JP2012178613A - Film-forming apparatus and film-forming method - Google Patents

Film-forming apparatus and film-forming method Download PDF

Info

Publication number
JP2012178613A
JP2012178613A JP2012130511A JP2012130511A JP2012178613A JP 2012178613 A JP2012178613 A JP 2012178613A JP 2012130511 A JP2012130511 A JP 2012130511A JP 2012130511 A JP2012130511 A JP 2012130511A JP 2012178613 A JP2012178613 A JP 2012178613A
Authority
JP
Japan
Prior art keywords
film forming
film
substrate
processed
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012130511A
Other languages
Japanese (ja)
Other versions
JP5333804B2 (en
Inventor
Eisuke Morizaki
英介 森崎
Hirokatsu Kobayashi
洋克 小林
Jun Yoshikawa
潤 吉川
Ikuo Sawada
郁夫 沢田
Tsunenobu Kimoto
恒暢 木本
Noriaki Kawamoto
典明 川本
Masatoshi Akeda
正俊 明田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Tokyo Electron Ltd
Kyoto University
Original Assignee
Rohm Co Ltd
Tokyo Electron Ltd
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd, Tokyo Electron Ltd, Kyoto University filed Critical Rohm Co Ltd
Priority to JP2012130511A priority Critical patent/JP5333804B2/en
Publication of JP2012178613A publication Critical patent/JP2012178613A/en
Application granted granted Critical
Publication of JP5333804B2 publication Critical patent/JP5333804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a film-forming apparatus which can form a film by stably decomposing film-forming gas having high decomposition temperature using induction heating.SOLUTION: A film-forming apparatus comprises: a processing chamber of which inside is reduced pressure space; gas supply means for supplying film-forming gas to the reduced pressure space; a substrate holding part that is composed of material containing carbon as a main constituent, holds a substrate to be processed and is disposed in the reduced pressure space; a coil that is provided outside the processing chamber and performs induction heating the substrate holding part; and heat insulating material that covers the substrate holding part and is provided apart from the processing chamber. The reduced pressure space is divided into film-forming gas supply space to which the film-forming gas is supplied and heat insulating space defined between the substrate holding part and the processing chamber, and a cooling medium is introduced into the heat insulating space.

Description

本発明は、誘導加熱を用いて被処理基板上に成膜を行う成膜装置、および誘導加熱を用いて被処理基板上に成膜を行う成膜方法に関する。   The present invention relates to a film forming apparatus for forming a film on a substrate to be processed using induction heating, and a film forming method for forming a film on a substrate to be processed using induction heating.

エピタキシャル成長は、基板結晶上に基板結晶と同じ方位関係を有する単結晶を成長させることが可能であるため、様々な場面で用いられてきた。   Epitaxial growth has been used in various situations because a single crystal having the same orientation as the substrate crystal can be grown on the substrate crystal.

例えば、Siのエピタキシャル成長を用いてシリコンウェハを製造する方法(例えば特許文献1、特許文献2参照)が開示されている。   For example, a method of manufacturing a silicon wafer using epitaxial growth of Si (for example, see Patent Document 1 and Patent Document 2) is disclosed.

上記のエピタキシャル成長においては、成膜の原料となる成膜ガスを熱により分解するため、成膜の対象となる被処理基板良好は、良好な均一性で、かつ高温に加熱されることが好ましい。このため、例えば被処理基板の加熱には、コイルによる誘導加熱を用いる場
合がある。
In the above-mentioned epitaxial growth, since a film forming gas that is a raw material for film formation is decomposed by heat, it is preferable that the substrate to be processed to be formed has good uniformity and is heated to a high temperature. For this reason, for example, induction heating by a coil may be used for heating the substrate to be processed.

特開平9−232275号公報JP-A-9-232275 特開2004−323900号公報JP 2004-323900 A

しかし、成膜ガスの種類によっては、熱分解温度が高いものがあり、上記の成膜にかかる成膜装置を構成する上で問題になる場合があった。例えば、一般的な成膜装置では、成膜の対象となる被処理基板は、内部が減圧状態となる処理容器内に保持され、成膜が行われる構造になっている。   However, depending on the type of film forming gas, there is a gas having a high thermal decomposition temperature, which may cause a problem in configuring the film forming apparatus for the above film forming. For example, in a general film forming apparatus, a substrate to be processed is formed in a structure in which a film is formed by being held in a processing container in which the inside is in a reduced pressure state.

ここで、分解温度が高い成膜ガスが分解される程度に被処理基板を加熱しようとすると、被処理基板を内部に保持する処理容器の壁の温度もこれに伴って増大してしまい、処理容器が損傷してしまう場合があった。また、処理容器の材料によっては、加熱によって成膜の汚染源となる汚染物質が放出されてしまう場合があった。   Here, if the substrate to be processed is heated to such an extent that the film-forming gas having a high decomposition temperature is decomposed, the temperature of the wall of the processing container that holds the substrate to be processed increases accordingly. The container could be damaged. In addition, depending on the material of the processing container, a contaminant that becomes a contamination source for film formation may be released by heating.

また、処理容器の外側に設置したコイルによる誘導加熱を用いる場合、処理容器を構成する材料は誘電損失(誘電率)が小さな材料であることが好ましい。   Moreover, when using the induction heating by the coil installed in the outer side of the processing container, it is preferable that the material which comprises a processing container is a material with a small dielectric loss (dielectric constant).

以上の問題を解決するためには、高温に加熱されても成膜の汚染源となる物質を放出せず、また、誘導加熱における誘電損失が問題にならず、さらに加熱により損傷しないような処理容器を用いて成膜装置を構成することが必要となってしまい、実現が困難となっていた。   In order to solve the above problems, a processing container which does not release a substance that becomes a contamination source for film formation even when heated to a high temperature, does not cause a dielectric loss in induction heating, and is not damaged by heating. It has become necessary to construct a film forming apparatus using this, and it has been difficult to realize.

そこで、本発明では、上記の問題を解決した、新規で有用な成膜装置および成膜方法を提供することを統括的課題としている。   In view of this, the present invention has a general object to provide a new and useful film forming apparatus and film forming method that solve the above-mentioned problems.

本発明の具体的な課題は、誘導加熱を用いて分解温度の高い成膜ガスを安定に分解し、成膜を行うことが可能な成膜装置と、誘導加熱を用いて分解温度の高い成膜ガスを安定に分解し、成膜を行うことが可能な成膜方法を提供することである。   A specific problem of the present invention is that a film forming apparatus capable of stably decomposing a film gas having a high decomposition temperature by using induction heating to perform film formation, and a device having a high decomposition temperature by using induction heating. To provide a film forming method capable of stably decomposing a film gas and forming a film.

本発明は、上記の課題を、
内部が減圧空間とされる処理容器と、
前記減圧空間に成膜ガスを供給するガス供給手段と、
カーボンを主成分とする材料により構成されるとともに、前記減圧空間に設置されて被処理基板を保持する基板保持部と、
前記処理容器の外側に設置される、前記基板保持部を誘導加熱するコイルと、
前記基板保持部を覆うと共に、前記処理容器から離間されて設置される断熱材と、
前記減圧空間を、前記基板保持部と前記断熱材が設けられる成膜ガス供給空間と、前記処理容器と前記断熱材との間に画成される断熱空間と、に分離する断熱材保持構造体と、を有し、
前記断熱空間に冷却媒体が介在されるように構成され、
前記基板保持部は、複数の前記被処理基板を保持可能な被加熱載置台と、該被加熱載置台の周囲に該載置台を囲むように形成される被加熱構造体とを含むことを特徴とする成膜装置により、解決する。
The present invention solves the above problems.
A processing container whose inside is a decompression space;
A gas supply means for supplying a film forming gas to the decompression space;
A substrate holding unit configured by a material mainly composed of carbon and installed in the reduced pressure space to hold a substrate to be processed;
A coil installed on the outside of the processing vessel for inductively heating the substrate holder;
A thermal insulator that covers the substrate holding unit and is installed apart from the processing container;
A heat insulating material holding structure that separates the decompression space into a film forming gas supply space in which the substrate holding portion and the heat insulating material are provided, and a heat insulating space defined between the processing container and the heat insulating material. And having
The cooling medium is configured to be interposed in the heat insulating space,
The substrate holding unit includes a heated mounting table capable of holding a plurality of the substrates to be processed, and a heated structure formed to surround the mounting table around the heated mounting table. This is solved by the film forming apparatus.

本発明によれば、誘導加熱を用いて分解温度の高い成膜ガスを安定に分解し、成膜を行うことが可能な成膜装置と、誘導加熱を用いて分解温度の高い成膜ガスを安定に分解し、成膜を行うことが可能な成膜方法を提供することが可能となる。   According to the present invention, a film forming apparatus capable of stably decomposing a film gas having a high decomposition temperature using induction heating and performing film formation, and a film forming gas having a high decomposition temperature using induction heating are provided. It is possible to provide a film forming method that can be stably decomposed and formed.

図1は、エピタキシャル成長による成膜を用いて形成された半導体装置(MOSトランジスタ)の構成の一例を示す図である。   FIG. 1 is a diagram showing an example of a configuration of a semiconductor device (MOS transistor) formed by using film formation by epitaxial growth.

図1を参照するに、本図に示す半導体装置10は、n型半導体であるSiCよりなる基板1上(基板1の表面上)に、エピタキシャル成長による成膜を用いて形成されたn型半導体であるSiC層2が形成された構成となっている。エピタキシャル成長では、基板結晶上に基板結晶と同じ方位関係を有する単結晶を成長させることが可能であるため、前記SiC層2は単結晶構造を有している。   Referring to FIG. 1, a semiconductor device 10 shown in FIG. 1 is an n-type semiconductor formed on a substrate 1 (on the surface of the substrate 1) made of SiC, which is an n-type semiconductor, using a film formed by epitaxial growth. A certain SiC layer 2 is formed. In epitaxial growth, a single crystal having the same orientation as the substrate crystal can be grown on the substrate crystal, so that the SiC layer 2 has a single crystal structure.

前記SiC層2には、p型不純物拡散領域3A,3Bがそれぞれ形成され、該P型不純物拡散領域3A,3B内には、それぞれn型不純物拡散領域4A,4Bが形成されている。また、対向するように形成される前記n型不純物拡散領域4A,4Bの間の前記SiC層2上には、ゲート絶縁膜6が形成され、当該ゲート絶縁膜6上には、電極7が形成されている。   In the SiC layer 2, p-type impurity diffusion regions 3A and 3B are formed, and n-type impurity diffusion regions 4A and 4B are formed in the P-type impurity diffusion regions 3A and 3B, respectively. A gate insulating film 6 is formed on the SiC layer 2 between the n-type impurity diffusion regions 4A and 4B formed so as to face each other, and an electrode 7 is formed on the gate insulating film 6. Has been.

また、前記p型不純物拡散層3A、前記n型不純物拡散領域4A上には、電極5Aが、同様に、前記p型不純物拡散層3B、前記n型不純物拡散領域4B上には、電極5Bが形成されている。また、前記基板1の裏面側には、電極8が形成されている。   An electrode 5A is formed on the p-type impurity diffusion layer 3A and the n-type impurity diffusion region 4A. Similarly, an electrode 5B is formed on the p-type impurity diffusion layer 3B and the n-type impurity diffusion region 4B. Is formed. An electrode 8 is formed on the back side of the substrate 1.

上記の半導体装置(MOSトランジスタ)においては、それぞれ前記電極7、前記電極5A,5B、および前記電極8が、例えば、それぞれ、ゲート電極、ソース電極、およびドレイン電極として機能する。   In the semiconductor device (MOS transistor), the electrode 7, the electrodes 5A and 5B, and the electrode 8 function as, for example, a gate electrode, a source electrode, and a drain electrode, respectively.

上記の半導体装置10は、従来の、例えばSiを用いた半導体装置と比べた場合、いわゆるオン抵抗(ドリフト層の抵抗)を大幅に抑制することが可能になる特徴を有している。このため、電力の利用効率が良好となる効果を奏する。   The semiconductor device 10 has a feature that the so-called on-resistance (resistance of the drift layer) can be significantly suppressed as compared with a conventional semiconductor device using, for example, Si. For this reason, there exists an effect which the utilization efficiency of electric power becomes favorable.

図2は、半導体材料として用いられる、Si、GaAs、およびSiCのそれぞれの特性を比較した図である。   FIG. 2 is a diagram comparing the characteristics of Si, GaAs, and SiC used as semiconductor materials.

図2を参照するに、SiCは、従来最も一般的に用いられてきたSiと比較した場合、絶縁破壊電界強度Ecが1桁以上大きい特徴を有していることがわかる。上記のオン抵抗は、絶縁破壊電界強度の3乗に比例するため、絶縁破壊電界強度Ecの大きいSiCを用いた半導体装置では、オン抵抗を低減して電力の利用効率を良好とすることができる。   Referring to FIG. 2, it can be seen that SiC has a characteristic that the breakdown field strength Ec is larger by one digit or more when compared with Si that has been most commonly used in the past. Since the on-resistance is proportional to the cube of the dielectric breakdown electric field strength, a semiconductor device using SiC having a large dielectric breakdown electric field strength Ec can reduce the on-resistance and improve the power utilization efficiency. .

また、SiCは、SiおよびGaAsと比べた場合、バンドギャップが広い特徴を有している。このため、SiCを用いた半導体装置では、高温での動作が可能になる特徴を有している。例えば、従来のSiを用いた半導体装置では、動作の限界温度が150℃程度であるのに対し、SiCを用いた半導体装置では、400℃以上での高温での動作が可能となる。   SiC has a wide band gap when compared to Si and GaAs. For this reason, a semiconductor device using SiC has a feature that enables operation at a high temperature. For example, a conventional semiconductor device using Si has a limit temperature of operation of about 150 ° C., whereas a semiconductor device using SiC can operate at a high temperature of 400 ° C. or higher.

このため、SiCを用いた半導体装置では、例えば従来必要であった半導体装置の冷却手段が不要になったり、または、従来に比べて過酷な条件下において半導体装置を使用することが可能となるメリットがある。   For this reason, in the semiconductor device using SiC, for example, the cooling means for the semiconductor device which has been conventionally required is not required, or the semiconductor device can be used under conditions more severe than the conventional one. There is.

また、大電流を扱ういわゆるパワーデバイスにおいては、抵抗値の小さいSiCを用いることにより、デバイス面積を小さくして当該デバイスを用いた機器の小型化を実現することが可能になる。   Further, in a so-called power device that handles a large current, by using SiC having a small resistance value, it is possible to reduce the device area and reduce the size of equipment using the device.

上記のSiCは、例えば、誘導加熱によるガス分解を用いたエピタキシャル成長により形成することができるが、SiCの成膜に用いるガスの組み合わせの一例としては、SiH、Hに加えて、分解の困難なCなどの炭化水素系のガス(CxHy(x、yは整数)により示されるガス)を添加する場合がある。例えばCの場合には、成膜にかかる分解のためには1200℃以上の高温に加熱する必要があり、このように、被処理基板を高温にしようとする場合には、上記の成膜にかかる成膜装置を構成する上で問題が生じる場合があった。 The above SiC can be formed by, for example, epitaxial growth using gas decomposition by induction heating. As an example of a combination of gases used for film formation of SiC, in addition to SiH 4 and H 2 , it is difficult to decompose. In some cases, a hydrocarbon-based gas such as C 3 H 8 (a gas represented by CxHy (x and y are integers)) is added. For example, in the case of C 3 H 8 , it is necessary to heat the substrate to be processed to a high temperature of 1200 ° C. or higher for decomposition required for film formation. There may be a problem in configuring a film forming apparatus for film formation.

例えば、一般的な成膜装置では、成膜の対象となる被処理基板は、内部が減圧状態となる処理容器内に保持され、成膜が行われる構造になっている。   For example, in a general film forming apparatus, a substrate to be processed is formed in a structure in which a film is formed by being held in a processing container in which the inside is in a reduced pressure state.

ここで、成膜ガス(炭化水素系のガス)が分解される1200℃以上程度に被処理基板を加熱しようとすると、被処理基板を内部に保持する処理容器の壁の温度もこれに伴って増大してしまい、処理容器の内壁の温度を低くする(いわゆるコールドウォール方式とする)ことが困難となってしまう。このように処理容器が内壁側から局所的に加熱されると、処理容器を構成する材料によっては、熱応力によって損傷(クラックなど)が生じてしてしまう場合があった。また、処理容器の材料によっては、加熱によって成膜の汚染源となる汚染物質が放出されてしまう場合があった。   Here, if the substrate to be processed is heated to about 1200 ° C. or higher at which the film forming gas (hydrocarbon gas) is decomposed, the temperature of the wall of the processing vessel that holds the substrate to be processed is accompanied by this. It increases, and it becomes difficult to lower the temperature of the inner wall of the processing container (so-called cold wall system). Thus, when the processing container is locally heated from the inner wall side, depending on the material constituting the processing container, damage (such as cracks) may occur due to thermal stress. In addition, depending on the material of the processing container, a contaminant that becomes a contamination source for film formation may be released by heating.

また、処理容器の外側に設置したコイルによる誘導加熱を用いる場合、処理容器を構成する材料は、例えば石英(石英ガラス)などの誘電損失(誘電率)が小さな材料であることが好ましい。   Moreover, when using the induction heating by the coil installed in the outer side of a processing container, it is preferable that the material which comprises a processing container is a material with small dielectric loss (dielectric constant), such as quartz (quartz glass), for example.

以上の問題を解決するためには、高温に加熱されても成膜の汚染源となる物質を放出せず、また、誘導加熱における誘電損失が問題にならず、さらに加熱により損傷しないような処理容器を用いて成膜装置を構成することが必要となり、実現が困難となっていた。   In order to solve the above problems, a processing container which does not release a substance that becomes a contamination source for film formation even when heated to a high temperature, does not cause a dielectric loss in induction heating, and is not damaged by heating. Therefore, it is necessary to construct a film forming apparatus using the material, and this has been difficult to realize.

そこで、本発明では、上記の処理容器内の減圧空間に、誘導加熱される基板保持部と当該処理容器とを断熱する、断熱材を設けていることが特徴である。このため、被処理基板(基板保持部)を高温に加熱した場合であっても処理容器の壁面の温度を低く維持することが可能となる。このため、処理容器の破損や、処理容器からの汚染物質の放出のリスクを低減して、安定に被処理基板を加熱することが可能となる。   Therefore, the present invention is characterized in that a heat insulating material is provided in the decompression space in the processing container to insulate the substrate holding part to be heated by induction and the processing container. For this reason, even if it is a case where a to-be-processed substrate (substrate holding part) is heated to high temperature, it becomes possible to maintain the temperature of the wall surface of a processing container low. For this reason, it becomes possible to reduce the risk of breakage of the processing container and release of contaminants from the processing container, and to stably heat the substrate to be processed.

また、処理容器の温度が低く維持されるため、処理容器を構成する材料の選択の自由度が向上する。このため、例えば石英など、誘電損失(誘電率)が小さく、汚染物質の放出のリスクの小さい清浄な材料を用いて処理容器を構成し、安定に成膜ガスを分解してエピタキシャル成長を行うことが可能になる。   Further, since the temperature of the processing container is kept low, the degree of freedom in selecting the material constituting the processing container is improved. For this reason, for example, a processing container is made of a clean material having a small dielectric loss (dielectric constant) and a low risk of pollutant emission, such as quartz, and the epitaxial growth is performed by stably decomposing the film forming gas. It becomes possible.

また、上記の断熱材は、成膜ガスが分解される減圧空間内に設置されるため、加熱された場合に分解・変質が生じにくく、また、加熱された場合に汚染物質の放出などが生じにくい、安定で清浄な(純度の高い)材料を用いることが好ましい。例えば、上記の断熱材としては、カーボンを用いることが好ましく、また、例えばカーボンを多孔状に(空隙率を大きく)することで、断熱性能を向上させることができる。   In addition, since the above-mentioned heat insulating material is installed in a decompression space where the film forming gas is decomposed, it is difficult for decomposition and alteration to occur when heated, and release of contaminants occurs when heated. It is preferable to use difficult, stable and clean (high purity) materials. For example, it is preferable to use carbon as the above-mentioned heat insulating material. For example, by making carbon porous (increasing the porosity), the heat insulating performance can be improved.

次に、上記の成膜装置の構成の一例について、また、上記の成膜装置を用いた成膜方法の一例について、図面に基づき、以下に説明する。   Next, an example of a configuration of the film forming apparatus and an example of a film forming method using the film forming apparatus will be described below with reference to the drawings.

図3は、本発明の実施例1による成膜装置100を模式的に示した図である。図3を参照するに、本実施例による成膜装置100は、内部に減圧空間101Aが画成される、略直方体状(略筐体状)の処理容器101を有する構造となっている。   FIG. 3 is a diagram schematically showing the film forming apparatus 100 according to the first embodiment of the present invention. Referring to FIG. 3, the film forming apparatus 100 according to the present embodiment has a structure having a processing container 101 having a substantially rectangular parallelepiped shape (substantially housing shape) in which a decompression space 101A is defined.

減圧空間101Aには、被処理基板を保持する基板保持部(被処理基板、基板保持部ともに本図では図示せず、図4で詳細を図示)が設置され、当該被処理基板に対して成膜(エピタキシャル成長)が行われる構造になっている。なお、減圧空間101A内の構造については本図では図示を省略するが、図4以下で後述する。   The decompression space 101A is provided with a substrate holder for holding the substrate to be processed (both the substrate to be processed and the substrate holder are not shown in the figure, and details are shown in FIG. 4). It has a structure in which a film (epitaxial growth) is performed. The structure in the decompression space 101A is not shown in this figure, but will be described later in FIG.

また、処理容器101には、例えば真空ポンプなどの排気手段114と、例えばコンダクタンス可変バルブよりなる圧力調整手段113が設置された排気ライン112が接続され、減圧空間101Aを、所定の減圧状態(圧力)に調整することが可能になっている。また、処理容器101には、圧力計111が設置され、圧力調整手段113による処理容器内の圧力の調整は、圧力計111によって測定される圧力に対応して実施される。   Further, an exhaust unit 114 such as a vacuum pump and an exhaust line 112 provided with a pressure adjusting unit 113 made of a conductance variable valve, for example, are connected to the processing container 101, and the decompression space 101A is set in a predetermined decompressed state (pressure). ) Can be adjusted. In addition, a pressure gauge 111 is installed in the processing container 101, and the adjustment of the pressure in the processing container by the pressure adjusting unit 113 is performed corresponding to the pressure measured by the pressure gauge 111.

また、処理容器101の外側には、高周波電源107Aに接続されたコイル107が設置されている。上記のコイル107は、減圧空間101A内の基板保持部(図示せず)を誘導加熱する。   A coil 107 connected to a high frequency power source 107A is installed outside the processing container 101. The coil 107 induction-heats a substrate holding part (not shown) in the decompression space 101A.

また、処理容器101内(減圧空間101A)には、ガス供給手段100Gにより、成膜の原料となる成膜ガスが供給されるよう構成されている。上記のガス供給手段100Gは、処理容器101に接続されるガスライン130と、ガスライン130に接続される、ガスライン130A,130B,130C,130D,および130Eとを有するように構成されている。   Further, a film forming gas as a film forming material is supplied into the processing container 101 (decompressed space 101A) by a gas supply unit 100G. The gas supply means 100G is configured to have a gas line 130 connected to the processing vessel 101 and gas lines 130A, 130B, 130C, 130D, and 130E connected to the gas line 130.

質量流量コントローラ(MFC)131Aとバルブ132Aが設置されたガスライン130Aは、SiHガスを供給するガス供給源133Aに接続されており、SiHガスを処理容器101内に供給可能に構成されている。 Mass flow controller (MFC) 131A and a gas line 130A which valve 132A is installed is connected to a gas supply source 133A supplies SiH 4 gas, is configured to be capable of supplying the SiH 4 gas into the processing chamber 101 Yes.

同様に、質量流量コントローラ(MFC)131B〜131Eと、バルブ132B〜132Eがそれぞれ設置されたガスライン130B〜130Eは、それぞれガス供給源133B〜133Eに接続されている。ガス供給源133B〜133Eからは、それぞれ、Cガス、Hガス、TMA(トリメチルアルミニウム)ガス、Nガスが供給されるように構成されている。 Similarly, mass flow controllers (MFC) 131B to 131E and gas lines 130B to 130E on which valves 132B to 132E are respectively installed are connected to gas supply sources 133B to 133E, respectively. The gas supply sources 133B to 133E are configured to be supplied with C 3 H 8 gas, H 2 gas, TMA (trimethylaluminum) gas, and N 2 gas, respectively.

例えば、処理容器101内の被処理基板上に、エピタキシャル成長による成膜を行う場合には、成膜のための原料ガスとして、上記のSiHガス、Cガス、およびHガスを処理容器101内に供給すればよい。この場合、SiとCを主成分とする膜(SiC膜)を、被処理基板上にエピタキシャル成長させることができる。 For example, when film formation by epitaxial growth is performed on a substrate to be processed in the processing chamber 101, the above-described SiH 4 gas, C 3 H 8 gas, and H 2 gas are processed as source gases for film formation. What is necessary is just to supply in the container 101. FIG. In this case, a film (SiC film) containing Si and C as main components can be epitaxially grown on the substrate to be processed.

また、必要に応じて、TMAガスやNガスを添加して、形成されるSiC膜の電気的な特性を調整するようにしてもよい。また、上記のガスは成膜に用いるガスの一例であり、本発明ではこれらのガスに限定されず、他のガスを用いてSiC膜を形成するようにしてもよい。また、SiC膜に限定されず、他のガスを用いて他の膜を形成するようにしてもよい。 If necessary, the addition of TMA gas and N 2 gas, the electrical characteristics of SiC film formed may be adjusted. Moreover, said gas is an example of the gas used for film-forming, and it is not limited to these gas in this invention, You may make it form a SiC film using other gas. Further, the present invention is not limited to the SiC film, and other films may be formed using other gases.

また、処理容器101(減圧空間101A)には、ガスライン134により、処理容器101を冷却するための冷却媒体(例えば冷却ガス)が供給されるよう構成されている。MFC135とバルブ136が設置されたガスライン134は、冷却ガス(例えばArなどの不活性ガス)を供給するガス供給源137に接続されており、冷却ガスを処理容器101内に供給可能に構成されている。上記の成膜ガス、冷却ガスの処理容器101内での具体的な供給経路については、図4で後述する。   In addition, a cooling medium (for example, cooling gas) for cooling the processing container 101 is supplied to the processing container 101 (decompressed space 101A) by a gas line 134. The gas line 134 in which the MFC 135 and the valve 136 are installed is connected to a gas supply source 137 that supplies a cooling gas (for example, an inert gas such as Ar), and is configured to be able to supply the cooling gas into the processing vessel 101. ing. A specific supply path of the film forming gas and the cooling gas in the processing vessel 101 will be described later with reference to FIG.

また、上記の成膜装置100において、成膜に係る処理、例えば上記のバルブの開閉や、流量制御、高周波電力の印加などは、たとえばレシピと呼ばれるプログラムに基づき、動作される。この場合、これらの動作は、CPU121を有する、制御装置120よって制御される。これらの接続配線は図示を省略している。   In the film forming apparatus 100, processes related to film formation, such as opening / closing of the valve, flow control, application of high frequency power, and the like are operated based on a program called a recipe, for example. In this case, these operations are controlled by the control device 120 having the CPU 121. These connection wirings are not shown.

前記制御装置120は、CPU121と、上記のプログラムを記憶した記憶媒体122、キーボードなどの入力部123、表示部126、ネットワークなどに接続するための通信部125、およびメモリ124を有している。   The control device 120 includes a CPU 121, a storage medium 122 storing the above program, an input unit 123 such as a keyboard, a display unit 126, a communication unit 125 for connecting to a network, and a memory 124.

次に、上記の処理容器101内の構造について、図4に基づき説明する。図4は、図3で先に説明した処理容器101の内部の構造を模式的に示した断面図である。ただし、先に説明した部分には同一の符号を付している。図4を参照するに、処理容器101の内部の概略は、減圧空間101Aに被処理基板Wを保持する基板保持部102が設置された構造となっている。   Next, the structure inside the processing container 101 will be described with reference to FIG. FIG. 4 is a cross-sectional view schematically showing the internal structure of the processing container 101 described above with reference to FIG. However, the same code | symbol is attached | subjected to the part demonstrated previously. Referring to FIG. 4, the outline of the inside of the processing container 101 has a structure in which a substrate holding unit 102 that holds the substrate W to be processed is installed in the decompression space 101 </ b> A.

上記の基板保持部102は、処理容器101の外側に設置されたコイル107により、誘導加熱される。被処理基板Wは、被処理基板W自身のコイル107からの誘導加熱に加えて、誘導加熱された基板保持部102からの輻射や熱伝導により加熱される。被処理基板Wは、供給される成膜ガスが分解されて表面反応(エピタキシャル成長)が可能となる程度の温度に加熱される。   The substrate holding unit 102 is induction-heated by a coil 107 installed outside the processing container 101. In addition to induction heating from the coil 107 of the substrate W itself, the substrate to be processed W is heated by radiation or heat conduction from the substrate holder 102 that has been induction heated. The substrate W to be processed is heated to a temperature at which the supplied film forming gas is decomposed to enable surface reaction (epitaxial growth).

例えば、先に説明した成膜ガスのうち、Cガスは、分解が始まる温度がおよそ1200℃以上であるため、被処理基板Wの温度は、少なくとも1200℃以上(例えば1550℃〜1650℃程度)に加熱される。この場合、基板保持部102も同程度の温度となる。 For example, among the above-described film forming gases, C 3 H 8 gas has a temperature at which decomposition starts at approximately 1200 ° C. or higher, and thus the temperature of the substrate W to be processed is at least 1200 ° C. or higher (for example, 1550 ° C. to 1650 ° C.). To about 0 ° C.). In this case, the substrate holding part 102 also has a similar temperature.

本実施例による成膜装置では、上記の構造において、誘導加熱されて高温となる基板保持部102(被処理基板W)と処理容器101との間に、基板保持部102(被処理基板W)と、処理容器101とを断熱する断熱材105が設置されていることが特徴である。   In the film forming apparatus according to the present embodiment, in the structure described above, the substrate holder 102 (target substrate W) is interposed between the substrate holder 102 (target substrate W) that is heated by induction heating and the processing container 101. And a heat insulating material 105 that insulates the processing vessel 101 from each other.

このため、基板保持部102(被処理基板W)が上記のように誘導加熱で高温とされた場合であっても、加熱された部分と処理容器101との温度差を大きく維持して処理容器101の破損や放出ガスの発生などを抑制することができる。   For this reason, even when the substrate holding part 102 (the substrate to be processed W) is heated to a high temperature by induction heating as described above, the temperature difference between the heated portion and the processing container 101 is maintained to be large. It is possible to suppress the breakage of 101 and the generation of released gas.

また、上記のように処理容器101内で高温となる部分と処理容器101との断熱性能が優れているため、処理容器101を構成する材料の選択の自由度が向上する。上記の処理容器101は、例えば石英により構成される。石英は誘電損失が小さく、誘導加熱する場合に好適である。また、石英は純度が高く、減圧状態で加熱された場合であっても成膜の汚染源となる放出ガスの量が少ないため、高性能デバイスを構成する膜を形成する場合の減圧空間を画成する材料として好適である。   In addition, since the heat insulating performance between the high temperature portion in the processing container 101 and the processing container 101 is excellent as described above, the degree of freedom in selecting the material constituting the processing container 101 is improved. The processing container 101 is made of, for example, quartz. Quartz has a small dielectric loss and is suitable for induction heating. In addition, quartz has a high purity, and even when heated in a reduced pressure state, the amount of released gas that becomes a contamination source for film formation is small, so that a reduced pressure space is formed when forming a film constituting a high-performance device. It is suitable as a material to be used.

また、減圧空間101Aに設置され、かつ、高温にされる基板保持部102と断熱材105については、ともに、加熱された場合に分解・変質が生じにくく、また、加熱された場合に汚染物質の放出などが生じにくい、安定で清浄な(純度の高い)材料により構成されていることが好ましい。例えば、上記の基板保持部102と、断熱材105は、ともにカーボン(グラファイト)を用いて形成されることが好ましい。   In addition, the substrate holding part 102 and the heat insulating material 105 that are installed in the decompression space 101A and are heated to high temperatures are less likely to be decomposed or deteriorated when heated, and when heated, contamination of the contaminants is prevented. It is preferably made of a stable and clean (high purity) material that is unlikely to emit. For example, the substrate holding unit 102 and the heat insulating material 105 are preferably formed using carbon (graphite).

また、基板保持部102は、誘導加熱による加熱が容易であること、また、輻射により被処理基板を加熱することが好ましいため、構成されるカーボン材料の密度が大きいことが好ましく、当該カーボン材料は、例えば、いわゆるバルク材料と呼ばれる程度に密度が大きいことが好ましい。   In addition, since the substrate holding portion 102 is easily heated by induction heating and preferably heats the substrate to be processed by radiation, it is preferable that the density of the configured carbon material is high. For example, the density is preferably large enough to be called a so-called bulk material.

一方で、断熱材105は、断熱性能を良好とするため、密度が小さくなるように形成されることが好ましく、空隙率が上記のバルク材料に比べて著しく大きくなるように形成されることが好ましい。また、このような断熱に好適な構造は、例えば目視においても空隙がある程度確認できる程度に構成されており、これらの材料を本文中では、空隙の形状にかかわらず、多孔状に形成されている材料であると定義する。   On the other hand, the heat insulating material 105 is preferably formed so that the density is small in order to improve the heat insulating performance, and is preferably formed so that the porosity is remarkably larger than that of the bulk material. . In addition, such a structure suitable for heat insulation is configured to such an extent that voids can be confirmed to some extent even visually, and these materials are formed in a porous shape in the text regardless of the shape of the voids. It is defined as a material.

また、必要に応じて、成膜の汚染源とならない程度に、カーボンに熱伝導率を制御するための材料を添加して用いてもよい。   Further, if necessary, a material for controlling the thermal conductivity may be added to the carbon so as not to become a contamination source for film formation.

すなわち、上記の基板保持部102と断熱材105は、ともに減圧状態で加熱される場合に好適な材料である、同じ材料(カーボン)を主成分として構成されるが、おもにはその密度(材料のミクロな構造)の違いにより、熱伝導率が異なるようにして構成されている。   That is, the substrate holding part 102 and the heat insulating material 105 are both composed mainly of the same material (carbon), which is a suitable material when heated in a reduced pressure state. Due to the difference in micro structure, the thermal conductivity is different.

また、基板保持部102や断熱材105の表面には、所定のコーティング膜が形成されていてもよい。本実施例の場合、例えば基板保持部102の表面はSiC膜でコーティングされており、一方で断熱材105の表面は、断熱材105よりも密度の高いカーボン膜でコーティングされている。このようなコーティング膜を施すことで、材料を保護するとともに、パーティクルの発生を抑制することができる。   A predetermined coating film may be formed on the surface of the substrate holding part 102 or the heat insulating material 105. In the case of the present embodiment, for example, the surface of the substrate holder 102 is coated with a SiC film, while the surface of the heat insulating material 105 is coated with a carbon film having a higher density than the heat insulating material 105. By applying such a coating film, the material can be protected and the generation of particles can be suppressed.

また、上記の断熱材105の外側には、断熱材105を覆うように、石英よりなる断熱材保持構造体106が形成されている。断熱保持構造体106は、断熱材105を保持して処理容器101から離間させるように構成されている。このため、処理容器101と断熱材105の間に断熱空間101bが画成され、処理容器101の温度上昇が効果的に抑制されている。断熱材保持構造体106は、柱状の支持部106Aによって処理容器101の底面に載置されている。   A heat insulating material holding structure 106 made of quartz is formed outside the heat insulating material 105 so as to cover the heat insulating material 105. The heat insulating holding structure 106 is configured to hold the heat insulating material 105 and separate it from the processing container 101. For this reason, the heat insulation space 101b is defined between the processing container 101 and the heat insulating material 105, and the temperature rise of the processing container 101 is effectively suppressed. The heat insulating material holding structure 106 is placed on the bottom surface of the processing container 101 by a columnar support portion 106A.

さらに、上記の断熱空間101bには、図3で先に説明した冷却媒体(冷却ガス、例えばArガスなど)が供給されている。このようなガスによる冷却によっても処理容器101の温度上昇が抑制されている。   Further, the cooling medium (cooling gas such as Ar gas) described above with reference to FIG. 3 is supplied to the heat insulating space 101b. The temperature rise of the processing vessel 101 is also suppressed by such cooling by the gas.

また、上記の断熱材保持構造体106の内側に画成される、基板保持部102と断熱材105が設置された成膜ガス供給空間101aには、成膜ガスが供給される。したがって、断熱材保持構造体106によって、成膜ガスの減圧空間101A内での拡散が抑制され、成膜ガスが被処理基板Wに効率的に供給され、成膜ガスの利用効率が良好となっている。   A film forming gas is supplied to the film forming gas supply space 101a defined inside the heat insulating material holding structure 106, in which the substrate holding unit 102 and the heat insulating material 105 are installed. Therefore, the heat insulating material holding structure 106 suppresses the diffusion of the film forming gas in the decompression space 101A, efficiently supplies the film forming gas to the substrate W to be processed, and the use efficiency of the film forming gas is improved. ing.

すなわち、断熱材保持構造体106は、減圧空間101Aを、実質的に2つの空間(成膜ガス供給空間101a、断熱空間101b)に分離している。このため、処理基板101の温度上昇が効果的に抑制されるとともに、成膜ガスの利用効率が良好となっている。この場合、高温に加熱される基板保持部102が断熱材105によって処理容器101から隔離されることに加えて、基板保持部102と処理容器101の間に画成される断熱空間101bに上記の冷却媒体が介在されることによって、効果的に処理容器101の温度上昇が抑制される。   That is, the heat insulating material holding structure 106 substantially divides the decompression space 101A into two spaces (film formation gas supply space 101a and heat insulation space 101b). For this reason, while the temperature rise of the process board | substrate 101 is suppressed effectively, the utilization efficiency of film-forming gas is favorable. In this case, in addition to the substrate holding part 102 heated to a high temperature being isolated from the processing container 101 by the heat insulating material 105, the above-described heat insulating space 101b defined between the substrate holding part 102 and the processing container 101 has the above-mentioned. By interposing the cooling medium, the temperature rise of the processing container 101 is effectively suppressed.

また、基板保持部102の構造についてみると、基板保持部102は、大別して被処理基板Wが載置される載置台(被加熱載置台)103と、載置台103の周囲に形成される被加熱構造体104とを有している。   Further, regarding the structure of the substrate holding unit 102, the substrate holding unit 102 is roughly divided into a mounting table (heated mounting table) 103 on which the substrate W to be processed is mounted, and a substrate formed around the mounting table 103. A heating structure 104.

載置台103は、略円盤形状であり、円盤形状の表面に形成された凹部に、複数の被処理基板Wが載置された略円盤状の搬送板110が載置される構造になっている。複数の被処理基板Wは、搬送板110に載置された状態で搬送アームなどの搬送手段(後述)により搬送され、載置台103の凹部に載置される。   The mounting table 103 has a substantially disc shape, and has a structure in which a substantially disc-shaped transport plate 110 on which a plurality of substrates to be processed W are placed is placed in a recess formed on the surface of the disc shape. . The plurality of substrates to be processed W are transported by transport means (described later) such as a transport arm while being placed on the transport plate 110, and are placed on the recesses of the mounting table 103.

また、載置台103の中心部に形成された中心穴には、軸部108が挿入される構造になっている。軸部108は、稼働手段109によって上下動、または回転がされるように構成されている。軸部108の先端側には、段差形状を有する略円盤状の先端部が形成されており、該先端部が搬送板110の中心に形成された中心穴に嵌合して搬送板110を持ち上げることが可能になっている。搬送板110の搬送時には、軸部108によって、搬送板108が持ち上げられる。   Further, the shaft portion 108 is inserted into the center hole formed in the center portion of the mounting table 103. The shaft portion 108 is configured to be moved up and down or rotated by the operating means 109. A substantially disc-shaped tip having a step shape is formed on the tip side of the shaft portion 108, and the tip is fitted into a center hole formed at the center of the transport plate 110 to lift the transport plate 110. It is possible. When transporting the transport plate 110, the transport plate 108 is lifted by the shaft portion 108.

また、成膜時には、軸部108を中心軸にして、載置台103(搬送板110)が回転される。このため、複数の被処理基板Wの間での成膜(成膜速度、膜質)のばらつきや、または、個々の被処理基板Wの面内での成膜のばらつきが抑制される効果を奏する。   Further, during film formation, the mounting table 103 (conveying plate 110) is rotated about the shaft portion 108 as a central axis. For this reason, there is an effect of suppressing variations in film formation (film formation speed, film quality) among a plurality of substrates to be processed W, or variations in film formation in the surface of each substrate to be processed W. .

図5は、載置台103に載置された搬送板110と、搬送板110に載置された複数の被処理基板Wを平面視した図である。また、搬送板110の中心穴には、軸部108の先端部が嵌合している。なお、本図では、一例として被処理基板Wが中心から等配に8枚載置された状態を示しているが、被処理基板の載置方法、載置される枚数はこれに限定されるものではない。また、搬送板110も減圧空間110A内で誘導加熱されるために、載置台103と同じ材料(カーボン)により形成されていることが好ましい。   FIG. 5 is a plan view of the transfer plate 110 placed on the placement table 103 and the plurality of substrates W to be processed placed on the transfer plate 110. Further, the tip end portion of the shaft portion 108 is fitted in the center hole of the transport plate 110. In addition, in this figure, although the to-be-processed substrate W has shown the state by which eight to-be-processed substrates W were mounted equally from the center, the mounting method of the to-be-processed substrate and the number of mounted are limited to this. It is not a thing. Moreover, since the conveyance plate 110 is also induction-heated in the decompression space 110 </ b> A, it is preferable that the conveyance plate 110 be formed of the same material (carbon) as the mounting table 103.

また、図6には、上記の載置台103とともに基板保持部102を構成する被加熱構造体104の斜視図を示す。図6を参照するに、被加熱構造体104は、載置台103の周囲に載置台103を囲むように形成され、例えば略筐体状(直方体状)に形成されている。   FIG. 6 is a perspective view of the heated structure 104 that forms the substrate holding unit 102 together with the mounting table 103. Referring to FIG. 6, the heated structure 104 is formed around the mounting table 103 so as to surround the mounting table 103, and is formed in, for example, a substantially casing shape (cuboid shape).

また、当該直方体の互いに対向する2つの面に対応する部分が開口されており、当該2つの開口のうちの一方の側から成膜ガスが供給され、他方の側から成膜ガスが排出される構造になっている。上記の構造において、被処理基板W上に供給される成膜ガスは、実質的に被処理基板Wに平行な方向に沿って供給され、排出される。   In addition, portions corresponding to two surfaces of the rectangular parallelepiped facing each other are opened, and the film forming gas is supplied from one side of the two openings, and the film forming gas is discharged from the other side. It has a structure. In the above structure, the film forming gas supplied onto the substrate W to be processed is supplied and discharged along a direction substantially parallel to the substrate W to be processed.

上記の被加熱構造体104が設置されていることで、被処理基板Wをより効率的に、かつ、より良好な均一性で加熱することが可能になる。例えば、被処理基板Wは、被処理基板W自身の誘導加熱によっても加熱され、また、載置台103(搬送板110)からの輻射によっても加熱されるが、これらに比べて体積が大きい被加熱構造体104が設けられていることで、より効率的に加熱される。また、被処理基板Wは、被加熱構造体104の輻射によって、被処理基板Wの周囲(複数の方向)から加熱される。このため、被処理基板Wは、より均一に加熱される。   Since the heated structure 104 is installed, the substrate W to be processed can be heated more efficiently and with better uniformity. For example, the substrate to be processed W is heated by induction heating of the substrate to be processed W itself, and is also heated by radiation from the mounting table 103 (conveying plate 110), but the substrate to be processed has a large volume compared to these. By providing the structure body 104, it is heated more efficiently. Further, the substrate to be processed W is heated from the periphery (a plurality of directions) of the substrate to be processed W by the radiation of the heated structure 104. For this reason, the to-be-processed substrate W is heated more uniformly.

また、コイルによる誘導加熱では、例えばヒータによる加熱に比べてより効率的に、かつ、良好な均一性で加熱することができるが、この場合、コイル107は、処理容器101に巻き付けられるように設置されていることが好ましい。この場合、より均一に被処理基板Wを加熱することが可能となり、また、上記の被加熱構造体105と組み合わせられることで、より効率的に、より良好な均一性で被処理基板Wを加熱することができる。   Further, inductive heating with a coil can be heated more efficiently and with better uniformity than, for example, heating with a heater. In this case, the coil 107 is installed so as to be wound around the processing vessel 101. It is preferable that In this case, it becomes possible to heat the substrate W to be processed more uniformly, and by combining with the structure to be heated 105, the substrate W to be processed can be heated more efficiently and with better uniformity. can do.

次に、上記の成膜装置100を用いた成膜方法の一例について、図7に示したフローチャートに基づき、説明する。また、成膜にあたっては、複数の被処理基板Wが載置された搬送板110は、例えば図8以降で後述する搬送手段(例えば搬送アームなど)により、搬送される。   Next, an example of a film forming method using the film forming apparatus 100 will be described based on the flowchart shown in FIG. In film formation, the transport plate 110 on which a plurality of substrates to be processed W are placed is transported by, for example, transport means (for example, a transport arm) described later in FIG.

まず、ステップ1(図中S1と表記、以下同じ)において、円盤状の搬送板110に、複数の被処理基板Wを載置する。   First, in step 1 (denoted as S1 in the figure, the same applies hereinafter), a plurality of substrates W to be processed are placed on the disc-shaped transport plate 110.

次に、ステップ2において、複数の被処理基板Wが搬送板110に載置された状態で、搬送手段(後述)により搬送板110を載置台(被加熱載置台)103上に搬送する。   Next, in step 2, the transport plate 110 is transported onto the mounting table (heated mounting table) 103 by the transport means (described later) while the plurality of substrates to be processed W are mounted on the transport plate 110.

次に、ステップ3において、被加熱載置台103(被加熱載置台103に保持された搬送板110)を所定速度で回転させる。   Next, in step 3, the heated mounting table 103 (the transport plate 110 held by the heated mounting table 103) is rotated at a predetermined speed.

次に、ステップ4において、成膜ガス供給空間101aに成膜ガスを供給する。   Next, in step 4, a film forming gas is supplied to the film forming gas supply space 101a.

次に、ステップ5において、コイル107により、基板保持部102を加熱する。   Next, in step 5, the substrate holder 102 is heated by the coil 107.

次に、ステップ6において、搬送手段により、被処理基板Wが載置された搬送板110を処理容器101から搬出する。   Next, in step 6, the transfer plate 110 on which the substrate W to be processed is placed is unloaded from the processing container 101 by the transfer means.

このようにして、被処理基板W上にエピタキシャル成長により、SiとCを主成分とする膜(SiC膜)を形成することができる。また、ステップ4において成膜ガスを供給する場合、図3で先に説明したように、成膜ガスとして、SiHガス、Cガス、およびHガスを処理容器101内(成膜ガス供給空間101a)に供給する。また、必要に応じてTMAガスやNガスを添加してもよい。 In this way, a film (SiC film) containing Si and C as main components can be formed on the substrate W to be processed by epitaxial growth. Further, when supplying a deposition gas in step 4, as previously described in FIG. 3, as the film forming gas, SiH 4 gas, C 3 H 8 gas and H 2 gas processing vessel 101 (deposition The gas is supplied to the gas supply space 101a). It may also be added TMA gas and N 2 gas as required.

例えば、それぞれの成膜ガスの流量は、一例として、SiHガスが10sccm乃至30sccm、Cガスが10sccm乃至20sccm、Hガスが50slm乃至200slmとされるが、上記の数値に限定されるものではない。 For example, the flow rates of the respective film forming gases are 10 sccm to 30 sccm for SiH 4 gas, 10 sccm to 20 sccm for C 3 H 8 gas, and 50 slm to 200 slm for H 2 gas, but are limited to the above values. It is not something.

また、ステップ5において、処理容器101の外側に設置されるコイル107により、基板保持部102(被処理基板W)を誘導加熱する場合、例えば、被処理基板を1550℃乃至1650℃程度に加熱する。   In Step 5, when the substrate holder 102 (substrate W to be processed) is induction-heated by the coil 107 installed outside the processing container 101, for example, the substrate to be processed is heated to about 1550 ° C. to 1650 ° C. .

また、ステップ3〜ステップ5の順序は入れ替えても良く、また、ステップ3〜ステップ5を実質的に同時に開始するようにしてもよい。また、それぞれのステップの時間は、適宜変更することで、所望の厚さのSiC膜を形成することができる。   Further, the order of step 3 to step 5 may be changed, and step 3 to step 5 may be started substantially simultaneously. Moreover, the SiC film of desired thickness can be formed by changing suitably the time of each step.

次に、上記に説明した処理容器101に、搬送室を接続して成膜装置を構成する例について説明する。例えば、被処理基板を用いた半導体装置の製造においては、被処理基板(被処理基板が載置された搬送板)を搬送する搬送室が用いられることが一般的である。このため、成膜装置は、以下に説明するように、上記の搬送室を有する構造とされることが一般的である。   Next, an example in which a deposition chamber is configured by connecting a transfer chamber to the processing container 101 described above will be described. For example, in the manufacture of a semiconductor device using a substrate to be processed, a transfer chamber for transferring the substrate to be processed (a transfer plate on which the substrate to be processed is placed) is generally used. For this reason, the film forming apparatus is generally structured to have the transfer chamber as described below.

図8は、先に説明した処理容器101と、搬送手段(例えば搬送アーム)201Aを有する搬送室201とを接続して成膜装置を構成した例を模式的に示した斜視図である。ただし、先に説明した部分には同一の符号を付し、詳細な説明を省略する。また、処理容器101内の構造、また、処理容器101に接続される排気ラインなどは図示を省略している。   FIG. 8 is a perspective view schematically showing an example in which a film forming apparatus is configured by connecting the processing container 101 described above and a transfer chamber 201 having a transfer means (for example, transfer arm) 201A. However, the parts described above are denoted by the same reference numerals, and detailed description thereof is omitted. Further, the structure inside the processing container 101 and the exhaust line connected to the processing container 101 are not shown.

図8を参照するに、図4,図5で先に示した処理容器101は、搬送アームを内部に有する搬送室201と、処理容器101Bを介して接続されている。また、処理容器101Bの底面側には、先に説明した成膜ガスを供給するためのガスノズル(成膜ガス供給手段)101Cが設置されている。成膜ガスは、上記のガスノズル101Cから成膜ガス供給空間101aに供給される構造になっている。   Referring to FIG. 8, the processing container 101 shown in FIGS. 4 and 5 is connected to a transfer chamber 201 having a transfer arm inside via a processing container 101B. A gas nozzle (deposition gas supply means) 101C for supplying the above-described film formation gas is installed on the bottom surface side of the processing vessel 101B. The film forming gas is supplied from the gas nozzle 101C to the film forming gas supply space 101a.

上記の構造において、図5に示した、被処理基板Wが載置された搬送板110は、上記の搬送アーム201により、搬送室201の側から処理容器101内に搬入される。搬送アーム201は、被加熱構造体104の開口部から差し入れられ、搬送板110が載置台103上に載置される。また、被処理基板Wに成膜が終了した後は、同様にして搬送アーム201により、搬送板110が処理容器101から搬送室201の側に搬出される。   In the above structure, the transfer plate 110 on which the substrate to be processed W shown in FIG. 5 is loaded into the processing container 101 from the transfer chamber 201 side by the transfer arm 201. The transfer arm 201 is inserted from the opening of the heated structure 104, and the transfer plate 110 is mounted on the mounting table 103. Further, after the film formation on the substrate W to be processed is completed, the transfer plate 110 is similarly carried out from the processing container 101 to the transfer chamber 201 side by the transfer arm 201.

また、図9は、上記の搬送室201に、複数の処理容器101(成膜装置100)を接続して、成膜装置1000を構成した例を模式的に示した平面図である。ただし、先に説明した部分には同一の符号を付し、説明を省略する。   FIG. 9 is a plan view schematically showing an example in which a film forming apparatus 1000 is configured by connecting a plurality of processing containers 101 (film forming apparatuses 100) to the transfer chamber 201. However, the parts described above are denoted by the same reference numerals, and description thereof is omitted.

図9を参照するに、本図に示す成膜装置1000は、搬送板110が搭載されたホルダー(図示せず)が載置されるポート205A〜205Cと、当該ホルダーの搬送エリアであるローダ203を有している。   Referring to FIG. 9, a film forming apparatus 1000 shown in this drawing includes ports 205A to 205C on which a holder (not shown) on which a transfer plate 110 is mounted and a loader 203 that is a transfer area of the holder. have.

また、ローダ203は、搬送板110が投入されるロードロック202A,202Bに接続されており、さらにロードロック202A,202Bは、先に図8で説明した搬送室201と接続されている。   The loader 203 is connected to load locks 202A and 202B into which the transfer plate 110 is inserted, and the load locks 202A and 202B are connected to the transfer chamber 201 described above with reference to FIG.

上記の搬送室201には、先に示した処理容器101が2つ接続されている。なお、成膜装置100の、処理容器101以外の構造(コイル、高周波電源、排気ライン、ガスラインなど)は図示を省略している。   The transfer chamber 201 is connected with the two processing containers 101 described above. Note that the structure of the film forming apparatus 100 other than the processing container 101 (coil, high frequency power supply, exhaust line, gas line, etc.) is not shown.

ポート205A〜205Cのいずれかに載置された搬送板110(被処理基板W)は、ローダ203を介してロードロック202A,またはロードロック202Bに投入される。さらに、搬送板110は、ロードロック室202A,202Bのいずれかから、搬送室201を経て、成膜装置100(処理容器101)に搬送される構造になっている。また、必要に応じて、ローダ203に設置された位置合わせ機構204を用いて、搬送板の位置合わせを行うことも可能である。   The transport plate 110 (substrate W to be processed) placed on any of the ports 205A to 205C is put into the load lock 202A or the load lock 202B via the loader 203. Further, the transfer plate 110 has a structure in which the transfer plate 110 is transferred from one of the load lock chambers 202 </ b> A and 202 </ b> B to the film forming apparatus 100 (processing container 101) through the transfer chamber 201. If necessary, it is also possible to align the transport plate using the alignment mechanism 204 installed in the loader 203.

成膜装置100で成膜が完了した後、搬送板110(被処理基板W)は、再び搬送室201を介してロードロック202A,またはロードロック202Bのいずれかに搬送され、さらにローダ203を介してポート205A〜205Cのいずれかに戻される。   After film formation is completed in the film forming apparatus 100, the transfer plate 110 (substrate W to be processed) is transferred again to either the load lock 202A or the load lock 202B via the transfer chamber 201, and further via the loader 203. To any one of the ports 205A to 205C.

このように、成膜装置100(処理容器101)に、搬送室201などの搬送板(被処理基板)の搬送のための構造を接続して用いることで、被処理基板の成膜を連続的に、効率よく実施することが可能となる。   In this manner, the structure for transporting the transport plate (substrate to be processed) such as the transport chamber 201 is connected to the film forming apparatus 100 (processing container 101), thereby continuously forming the film on the substrate to be processed. Moreover, it becomes possible to implement efficiently.

また、例えば、基板処理装置1000は上記の構成に限定されず、様々に変形・変更することが可能である。例えば、前記真空搬送室201に接続される成膜装置100(処理容器101)は、2つの場合に限定されず、例えば、3つまたは4つ接続されるようにしてもよい。さらに、搬送室201に、成膜装置100以外の基板処理に係る装置を接続するようにしてもよい。このようにして、必要に応じて基板処理装置の構成を変更し、基板処理(成膜)の効率が良好となるようにすることが可能である。   Further, for example, the substrate processing apparatus 1000 is not limited to the above configuration, and can be variously modified and changed. For example, the number of film forming apparatuses 100 (processing containers 101) connected to the vacuum transfer chamber 201 is not limited to two, and for example, three or four may be connected. Further, a substrate processing apparatus other than the film forming apparatus 100 may be connected to the transfer chamber 201. In this way, it is possible to change the configuration of the substrate processing apparatus as necessary so that the efficiency of the substrate processing (film formation) is improved.

以上、本発明を好ましい実施例について説明したが、本発明は上記の特定の実施例に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。   Although the present invention has been described with reference to the preferred embodiments, the present invention is not limited to the specific embodiments described above, and various modifications and changes can be made within the scope described in the claims.

本発明によれば、誘導加熱を用いて分解温度の高い成膜ガスを安定に分解し、成膜を行うことが可能な成膜装置と、誘導加熱を用いて分解温度の高い成膜ガスを安定に分解し、成膜を行うことが可能な成膜方法を提供することが可能となる。   According to the present invention, a film forming apparatus capable of stably decomposing a film gas having a high decomposition temperature using induction heating and performing film formation, and a film forming gas having a high decomposition temperature using induction heating are provided. It is possible to provide a film forming method that can be stably decomposed and formed.

エピタキシャル成長による成膜を用いて形成された半導体装置の一例である。It is an example of the semiconductor device formed using the film-forming by epitaxial growth. 半導体材料の特性を比較した図である。It is the figure which compared the characteristic of the semiconductor material. 実施例1による成膜装置の概要を模式的に示した図である。It is the figure which showed the outline | summary of the film-forming apparatus by Example 1 typically. 図3の成膜装置の処理容器内部の構造を模式的に示した断面図である。It is sectional drawing which showed typically the structure inside the processing container of the film-forming apparatus of FIG. 図4の処理容器内部に設置される基板保持部を示す図(その1)である。FIG. 5 is a diagram (No. 1) illustrating a substrate holding unit installed inside the processing container of FIG. 4. 図4の処理容器内部に設置される基板保持部を示す図(その2)である。FIG. 5 is a diagram (No. 2) illustrating a substrate holding unit installed inside the processing container of FIG. 4. 実施例1による成膜方法を示すフローチャートである。3 is a flowchart illustrating a film forming method according to Example 1. 処理容器に搬送室を接続する例を示す図である。It is a figure which shows the example which connects a conveyance chamber to a processing container. 搬送室に複数の処理容器を接続した例を示す図である。It is a figure which shows the example which connected the several processing container to the conveyance chamber.

101 処理容器
101A 減圧空間
101B 処理容器
101C ガス供給手段
101a 成膜ガス供給空間
101b 断熱空間
102 基板保持部
103 載置台
104 被加熱構造体
105 断熱材
106 断熱材保持構造体
107 コイル
108 軸部
109 稼働手段
110 搬送板
111 圧力計
112 排気ライン
113 圧力調整手段
114 排気手段
120 制御手段
121 CPU
122 記憶媒体
123 入力部
124 メモリ
125 通信部
126 表示部
130,130A,130B,130C,130D,130E,130F,130G,134 ガスライン
131A,131B,131C,131D,131E,131F,131G,135 MFC
132A,132B,132C,132D,132E,132F,132G,136 バルブ
133A,133B,133C,133D,133F,133F,133G,137 ガス供給源
DESCRIPTION OF SYMBOLS 101 Processing container 101A Depressurization space 101B Processing container 101C Gas supply means 101a Deposition gas supply space 101b Thermal insulation space 102 Substrate holding part 103 Mounting stage 104 Heated structure 105 Thermal insulation material 106 Thermal insulation material holding structure 107 Coil 108 Shaft part 109 Operation Means 110 Conveying plate 111 Pressure gauge 112 Exhaust line 113 Pressure adjusting means 114 Exhaust means 120 Control means 121 CPU
122 storage medium 123 input unit 124 memory 125 communication unit 126 display unit 130, 130A, 130B, 130C, 130D, 130E, 130F, 130G, 134 gas line 131A, 131B, 131C, 131D, 131E, 131F, 131G, 135 MFC
132A, 132B, 132C, 132D, 132E, 132F, 132G, 136 Valve 133A, 133B, 133C, 133D, 133F, 133F, 133G, 137 Gas supply source

Claims (13)

内部が減圧空間とされる処理容器と、
前記減圧空間に成膜ガスを供給するガス供給手段と、
カーボンを主成分とする材料により構成されるとともに、前記減圧空間に設置されて被処理基板を保持する基板保持部と、
前記処理容器の外側に設置される、前記基板保持部を誘導加熱するコイルと、
前記基板保持部を覆うと共に、前記処理容器から離間されて設置される断熱材と、
前記減圧空間を、前記基板保持部と前記断熱材が設けられる成膜ガス供給空間と、前記処理容器と前記断熱材との間に画成される断熱空間と、に分離する断熱材保持構造体と、を有し、
前記断熱空間に冷却媒体が介在されるように構成され、
前記基板保持部は、複数の前記被処理基板を保持可能な被加熱載置台と、該被加熱載置台の周囲に該載置台を囲むように形成される被加熱構造体とを含むことを特徴とする成膜装置。
A processing container whose inside is a decompression space;
A gas supply means for supplying a film forming gas to the decompression space;
A substrate holding unit configured by a material mainly composed of carbon and installed in the reduced pressure space to hold a substrate to be processed;
A coil installed on the outside of the processing vessel for inductively heating the substrate holder;
A thermal insulator that covers the substrate holding unit and is installed apart from the processing container;
A heat insulating material holding structure that separates the decompression space into a film forming gas supply space in which the substrate holding portion and the heat insulating material are provided, and a heat insulating space defined between the processing container and the heat insulating material. And having
The cooling medium is configured to be interposed in the heat insulating space,
The substrate holding unit includes a heated mounting table capable of holding a plurality of the substrates to be processed, and a heated structure formed to surround the mounting table around the heated mounting table. A film forming apparatus.
前記断熱材はカーボンを主成分として構成され、前記断熱材のカーボン密度が、前記基板保持部のカーボン密度より小さいことを特徴とする、請求項1記載の成膜装置。   The film forming apparatus according to claim 1, wherein the heat insulating material is mainly composed of carbon, and the carbon density of the heat insulating material is smaller than the carbon density of the substrate holding portion. 前記断熱材の表面には、カーボン系のコーティング膜が形成されていることを特徴とする請求項2記載の成膜装置。   The film forming apparatus according to claim 2, wherein a carbon-based coating film is formed on a surface of the heat insulating material. 前記処理容器は、石英により構成されていることを特徴とする請求項1乃至3のいずれか1項記載の成膜装置。   The film forming apparatus according to claim 1, wherein the processing container is made of quartz. 前記被加熱構造体には、対向する2つの開口部が形成され、一方の開口部から前記成膜ガスが供給され、他方の開口部から当該成膜ガスが排出されることを特徴とする請求項1乃至4のいずれか1項記載の成膜装置。   The opening to be heated is formed with two opposing openings, the film forming gas is supplied from one opening, and the film forming gas is discharged from the other opening. Item 5. The film forming apparatus according to any one of Items 1 to 4. 前記被加熱載置台は、複数の前記被処理基板が載置された搬送板を保持すると共に、該搬送板を所定の回転軸を中心として回転するように構成されていることを特徴とする請求項5記載の成膜装置。   The heated mounting table is configured to hold a transport plate on which a plurality of substrates to be processed are mounted, and to rotate the transport plate around a predetermined rotation axis. Item 6. The film forming apparatus according to Item 5. 前記処理容器は、搬送手段を内部に有する搬送室に接続され、当該搬送手段により、前記搬送板が前記被加熱載置台上に搬出入されることを特徴とする請求項6記載の成膜装置。   The film forming apparatus according to claim 6, wherein the processing container is connected to a transfer chamber having a transfer unit therein, and the transfer plate is transferred into and out of the heated mounting table by the transfer unit. . 前記被処理基板上には、前記成膜ガスを用いたエピタキシャル成長が行われることを特徴とする請求項1乃至7のいずれか1項記載の成膜装置。   The film forming apparatus according to claim 1, wherein epitaxial growth using the film forming gas is performed on the substrate to be processed. 請求項1乃至7のいずれか1項記載の成膜装置を用い、エピタキシャル成長を行うことにより前記被処理基板上に成膜を行う成膜方法であって、
円盤状の搬送板に、複数の前記被処理基板を載置する工程と、
複数の前記被処理基板が前記搬送板に載置された状態で、搬送手段により前記搬送板を被加熱載置台上に搬送する工程と、
前記被加熱載置台を所定速度で回転させる工程と、
前記成膜ガス供給空間に前記成膜ガスを供給する工程と、
前記コイルにより前記基板保持部を加熱する工程と、
前記搬送手段により複数の前記被処理基板が載置された前記搬送板を前記処理容器から搬出する工程と、を有することを特徴とする成膜方法。
A film forming method for forming a film on the substrate to be processed by performing epitaxial growth using the film forming apparatus according to claim 1,
Placing a plurality of the substrates to be processed on a disc-shaped transport plate;
In a state where a plurality of the substrates to be processed are placed on the transport plate, a step of transporting the transport plate onto a heated mounting table by a transport means;
Rotating the heated mounting table at a predetermined speed;
Supplying the film-forming gas into the film-forming gas supply space;
Heating the substrate holder with the coil;
And a step of unloading the transfer plate on which the plurality of substrates to be processed are placed by the transfer means from the processing container.
前記断熱空間に前記処理容器を冷却する冷却媒体を供給する工程をさらに有することを特徴とする請求項9記載の成膜方法。   The film forming method according to claim 9, further comprising a step of supplying a cooling medium for cooling the processing container to the heat insulating space. 前記エピタキシャル成長を行う工程では、前記被処理基板上にSiとCを主成分とする膜が形成されることを特徴とする請求項9または10記載の成膜方法。   The film forming method according to claim 9, wherein in the epitaxial growth step, a film containing Si and C as main components is formed on the substrate to be processed. 前記成膜ガスは、CxHy(x、yは整数)により示されるガスを含むことを特徴とする請求項9乃至11のいずれか1項記載の成膜方法。   The film forming method according to claim 9, wherein the film forming gas includes a gas represented by CxHy (x and y are integers). 前記エピタキシャル成長を行う工程では、前記被処理基板が1200℃以上となるように前記基板保持部が誘導加熱されることを特徴とする請求項9乃至12のいずれか1項記載の成膜方法。   13. The film forming method according to claim 9, wherein in the epitaxial growth step, the substrate holding portion is induction-heated so that the substrate to be processed has a temperature of 1200 ° C. or higher.
JP2012130511A 2012-06-08 2012-06-08 Film forming apparatus and film forming method Active JP5333804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012130511A JP5333804B2 (en) 2012-06-08 2012-06-08 Film forming apparatus and film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012130511A JP5333804B2 (en) 2012-06-08 2012-06-08 Film forming apparatus and film forming method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006348502A Division JP5051875B2 (en) 2006-12-25 2006-12-25 Film forming apparatus and film forming method

Publications (2)

Publication Number Publication Date
JP2012178613A true JP2012178613A (en) 2012-09-13
JP5333804B2 JP5333804B2 (en) 2013-11-06

Family

ID=46980196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012130511A Active JP5333804B2 (en) 2012-06-08 2012-06-08 Film forming apparatus and film forming method

Country Status (1)

Country Link
JP (1) JP5333804B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190071773A1 (en) * 2016-05-11 2019-03-07 Tokyo Electron Limited Film forming apparatus
WO2019116907A1 (en) * 2017-12-13 2019-06-20 東京エレクトロン株式会社 Film formation device
CN114457424A (en) * 2022-03-18 2022-05-10 广州志橙半导体有限公司 Induction heating epitaxial equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243776A (en) * 1990-02-22 1991-10-30 Toyo Tanso Kk Graphite member for cvd
JPH0657433A (en) * 1992-08-13 1994-03-01 Tokai Carbon Co Ltd Pulse cvi device
JPH11157988A (en) * 1997-11-28 1999-06-15 Matsushita Electric Ind Co Ltd Device for growing crystal and growth of crystal
JP2003166059A (en) * 2001-11-29 2003-06-13 Kyocera Corp Film-forming apparatus and film-forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243776A (en) * 1990-02-22 1991-10-30 Toyo Tanso Kk Graphite member for cvd
JPH0657433A (en) * 1992-08-13 1994-03-01 Tokai Carbon Co Ltd Pulse cvi device
JPH11157988A (en) * 1997-11-28 1999-06-15 Matsushita Electric Ind Co Ltd Device for growing crystal and growth of crystal
JP2003166059A (en) * 2001-11-29 2003-06-13 Kyocera Corp Film-forming apparatus and film-forming method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190071773A1 (en) * 2016-05-11 2019-03-07 Tokyo Electron Limited Film forming apparatus
US10689759B2 (en) 2016-05-11 2020-06-23 Tokyo Electron Limited Film forming apparatus
WO2019116907A1 (en) * 2017-12-13 2019-06-20 東京エレクトロン株式会社 Film formation device
JP2019106481A (en) * 2017-12-13 2019-06-27 東京エレクトロン株式会社 Deposition apparatus
JP7049818B2 (en) 2017-12-13 2022-04-07 東京エレクトロン株式会社 Film forming equipment
KR20220061269A (en) * 2017-12-13 2022-05-12 도쿄엘렉트론가부시키가이샤 Film forming apparatus
KR102581343B1 (en) * 2017-12-13 2023-09-22 도쿄엘렉트론가부시키가이샤 Film forming apparatus
CN114457424A (en) * 2022-03-18 2022-05-10 广州志橙半导体有限公司 Induction heating epitaxial equipment

Also Published As

Publication number Publication date
JP5333804B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5051875B2 (en) Film forming apparatus and film forming method
JP5138212B2 (en) Deposition equipment
JP5202839B2 (en) Film forming apparatus and film forming method
US10550491B2 (en) Film-forming apparatus
US20160148829A1 (en) Device and method for transferring substrate for forming compund semiconductor film, and system and method for forming compund semiconductor film
JP5333804B2 (en) Film forming apparatus and film forming method
JP2008159944A (en) Apparatus and method for forming film
JP2012178443A (en) Substrate processing apparatus
US20220254634A1 (en) Chamber body feedthrough for in chamber resistive heating element
US20210108331A1 (en) Film forming apparatus and film forming method
JP2009302397A (en) Vapor growth method, and vapor growth device
KR20230098062A (en) Epitaxial reactor systems and methods of using same
KR20220061269A (en) Film forming apparatus
US20180090311A1 (en) Boron film, boron film forming method, hard mask, and hard mask manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Ref document number: 5333804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250