JPH065522A - High frequency plasma cvd device - Google Patents

High frequency plasma cvd device

Info

Publication number
JPH065522A
JPH065522A JP15830792A JP15830792A JPH065522A JP H065522 A JPH065522 A JP H065522A JP 15830792 A JP15830792 A JP 15830792A JP 15830792 A JP15830792 A JP 15830792A JP H065522 A JPH065522 A JP H065522A
Authority
JP
Japan
Prior art keywords
cathode electrode
high frequency
plasma cvd
reaction gas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15830792A
Other languages
Japanese (ja)
Inventor
Masayoshi Murata
正義 村田
Yoshiaki Takeuchi
良昭 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15830792A priority Critical patent/JPH065522A/en
Publication of JPH065522A publication Critical patent/JPH065522A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high frequency plasma CVD device capable of uniformly forming a thin film having favorable film quality on a large-areal substrate. CONSTITUTION:A high frequency plasma CVD device has, in a reaction container 16, a cathode electrode 11, an earth shield 13 enclosing the side and rear surface of the cathode electrode 11, and a heater-integrated anode electrode 12 arranging a substrate 14 provided opposite to the cathode electrode 11, and also a reaction gas supplying pipe 15 and reaction gas discharging pipes 20, 21, and high frequency power is supplied to among electrodes through an impedance matcher from a high frequency power source, whereby a plasma generates in the reaction container 16. In this device, the surface of the cathode electrode 11 has a structure provided with a corrugated unevenness 101.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はa−Si薄膜、SiNx
(窒化シリコン)薄膜などの半導体膜や絶縁膜などを形
成する化学蒸着(Chemical Vapor De
position、以下CVDという)型薄膜形成に用
いられる高周波プラズマCVD装置に関する。
The present invention relates to an a-Si thin film, SiN x.
Chemical Vapor Deposition for forming semiconductor films such as (silicon nitride) thin films and insulating films
position, hereinafter referred to as CVD) type high frequency plasma CVD apparatus used for forming a thin film.

【0002】[0002]

【従来の技術】図6は従来の平行平板型高周波(RF)
プラズマCVD装置を示す概略構成図である。反応容器
16内には、カソード電極11、カソード電極11と対
向する位置にアノード電極12、カソード電極11のア
ノード電極12と対向しない部分にアースシールド13
が配置されている。カソード電極11は中空になってお
り、アノード電極12に対向した部分に直径0.1〜
0.5mm程度の多数の穴17が設けられている。カソ
ード電極11にはガス供給管15が接続されている。ま
た、アノード電極12上に基板14が設置される。
2. Description of the Related Art FIG. 6 shows a conventional parallel plate type high frequency (RF).
It is a schematic block diagram which shows a plasma CVD apparatus. In the reaction vessel 16, a cathode electrode 11, an anode electrode 12 at a position facing the cathode electrode 11, and a ground shield 13 at a portion of the cathode electrode 11 not facing the anode electrode 12.
Are arranged. The cathode electrode 11 is hollow and has a diameter of 0.1 to 0.1 at the portion facing the anode electrode 12.
A large number of holes 17 of about 0.5 mm are provided. A gas supply pipe 15 is connected to the cathode electrode 11. Further, the substrate 14 is placed on the anode electrode 12.

【0003】この装置により例えばアモルファスシリコ
ン薄膜(以下a−Si薄膜という)を形成する場合につ
いて説明する。反応容器16内は真空ポンプ(図示省
略)により薄膜形成に必要な所定の真空度に真空引きさ
れる。SiH4 などの反応ガスはガス供給管15よりカ
ソード電極11の中空部に供給され、アノード電極12
側に設けられた微小な穴17よりシャワー状に放出さ
れ、アノード電極12上に設置された基板14の表面に
均一に供給される。通常、この方式はシャワー方式と呼
ばれ、大面積の基板表面にも均一にガスを供給できると
いう特徴をもっている。高周波電源(図示省略)より1
3.56MHzの高周波電力がインピーダンス整合器
(図示省略)を介してカソード電極11に供給される。
カソード電極11のアノード電極12と対向しない部分
はアースシールド13で囲われているので、この部分で
はプラズマは発生しない。つまり、前述の高周波電力に
より、カソード電極11とアノード電極12との間でグ
ロー放電プラズマが発生する。カソード電極11の穴1
7よりシャワー状に供給される反応ガス(SiH4 )は
プラズマにより解離され、基板14表面にa−Si薄膜
が堆積する。
A case where an amorphous silicon thin film (hereinafter referred to as an a-Si thin film) is formed by this apparatus will be described. The inside of the reaction vessel 16 is evacuated by a vacuum pump (not shown) to a predetermined degree of vacuum required for thin film formation. The reaction gas such as SiH 4 is supplied from the gas supply pipe 15 to the hollow portion of the cathode electrode 11,
It is emitted in the shape of a shower from the minute holes 17 provided on the side, and is uniformly supplied to the surface of the substrate 14 placed on the anode electrode 12. Usually, this method is called a shower method and has a feature that gas can be uniformly supplied to the surface of a large-area substrate. 1 from a high frequency power source (not shown)
High frequency power of 3.56 MHz is supplied to the cathode electrode 11 via an impedance matching device (not shown).
Since the portion of the cathode electrode 11 that does not face the anode electrode 12 is surrounded by the earth shield 13, plasma is not generated in this portion. That is, glow discharge plasma is generated between the cathode electrode 11 and the anode electrode 12 by the high frequency power described above. Hole 1 for cathode electrode 11
The reaction gas (SiH 4 ) supplied in a shower form from 7 is dissociated by plasma, and an a-Si thin film is deposited on the surface of the substrate 14.

【0004】[0004]

【発明が解決しようとする課題】従来の装置では、基板
の大きさが500mm×500mm以上の場合には、次
のような問題が生じる。
In the conventional apparatus, the following problems occur when the size of the substrate is 500 mm × 500 mm or more.

【0005】カソード電極とアノード電極との間隔およ
び反応容器内のガス圧力などに依存するが、図7および
図8に示すように電極間の中央部または周辺部に偏って
プラズマが発生する。その結果、図9および図10に示
すように、基板に堆積されるアモルファスシリコンなど
の膜厚は、基板中央部で厚くなったり、逆に基板周辺部
で厚くなったりする。このような現象は、基板の大きさ
が500mm×500mm以上になると顕著に現れる
が、基板の全面にわたって膜厚分布を一様にすることは
実際上極めて困難である。したがって、従来の装置は、
大面積基板を対象とする場合は実用性に欠けていた。こ
れらの問題の原因としては、電力密度の不均一、および
反応ガスの流量や流速の不均一などが考えられる。
Although depending on the distance between the cathode electrode and the anode electrode and the gas pressure in the reaction vessel, plasma is eccentrically generated in the central portion or the peripheral portion between the electrodes as shown in FIGS. 7 and 8. As a result, as shown in FIGS. 9 and 10, the film thickness of the amorphous silicon or the like deposited on the substrate becomes thicker in the central portion of the substrate and, conversely, thicker in the peripheral portion of the substrate. Such a phenomenon appears remarkably when the size of the substrate is 500 mm × 500 mm or more, but it is actually extremely difficult to make the film thickness distribution uniform over the entire surface of the substrate. Therefore, the conventional device is
When it was applied to a large area substrate, it was not practical. Possible causes of these problems are uneven power density, uneven flow rate and flow velocity of the reaction gas, and the like.

【0006】本発明は前記問題点を解決するためになさ
れたものであり、大面積の基板上に均一に膜質の良好な
薄膜を形成できる高周波プラズマCVD装置を提供する
ことを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a high frequency plasma CVD apparatus capable of uniformly forming a thin film having a good film quality on a large-area substrate.

【0007】[0007]

【課題を解決するための手段】本発明の高周波プラズマ
CVD装置は、反応容器内に、カソード電極と、前記カ
ソード電極の側面および裏面を囲うアースシールドと、
前記カソード電極に対向して設けられ基板が設置される
ヒーター内蔵アノード電極とを有するとともに、反応ガ
ス供給管および反応ガス排気管とを有し、高周波電源か
らインピーダンス整合器を介して前記電極間に高周波電
力を供給することにより前記反応容器内でプラズマを発
生させる高周波プラズマCVD装置において、前記カソ
ード電極の表面に波状の凹凸を設けたことを特徴とする
ものである。
A high frequency plasma CVD apparatus according to the present invention comprises a cathode electrode, a ground shield surrounding a side surface and a back surface of the cathode electrode, in a reaction vessel.
It has an anode electrode with a built-in heater which is provided so as to face the cathode electrode and on which a substrate is placed, and also has a reaction gas supply pipe and a reaction gas exhaust pipe, and between a high frequency power supply and an impedance matching device between the electrodes. In a high-frequency plasma CVD apparatus for generating plasma in the reaction vessel by supplying high-frequency power, a corrugated unevenness is provided on the surface of the cathode electrode.

【0008】[0008]

【作用】成膜時の条件としては、反応ガスを多量に流
し、かつ電極間の電力密度分布を一様にすることが好ま
しい。すなわち図3に示すように、一般的に、反応ガス
流量が多量であれば、成膜速度は電力に比例する関係が
ある。したがって、電極間の電力密度を制御すれば、膜
厚分布を一様にできる。
It is preferable that a large amount of reaction gas is flown and the power density distribution between the electrodes is made uniform as conditions for film formation. That is, as shown in FIG. 3, generally, when the flow rate of the reaction gas is large, the film formation rate has a relationship proportional to the electric power. Therefore, the film thickness distribution can be made uniform by controlling the power density between the electrodes.

【0009】この条件を実現するために、本発明の装置
では、カソード電極の表面に凹凸の溝を設けて表面積の
増加させている。このような構成を採用すれば、凹凸の
溝を設けた部分では、カソード電極とアノード電極間の
静電容量(コンダクタンス)が局所的に大きくなり、高
周波に対する局所的共振周波数が小さくなるので、高周
波電力の強さを弱めることができる。したがって、図4
に示すように、電極間の全面にわたってプラズマを一様
の強さで発生させることができる。これは、従来の装置
のようにカソード電極とアノード電極とが平板である場
合に、図7または図8に示すように電極間の中央部また
は周辺部でプラズマが強く発生するのとは対照的であ
る。本発明において、カソード電極中央部に設けられる
凹凸の形状は、深さ3〜6mm、ピッチ4〜10mm程
度の丸みのある波状が好ましい。
In order to realize this condition, in the device of the present invention, an uneven groove is provided on the surface of the cathode electrode to increase the surface area. If such a configuration is adopted, the electrostatic capacitance (conductance) between the cathode electrode and the anode electrode is locally increased in the portion where the concave and convex grooves are provided, and the local resonance frequency with respect to the high frequency is reduced. The power strength can be reduced. Therefore, FIG.
As shown in, plasma can be generated with uniform intensity over the entire surface between the electrodes. This is in contrast to the case where the cathode electrode and the anode electrode are flat plates as in the conventional device, in which plasma is strongly generated in the central portion or the peripheral portion between the electrodes as shown in FIG. 7 or 8. Is. In the present invention, the shape of the unevenness provided in the central portion of the cathode electrode is preferably a wavy shape having a depth of 3 to 6 mm and a pitch of about 4 to 10 mm.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明に係る高周波プラズマCVD装置の
概略構成図である。なお、図6に示す従来の装置と同一
の部材には同一の符号を付している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a high-frequency plasma CVD apparatus according to the present invention. The same members as those of the conventional device shown in FIG. 6 are designated by the same reference numerals.

【0011】図1において、反応容器16内には、グロ
ー放電プラズマを発生させるためのカソード電極11と
アノード電極12とが互いに平行に配置されている。カ
ソード電極11は絶縁物19を介して反応容器16に固
着されている。アノード電極12は図示しない支持台に
より反応容器16に固着され、かつ電気的にも導通状態
になっている。
In FIG. 1, in a reaction vessel 16, a cathode electrode 11 and an anode electrode 12 for generating glow discharge plasma are arranged in parallel with each other. The cathode electrode 11 is fixed to the reaction vessel 16 via an insulator 19. The anode electrode 12 is fixed to the reaction container 16 by a support (not shown), and is also electrically conductive.

【0012】カソード電極面100の中央部には深さ3
〜6mm、ピッチ4〜10mmの正弦波状の溝101が
設けられている。図2に示すように、カソード電極面1
00の中央部とは、カソード電極11の直径(円形の場
合)または一辺の長さ(四角形の場合)をDとして、カ
ソード電極11中央の直径または一辺の長さがD/2程
度の範囲の部分をいう。カソード電極11は中空になっ
ており、反応ガスを電極間に均一に放出するために、ア
ノード電極12に対向する部分に直径0.1〜0.5m
m程度の微小な反応ガス噴出孔17が多数設けられてい
る。カソード電極11には反応ガス供給管15が接続さ
れている。図示しない反応ガス供給装置より供給された
反応ガスは、反応ガス供給管15を介して反応ガス噴出
孔17から噴出する。カソード電極11のアノード電極
12と対向しない部分には、異常放電を抑制するために
アースシールド13が配置されている。
At the center of the cathode electrode surface 100, there is a depth of 3
A sinusoidal groove 101 having a pitch of ˜6 mm and a pitch of 4 to 10 mm is provided. As shown in FIG. 2, the cathode electrode surface 1
The central part of 00 is a diameter (in the case of a circle) or the length of one side (in the case of a quadrangle) of the cathode electrode 11 is D, and the diameter of the center of the cathode electrode 11 or the length of the side is in the range of about D / 2. Refers to the part. The cathode electrode 11 is hollow, and has a diameter of 0.1 to 0.5 m at a portion facing the anode electrode 12 in order to uniformly discharge the reaction gas between the electrodes.
A large number of minute reaction gas ejection holes 17 of about m are provided. A reaction gas supply pipe 15 is connected to the cathode electrode 11. The reaction gas supplied from a reaction gas supply device (not shown) is ejected from the reaction gas ejection hole 17 through the reaction gas supply pipe 15. A ground shield 13 is arranged at a portion of the cathode electrode 11 that does not face the anode electrode 12 in order to suppress abnormal discharge.

【0013】アノード電極12上には図示しない基板ホ
ルダにより基板14が設置される。アノード電極12は
図示しないヒータを内蔵しており、基板14の温度を4
00℃以下の任意の値に設定できる。
A substrate 14 is placed on the anode electrode 12 by a substrate holder (not shown). The anode electrode 12 has a built-in heater (not shown) and controls the temperature of the substrate 14 to 4
It can be set to any value below 00 ° C.

【0014】反応容器16内のガスは、排気孔20、2
1より排気される。カソード電極11およびアノード電
極12には、図示しないインピーダンス整合器付き高周
波電源より電力供給線18および反応容器16を介して
電力が供給される。
The gas in the reaction vessel 16 is exhausted through the exhaust holes 20, 2
Exhausted from 1. Electric power is supplied to the cathode electrode 11 and the anode electrode 12 through a power supply line 18 and a reaction vessel 16 from a high frequency power source with an impedance matching device (not shown).

【0015】この装置によりa−Si薄膜を形成する場
合について以下に説明する。図示しない真空ポンプを稼
動して、反応容器16内を排気する。例えば1×10-7
Torrの圧力になった後、図示しない反応ガス供給装
置より反応ガス供給管15を通してモノシランガスを5
0〜100cc/minの流量で供給し、反応容器16
内の圧力を0.1〜0.5Torrに保つ。次いで、図
示しないインピーダンス整合器付き高周波電源より電力
供給線18および反応容器16を介してカソード電極1
1およびアノード電極12間に電力を供給する。こうし
て、電極間にモノシランガスのグロー放電プラズマが発
生する。
The case of forming an a-Si thin film with this apparatus will be described below. A vacuum pump (not shown) is operated to exhaust the inside of the reaction vessel 16. For example, 1 × 10 -7
After reaching the pressure of Torr, the reaction gas supply device (not shown) supplies the reaction gas supply pipe 15 to supply the monosilane gas to
The reaction vessel 16 is supplied at a flow rate of 0 to 100 cc / min.
The internal pressure is kept at 0.1 to 0.5 Torr. Then, the cathode electrode 1 is fed from a high frequency power source with an impedance matching device (not shown) through the power supply line 18 and the reaction vessel 16.
Power is supplied between 1 and the anode electrode 12. Thus, glow discharge plasma of monosilane gas is generated between the electrodes.

【0016】本発明の装置では、カソード電極11の表
面の正弦波状の溝101が設けられている中央部では、
溝が設けられていない部分よりも、局所的静電容量が大
きくなる。このため、その部分では共振周波数が小さく
なるので、インピーダンス整合器付き高周波電源より供
給される電力が小さくなる。したがって、従来の装置に
おいて図7に示すように電極間の中央部で強いプラズマ
が発生していたのが抑制されて、図4に示すように電極
間の全面にわたってプラズマを一様の強さで発生させる
ことができる。
In the device of the present invention, in the central portion where the sinusoidal groove 101 is provided on the surface of the cathode electrode 11,
The local capacitance is larger than that in the portion where the groove is not provided. For this reason, the resonance frequency becomes small in that portion, and the electric power supplied from the high frequency power source with the impedance matching device becomes small. Therefore, in the conventional device, strong plasma is suppressed from being generated in the central portion between the electrodes as shown in FIG. 7, and the plasma is uniformly distributed over the entire surface between the electrodes as shown in FIG. Can be generated.

【0017】実際に本発明の装置を用い、基板表面にa
−Si薄膜を堆積させた。実験は、電極の大きさ120
0mm×1200mm、ガラス基板の大きさ1000m
m×1000mm、反応ガス流量50cc/min、圧
力0.3Torr、高周波電力200Wという条件で実
施した。その結果、図5に示すように、一様な膜厚分布
を示すa−Si薄膜が得られた。
Actually, using the apparatus of the present invention, a
-Si thin film was deposited. The experiment was conducted with the size of the electrode 120.
0 mm x 1200 mm, glass substrate size 1000 m
m × 1000 mm, reaction gas flow rate 50 cc / min, pressure 0.3 Torr, and high frequency power 200 W. As a result, as shown in FIG. 5, an a-Si thin film having a uniform film thickness distribution was obtained.

【0018】また、図11にアノード電極面において隣
接する溝(深さ5mm)の間隔を変化させた場合のa−
Si薄膜の膜厚分布を示す。縦軸は膜厚のばらつきを%
で表したものであり、小さい値であるほど膜厚が均一で
あることを示す。図11から明らかなように、隣接する
溝のピッチが4〜10mmの場合に膜厚分布が非常に良
好である。
Further, in FIG. 11, a- in the case where the interval between adjacent grooves (depth 5 mm) on the anode electrode surface is changed
The film thickness distribution of a Si thin film is shown. The vertical axis shows the variation of the film thickness in%
The smaller the value, the more uniform the film thickness. As is clear from FIG. 11, the film thickness distribution is very good when the pitch between adjacent grooves is 4 to 10 mm.

【0019】なお、前記実施例ではアモルファスシリコ
ン薄膜を成膜したが、本発明の装置は、反応ガスを変え
るだけで窒化シリコン(Si3 4 )やシリカ(SiO
2 )などの成膜にも容易に適用できることはいうまでも
ない。
Although the amorphous silicon thin film is formed in the above-mentioned embodiment, the apparatus of the present invention can change the reaction gas to silicon nitride (Si 3 N 4 ) or silica (SiO 2 ).
It goes without saying that it can be easily applied to film formation such as 2 ).

【0020】[0020]

【発明の効果】以上詳述したように本発明の高周波プラ
ズマCVD装置を用いれば、大面積の基板上に薄膜を均
一に成膜できる。したがって、太陽電池や液晶ディスプ
レイの分野では、大面積化によるコスト低減および性能
向上が達成でき、工業上の価値が著しく大きい。
As described in detail above, by using the high frequency plasma CVD apparatus of the present invention, a thin film can be uniformly formed on a large area substrate. Therefore, in the fields of solar cells and liquid crystal displays, cost reduction and performance improvement can be achieved by increasing the area, and the industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における高周波プラズマCV
D装置の概略構成図。
FIG. 1 is a high-frequency plasma CV according to an embodiment of the present invention.
The schematic block diagram of D apparatus.

【図2】同装置のカソード電極に設けられる凹凸を示す
断面図。
FIG. 2 is a cross-sectional view showing unevenness provided on a cathode electrode of the same device.

【図3】プラズマ発生電力と成膜速度との関係を反応ガ
ス流量をパラメータとして示す図。
FIG. 3 is a diagram showing the relationship between plasma generation power and film formation rate using a reaction gas flow rate as a parameter.

【図4】本発明の一実施例の高周波プラズマCVD装置
でのプラズマの発生状況を示す説明図。
FIG. 4 is an explanatory diagram showing a plasma generation state in the high frequency plasma CVD apparatus according to the embodiment of the present invention.

【図5】本発明の一実施例の高周波プラズマCVD装置
で成膜されるアモルファスシリコンの膜厚分布の一例を
示す図。
FIG. 5 is a diagram showing an example of a film thickness distribution of amorphous silicon formed by a high frequency plasma CVD apparatus according to an embodiment of the present invention.

【図6】従来の高周波プラズマCVD装置の概略構成
図。
FIG. 6 is a schematic configuration diagram of a conventional high-frequency plasma CVD apparatus.

【図7】従来の高周波プラズマCVD装置でのプラズマ
の発生状況の一例を示す説明図。
FIG. 7 is an explanatory diagram showing an example of a plasma generation state in a conventional high-frequency plasma CVD apparatus.

【図8】従来の高周波プラズマCVD装置でのプラズマ
の発生状況の他の例を示す説明図。
FIG. 8 is an explanatory diagram showing another example of a plasma generation state in a conventional high-frequency plasma CVD apparatus.

【図9】従来の高周波プラズマCVD装置で成膜される
アモルファスシリコンの膜厚分布の一例を示す図。
FIG. 9 is a diagram showing an example of a film thickness distribution of amorphous silicon formed by a conventional high-frequency plasma CVD apparatus.

【図10】従来の高周波プラズマCVD装置で成膜され
るアモルファスシリコンの膜厚分布の他の例を示す図。
FIG. 10 is a diagram showing another example of the film thickness distribution of amorphous silicon formed by a conventional high-frequency plasma CVD apparatus.

【図11】本発明の一実施例の高周波プラズマCVD装
置において、カソード電極に設けられる凹凸の間隔とア
モルファスシリコンの膜厚分布との関係を示す図。
FIG. 11 is a diagram showing a relationship between an interval between irregularities provided on the cathode electrode and a film thickness distribution of amorphous silicon in the high frequency plasma CVD apparatus according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…カソード電極、12…アノード電極、14…基
板、15…ガス供給管、16…反応容器、17…噴出
孔、20、21…排気孔、100…カソード電極面、1
01…溝。
11 ... Cathode electrode, 12 ... Anode electrode, 14 ... Substrate, 15 ... Gas supply pipe, 16 ... Reaction vessel, 17 ... Jet hole, 20, 21 ... Exhaust hole, 100 ... Cathode electrode surface, 1
01 ... groove.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 反応容器内に、カソード電極と、前記カ
ソード電極の側面および裏面を囲うアースシールドと、
前記カソード電極に対向して設けられ基板が設置される
ヒーター内蔵アノード電極とを有するとともに、反応ガ
ス供給管および反応ガス排気管とを有し、高周波電源か
らインピーダンス整合器を介して前記電極間に高周波電
力を供給することにより前記反応容器内でプラズマを発
生させる高周波プラズマCVD装置において、前記カソ
ード電極の表面に波状の凹凸を設けたことを特徴とする
高周波プラズマCVD装置。
1. A cathode electrode, an earth shield surrounding a side surface and a back surface of the cathode electrode, in a reaction vessel,
It has an anode electrode with a built-in heater which is provided so as to face the cathode electrode and on which a substrate is placed, and also has a reaction gas supply pipe and a reaction gas exhaust pipe, and between a high frequency power supply and an impedance matching device between the electrodes. A high-frequency plasma CVD apparatus for generating plasma in the reaction vessel by supplying high-frequency power, characterized in that corrugated irregularities are provided on the surface of the cathode electrode.
JP15830792A 1992-06-17 1992-06-17 High frequency plasma cvd device Withdrawn JPH065522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15830792A JPH065522A (en) 1992-06-17 1992-06-17 High frequency plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15830792A JPH065522A (en) 1992-06-17 1992-06-17 High frequency plasma cvd device

Publications (1)

Publication Number Publication Date
JPH065522A true JPH065522A (en) 1994-01-14

Family

ID=15668774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15830792A Withdrawn JPH065522A (en) 1992-06-17 1992-06-17 High frequency plasma cvd device

Country Status (1)

Country Link
JP (1) JPH065522A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032154A1 (en) * 1997-01-17 1998-07-23 Balzers Aktiengesellschaft Capacitively coupled rf-plasma reactor
EP0887836A2 (en) * 1997-06-26 1998-12-30 Sharp Kabushiki Kaisha Electronic device fabrication apparatus
US6326304B1 (en) 1999-02-26 2001-12-04 Kaneka Corporation Method of manufacturing amorphous silicon based thin film photoelectric conversion device
KR20170113093A (en) * 2016-03-25 2017-10-12 시바우라 메카트로닉스 가부시끼가이샤 Plasma processing apparatus
JPWO2017149738A1 (en) * 2016-03-03 2018-12-06 コアテクノロジー株式会社 Structure of plasma processing apparatus and reaction container for plasma processing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032154A1 (en) * 1997-01-17 1998-07-23 Balzers Aktiengesellschaft Capacitively coupled rf-plasma reactor
US5981899A (en) * 1997-01-17 1999-11-09 Balzers Aktiengesellschaft Capacitively coupled RF-plasma reactor
US6281469B1 (en) 1997-01-17 2001-08-28 Unaxis Balzers Aktiengesellschaft Capacitively coupled RF-plasma reactor
EP0887836A2 (en) * 1997-06-26 1998-12-30 Sharp Kabushiki Kaisha Electronic device fabrication apparatus
US5935374A (en) * 1997-06-26 1999-08-10 Sharp Kabushiki Kaisha Electronic device fabrication apparatus
EP0887836A3 (en) * 1997-06-26 2000-10-18 Sharp Kabushiki Kaisha Electronic device fabrication apparatus
US6326304B1 (en) 1999-02-26 2001-12-04 Kaneka Corporation Method of manufacturing amorphous silicon based thin film photoelectric conversion device
JPWO2017149738A1 (en) * 2016-03-03 2018-12-06 コアテクノロジー株式会社 Structure of plasma processing apparatus and reaction container for plasma processing
US11227748B2 (en) 2016-03-03 2022-01-18 Core Technology, Inc. Plasma treatment device and structure of reaction vessel for plasma treatment
KR20170113093A (en) * 2016-03-25 2017-10-12 시바우라 메카트로닉스 가부시끼가이샤 Plasma processing apparatus

Similar Documents

Publication Publication Date Title
KR100557666B1 (en) Susceptor for supporting substrate and apparatus for depositing film comprising the same
JP3586197B2 (en) Plasma film forming equipment for thin film formation
KR101336446B1 (en) Process tuning gas injection from the substrate edge
US20060087211A1 (en) Plasma processing apparatus
US20110272099A1 (en) Plasma processing apparatus and method for the plasma processing of substrates
US5556474A (en) Plasma processing apparatus
US4987005A (en) Chemical vapor processing method for deposition or etching on a plurality of substrates
JP3224011B2 (en) Plasma-excited chemical vapor deposition apparatus and plasma etching apparatus
US4545328A (en) Plasma vapor deposition film forming apparatus
JP3837539B2 (en) Plasma CVD equipment
JP2001126899A (en) Antenna unit and plasma processing apparatus
JPH1116843A (en) Electronic device manufacturing system
JPH065522A (en) High frequency plasma cvd device
KR20010050758A (en) Plasma CVD system and plasma CVD film deposition method
JPH05343338A (en) Plasma cvd apparatus
JPH0776781A (en) Plasma vapor growth device
JP2798225B2 (en) High frequency plasma CVD equipment
JPH06295866A (en) Plasma reaction system
JP2848755B2 (en) Plasma CVD equipment
JP3310875B2 (en) Plasma CVD equipment
KR20000022193A (en) Apparatus and method for high density plasma chemical vapor deposition
JP3259453B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JP3581813B2 (en) Thin film manufacturing method and thin film solar cell manufacturing method
JPH1022279A (en) Inductive coupled plasma cvd device
JPH0891987A (en) Apparatus for plasma chemical vapor deposition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831