter.
After the obtained dyed tubular knitted fabric was dried, the brightness (L value) was obtained using SM color computer SM-3 manufactured by Suga Test Instruments Co., Ltd.

【0026】粒子量:ポリエステル100gをオルソク
ロロフェノール900ccに溶出した溶液を、分速14
000回転で60分間遠心分離した後上澄み液を除去
し、オルソクロロフェノールを追加して遠心分離を繰り
返してポリエステル成分を除去した後に、乾燥して求め
た重量を溶出に使用したポリエステルの重量で除した値
で表した。
Particle amount: A solution obtained by eluting 100 g of polyester with 900 cc of orthochlorophenol was added at a rate of 14 per minute.
After centrifuging at 000 rpm for 60 minutes, the supernatant was removed, orthochlorophenol was added, and the centrifugation was repeated to remove the polyester component, and then the weight obtained by drying was divided by the weight of the polyester used for elution. It was expressed by the value.

【0027】実施例1 芯ポリマおよび島ポリマとして、一次平均粒径が12m
μmであるシリカ粒子を0.5重量%配合した固有粘度
が0.65のポリエチレンテレフタレートを用い、鞘ポ
リマとして5−ソジウムスルホイソフタル酸を2.5モ
ル%共重合した一次平均粒子径が12mμmであるシリ
カ粒子を0.5重量%配合した固有粘度が0.66のポ
リエチレンテレフタレートを用いた。これらを別々に溶
融計量し、各々2成分複合紡糸機で口金上部へ導き、図
2に示す複合流を形成したのち、口金孔の合流部の断面
積が120mm2 で複合流を合流し、0.12mm2
吐出部の断面積を有する円形口金孔を通過させて複合紡
糸し、図1に示す複合繊維を得た。この時の鞘ポリマの
芯ポリマ(島ポリマ)に対する3重量%のNaOH水溶
液(98℃)での溶出速度比は8倍であった。複合繊維
の断面形状として鞘ポリマの突起の数が8個、突起の長
さは4μm、繊維断面における繊維全体に対する鞘部の
複合比率は18%であった。紡糸速度は1500m/m
inであった。得られた未延伸糸をホットローラ/ホッ
トローラ系の延伸機で、2.85倍に延伸し、75デニ
ール24フィラメントの延伸糸を得た。得られた延伸糸
を筒編みにして、3重量%のNaOH水溶液98℃の条
件で28重量%減量の溶出処理を施した。発色性を表す
L値は11.5と良好であった。またサラッとした風合
いであり、ドライ感にも優れていた。
Example 1 As the core polymer and the island polymer, the average primary particle diameter is 12 m.
Polyethylene terephthalate having an intrinsic viscosity of 0.65 containing 0.5% by weight of silica particles having a size of μm was used, and 2.5 mol% of 5-sodiumsulfoisophthalic acid was copolymerized as a sheath polymer, and the average primary particle diameter was 12 mμm. Polyethylene terephthalate having an intrinsic viscosity of 0.66 in which 0.5% by weight of the silica particles described above was blended was used. These are separately melted and weighed, and each is guided to the upper part of the spinneret by a two-component composite spinning machine to form the composite flow shown in FIG. 2. Then, the composite flow is merged when the cross-sectional area of the merging portion of the spinneret holes is 120 mm 2 , The composite fiber was passed through a circular spinneret hole having a cross-sectional area of the discharge part of 0.12 mm 2 , and the composite fiber was obtained as shown in FIG. At this time, the elution rate ratio of the sheath polymer to the core polymer (island polymer) in a 3 wt% NaOH aqueous solution (98 ° C.) was 8 times. As the cross-sectional shape of the composite fiber, the number of protrusions of the sheath polymer was 8, the length of the protrusion was 4 μm, and the composite ratio of the sheath portion to the whole fiber in the fiber cross section was 18%. Spinning speed is 1500m / m
It was in. The obtained undrawn yarn was drawn 2.85 times with a hot roller / hot roller drawing machine to obtain a drawn yarn of 75 denier 24 filaments. The drawn yarn thus obtained was knitted into a cylinder and subjected to a 28 wt% weight loss elution treatment under the condition of a 3 wt% NaOH aqueous solution at 98 ° C. The L value showing the color developability was as good as 11.5. In addition, it had a dry texture and was excellent in dry feeling.

【0028】実施例2 鞘ポリマとして5−ソジウムスルホイソフタル酸を5モ
ル%共重合して芯ポリマ(島ポリマ)に対する溶出速度
比を40倍にした以外、実施例1と同様にテストした。
発色性を表すL値は11.9であり、ドライ感をも有し
ていた。
Example 2 A test was conducted in the same manner as in Example 1 except that 5 mol% of 5-sodium sulfoisophthalic acid was copolymerized as a sheath polymer to increase the elution rate ratio to the core polymer (island polymer) by 40 times.
The L value showing the color developability was 11.9, and it also had a dry feeling.

【0029】実施例3 鞘ポリマの突起の数を4に減少し、繊維断面における繊
維全体に対する鞘ポリマの複合比率を10%とした以外
は実施例1と同様にテストを行った。発色性を表すL値
は12.0と良好であった。実施例2と同様にドライ感
をも有していた。
Example 3 A test was conducted in the same manner as in Example 1 except that the number of protrusions of the sheath polymer was reduced to 4 and the composite ratio of the sheath polymer to the whole fiber in the fiber cross section was 10%. The L value showing the color developability was as good as 12.0. Like Example 2, it also had a dry feeling.

【0030】実施例4 島ポリマの微粒子添加量を0.8重量%に変更した以外
は実施例1と同様にテストを行った。発色性を表すL値
は11.3と良好であり、ドライ感をも有していた。
Example 4 A test was conducted in the same manner as in Example 1 except that the amount of the island polymer particles added was changed to 0.8% by weight. The L value showing color developability was as good as 11.3, and it also had a dry feeling.

【0031】実施例5 島ポリマの微粒子の粒子系を80mμmに変更した以外
は実施例1と同様にテストを行った。発色性を表すL値
は11.9と良好であり、ドライ感をも有していた。
Example 5 A test was conducted in the same manner as in Example 1 except that the particle system of the island polymer particles was changed to 80 mμm. The L value showing the color developability was as good as 11.9, and it also had a dry feeling.

【0032】実施例6 繊維断面における繊維全体に対する鞘ポリマの複合比率
を24%に変更し、鞘ポリマの突起の数を12に増加し
たこと、および減量率を34重量%に変更した以外は実
施例1と同様にテストを行った。発色性を表すL値は1
1.6であった。また、ドライ感にも優れていた。
Example 6 Except that the composite ratio of the sheath polymer to the whole fiber in the fiber cross section was changed to 24%, the number of protrusions of the sheath polymer was increased to 12, and the weight reduction rate was changed to 34% by weight. The test was performed as in Example 1. L value which shows color development is 1
It was 1.6. It was also excellent in dry feeling.

【0033】実施例7 最終吐出孔の断面積を1.0mm2 とした以外は実施例
1と同様にしてテストを行った。NaOH水溶液で溶出
を行ったときの剥離が極一部に認められただけでほとん
ど障害にはならなかった。得られた繊維の染色後のL値
は11.9であった。
Example 7 A test was conducted in the same manner as in Example 1 except that the sectional area of the final discharge hole was 1.0 mm 2 . When the elution was carried out with an aqueous NaOH solution, peeling was observed only in a very small part, and it hardly caused any trouble. The L value after dyeing of the obtained fiber was 11.9.

【0034】比較実施例1 芯ポリマ、鞘ポリマともにシリカ粒子を配合しないポリ
マを用いた以外は実施例1と同様にテストを行った。発
色性を表すL値は12.5であった。ドライ感も実施例
1よりは劣っていた。
Comparative Example 1 A test was carried out in the same manner as in Example 1 except that both the core polymer and the sheath polymer were made of a polymer containing no silica particles. The L value showing the color developability was 12.5. The dry feeling was also inferior to that of Example 1.

【0035】比較実施例2 使用したポリマは実施例1と同様であったが、紡糸方法
を変更して個々の複合流を偏心芯鞘返信断面ではなく、
同心円複合流断面形状とした。得られた繊維をアルカリ
水溶液で溶出処理を行った結果、剥離現象が多発した。
発色性を表すL値は13.7であった。ドライ感もなか
った。
Comparative Example 2 The polymer used was the same as in Example 1, but the spinning method was modified to produce individual composite streams rather than eccentric sheath return cross sections.
The concentric circular composite flow cross-section was used. As a result of subjecting the obtained fibers to an elution treatment with an alkaline aqueous solution, peeling occurred frequently.
The L value showing the color developability was 13.7. There was no feeling of dryness.

【0036】比較実施例3 芯ポリマに対する鞘ポリマの溶出速度比を2倍にするた
めに、鞘ポリマの5−ソジウムスルホイソフタル酸の共
重合率を1.5モル%に変更した以外は実施例1と同様
にテストを行った。発色性を表すL値は13.2であ
り、発色性の向上効果は認められなかった。
Comparative Example 3 In order to double the dissolution rate ratio of the sheath polymer to the core polymer, except that the copolymerization rate of 5-sodium sulfoisophthalic acid in the sheath polymer was changed to 1.5 mol%. The test was performed as in Example 1. The L value showing the color developability was 13.2, and the effect of improving the color developability was not recognized.

【0037】比較実施例4 口金孔の合流部の断面積を50mm2 、吐出部の断面積
が1.2mm2 の口金孔から吐出した以外は実施例1と
同様にテストを行った。断面形状はかなり乱れており、
NaOH水溶液による溶出処理後は島ポリマの剥離が多
数発生した。発色性を表すL値は13.5と不良であっ
た。
Comparative Example 4 A test was conducted in the same manner as in Example 1 except that the cross-sectional area of the confluent portion of the die hole was 50 mm 2 and the cross-sectional area of the discharge portion was 1.2 mm 2 . The cross-sectional shape is quite disordered,
After the elution treatment with the NaOH aqueous solution, a large number of island polymer peeled off. The L value showing the color developability was 13.5, which was poor.

【0038】[0038]

【発明の効果】島ポリマおよび鞘ポリマを特定し、特定
した複合流形成によって安定した複合断面を有する複合
繊維ができる。さらにこの繊維を使用して鞘ポリマを溶
出除去することによって繊維外周表面が粗面化されて発
色性が極めて良好になり、かつドライ感も発現する。
INDUSTRIAL APPLICABILITY The island polymer and the sheath polymer are specified, and the specified composite flow formation makes it possible to obtain a composite fiber having a stable composite cross section. Further, by using this fiber to elute and remove the sheath polymer, the outer peripheral surface of the fiber is roughened, the color developability becomes extremely good, and a dry feeling is exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で得られる芯鞘複合繊維の一例を示す横
断面図である。
FIG. 1 is a cross-sectional view showing an example of a core-sheath composite fiber obtained by the present invention.

【図2】本発明の合流直前の偏心複合流の一例を示す横
断面図である。
FIG. 2 is a cross-sectional view showing an example of an eccentric composite flow immediately before merging according to the present invention.

【図3】本発明の口金孔断面積比率を説明するための口
金孔の縦断面図である。
FIG. 3 is a vertical cross-sectional view of a die hole for explaining a die hole sectional area ratio of the present invention.

【図4】本発明で得られた複合繊維を溶出処理した後の
繊維の一例を示す横断面図である。
FIG. 4 is a cross-sectional view showing an example of a fiber after the conjugate fiber obtained by the present invention is subjected to an elution treatment.

【符号の説明】[Explanation of symbols]

1:芯ポリマ 2:島ポリマ 3:鞘ポリマ 4:合流部 5:吐出部 6:溝 7:島 1: Core polymer 2: Island polymer 3: Sheath polymer 4: Confluence part 5: Discharge part 6: Groove 7: Island

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】芯ポリマ流の周囲に、島ポリマと、該島ポ
リマとの溶出速度の比が3倍以上の鞘ポリマからなる偏
心複合流を3個以上形成し、次いで該偏心複合流と芯ポ
リマ流を合流後吐出するに際して、該島ポリマは100
mμm以下の微粒子を0.2重量%以上含有し、かつ口
金孔の合流部の断面積に対する吐出部の断面積の比率を
2%以下にすることを特徴とする芯鞘複合繊維の製造方
法。
1. An eccentric composite flow comprising three or more eccentric composite flows consisting of an island polymer and a sheath polymer having an elution rate of 3 times or more of the island polymer is formed around the core polymer flow. When the core polymer flow is discharged after joining, the island polymer is 100
A method for producing a core-sheath composite fiber, which comprises 0.2% by weight or more of fine particles of m μm or less, and sets the ratio of the cross-sectional area of the discharge portion to the cross-sectional area of the confluence portion of the die hole to 2% or less.
JP21513992A 1992-08-12 1992-08-12 Production of sheath-core conjugated fiber Pending JPH0657520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21513992A JPH0657520A (en) 1992-08-12 1992-08-12 Production of sheath-core conjugated fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21513992A JPH0657520A (en) 1992-08-12 1992-08-12 Production of sheath-core conjugated fiber

Publications (1)

Publication Number Publication Date
JPH0657520A true JPH0657520A (en) 1994-03-01

Family

ID=16667347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21513992A Pending JPH0657520A (en) 1992-08-12 1992-08-12 Production of sheath-core conjugated fiber

Country Status (1)

Country Link
JP (1) JPH0657520A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0222183A2 (en) * 1985-10-14 1987-05-20 Hitachi, Ltd. Thin film magnetic head
US5672415A (en) * 1995-11-30 1997-09-30 Kimberly-Clark Worldwide, Inc. Low density microfiber nonwoven fabric

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0222183A2 (en) * 1985-10-14 1987-05-20 Hitachi, Ltd. Thin film magnetic head
US5672415A (en) * 1995-11-30 1997-09-30 Kimberly-Clark Worldwide, Inc. Low density microfiber nonwoven fabric
US5993714A (en) * 1995-11-30 1999-11-30 Kimberly-Clark Worldwide, Inc. Method of making low density microfiber nonwoven fabric

Similar Documents

Publication Publication Date Title
CN1914363A (en) Air-jet interlacing spun yarn and woven fabric including the same
JPS62170510A (en) Fiber having interference color
JPH10317230A (en) Sheath-core conjugate yarn
JPH0657520A (en) Production of sheath-core conjugated fiber
JP2582877B2 (en) Polyester shrinkage difference mixed yarn
JPS62110916A (en) Conjugated yarn
JPH05272026A (en) Water-absorbing woven and knitted fabric
JPH05287613A (en) Sheath-core conjugated fiber for multi-grooved fiber
JP2623528B2 (en) Super absorbent woven and knitted fabric
JPS6358932B2 (en)
JP3247247B2 (en) Polyester composite bulky yarn
JP3638707B2 (en) Polyester multifilament patch and method for producing the same
JP3247251B2 (en) Polyester bulky yarn
JPH07238419A (en) Readily dyeable polyester hollow fiber excellent in color development and gloss
JP2004225227A (en) Polyester conjugated bulky textured yarn
JP3570171B2 (en) Method for producing core-sheath composite fiber and method for producing false twisted yarn comprising the same
JPS61201034A (en) Silky polyester yarn
JPH10110341A (en) Production of deeply dyed woven or knitted fabric
JP2963830B2 (en) Latent micro-crimped polyester thick mottled yarn
JPH11217730A (en) Production of polyester fiber and false-twist textured yarn
JP3570166B2 (en) Method for producing core-sheath composite fiber and method for producing false twisted yarn comprising the same
JPS61146809A (en) Sheath-core conjugated fiber and its production
KR100481094B1 (en) Multi-layered split type composite fiber and preparation thereof
JPH0232382B2 (en) TOKUSHUKARYORIKAKOITONOSEIZOHOHO
JPH01104828A (en) Acrylic modified cross-section fiber