JPH0653912B2 - High toughness ERW steel pipe with excellent reel barge layability - Google Patents

High toughness ERW steel pipe with excellent reel barge layability

Info

Publication number
JPH0653912B2
JPH0653912B2 JP1307610A JP30761089A JPH0653912B2 JP H0653912 B2 JPH0653912 B2 JP H0653912B2 JP 1307610 A JP1307610 A JP 1307610A JP 30761089 A JP30761089 A JP 30761089A JP H0653912 B2 JPH0653912 B2 JP H0653912B2
Authority
JP
Japan
Prior art keywords
weight
less
steel pipe
layability
electric resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1307610A
Other languages
Japanese (ja)
Other versions
JPH03211255A (en
Inventor
卓彌 厚見
克臣 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1307610A priority Critical patent/JPH0653912B2/en
Priority to US07/546,243 priority patent/US5134267A/en
Priority to DE69013591T priority patent/DE69013591T2/en
Priority to EP90307318A priority patent/EP0407175B1/en
Priority to NO903014A priority patent/NO300719B1/en
Publication of JPH03211255A publication Critical patent/JPH03211255A/en
Publication of JPH0653912B2 publication Critical patent/JPH0653912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リールバージ敷設性に優れた高靭性電縫鋼管
に関するものである。
TECHNICAL FIELD The present invention relates to a high toughness electric resistance welded steel pipe excellent in reel barge layability.

〔従来の技術〕[Conventional technology]

従来、海底ラインパイプの敷設方法としては、第2図に
示すように、バージ1上で手溶接、MIG(Metal Iner
t Gas)溶接またはMAG(Metal Active Gas)溶接に
より円周溶接を行い、接続したパイプ2を送り出して海
底4に敷設する方法が最も一般的である。しかし、この
方法ではバージ1上にて溶接、溶接部の検査、コーティ
ング等を行う必要があり、作業スペースが狭いために作
業効率の点が劣ること、あるいは天候の影響を大きく受
けるために作業能率が悪いことなどの点より問題があっ
た。
Conventionally, as a method of laying a submarine line pipe, as shown in FIG. 2, manual welding on a barge 1 or MIG (Metal Iner
The most common method is to perform circumferential welding by t gas) welding or MAG (Metal Active Gas) welding, send out the connected pipe 2 and lay it on the seabed 4. However, with this method, it is necessary to perform welding, inspection of the welded portion, coating, etc. on the barge 1, and the work space is small, so the work efficiency is inferior, or it is greatly affected by the weather and work efficiency is high. There was a problem in that it was bad.

このため、第3図(a)に示すように、陸上5で円周溶
接、検査、及びコーティング等を行い、できあがった長
尺のパイプ2を海上のバージ1のリール3上に巻き取
り、第3図(b)に示すように目的とする海上におい
て、リール3からパイプ2を巻き戻しながら海底4に敷
設する、いわゆるリールバージ法が多用されつつある。
For this reason, as shown in FIG. 3 (a), circumferential welding, inspection, coating, etc. are performed on the land 5, and the long pipe 2 thus completed is wound on the reel 3 of the barge 1 on the sea, As shown in FIG. 3 (b), the so-called reel barge method, in which the pipe 2 is unwound from the reel 3 and laid on the seabed 4 at the target sea, is being used frequently.

このリールバージ法では、非常に効率的に作業を行うこ
とができるものの、リール3に巻き取る時あるいは海底
に敷設するためにリール3から巻き戻す時に、パイプ2
の一部に引張及び圧縮の応力がかかり、第4図に示すよ
うにパイプ2の円周溶接7のトウ部に割れが生じやすい
という問題があった。
Although the reel barge method can perform work very efficiently, the pipe 2 is not used when the reel 3 is wound up or unwound from the reel 3 to be laid on the seabed.
There is a problem that tensile and compressive stresses are applied to a part of the above, and as shown in FIG. 4, cracks are likely to occur in the toe part of the circumferential weld 7 of the pipe 2.

従来より、溶接部の靭性を改良する方法としては、特公
昭60−31888号あるいは特開昭53−12571
号がある。前者は、母材成分の炭素当量を規定しかつ溶
接後熱処理を行うものであり、後者は溶接時に被溶接材
料に超音波振動を付与して行うものである。これらは、
溶接部の靭性向上に効果はあるものの、前者では特に熱
処理工程の追加が必要である。後者は超音波を付与する
ための装置及び適当な振動数の調整が必要であり、また
振動数が不適当であると付与しないほうがかえって靭性
が優れるという問題がある。
Conventionally, as a method for improving the toughness of a welded portion, Japanese Patent Publication No. Sho 61-31888 or Sho 53-12571.
There is an issue. The former defines the carbon equivalent of the base metal component and performs post-weld heat treatment, and the latter performs ultrasonic vibration to the material to be welded during welding. They are,
Although it is effective in improving the toughness of the welded portion, the former requires an additional heat treatment step. The latter requires a device for applying ultrasonic waves and adjustment of an appropriate frequency, and if the frequency is not appropriate, there is a problem that the toughness is better if not applied.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

以上述べたように、リールバージ法により電縫鋼管を敷
設する場合、リールにパイプを巻き取る工程あるいは敷
設時にリールから巻き戻す工程があるため、パイプの一
部に引張及び圧縮の応力がかかり、円周溶接トウ部に割
れが生じやすいという問題点がある。
As described above, when laying an electric resistance welded steel pipe by the reel barge method, since there is a step of winding the pipe on the reel or a step of rewinding from the reel at the time of laying, a tensile and compression stress is applied to a part of the pipe, There is a problem that cracks easily occur in the circumferential weld toe part.

本発明は、上記の事情にかんがみて開発されたもので、
リールバージ敷設性に優れた高靭性電縫鋼管を提供する
ものである。
The present invention was developed in view of the above circumstances,
It is intended to provide a high toughness electric resistance welded steel pipe having excellent reel barge layability.

〔課題を解決するための手段〕 本発明者らは、電縫鋼管のリールバージ法への適用に当
り調査を重ねた結果、円周溶接トウ部の割れ発生には溶
接熱影響部の軟化が悪影響を及ぼしていることを見出
し、さらに研究を重ねたところ、溶接時の熱を受けても
軟化の程度が事実上問題のない高靭性電縫鋼管を用いる
ことにより、トウ部の割れを有効に防止し得ることを知
見し、本発明をなすに至ったのである。
[Means for Solving the Problems] As a result of repeated investigations on the application of the electric resistance welded steel pipe to the reel barge method, the present inventors found that the weld heat affected zone was softened in the occurrence of cracks in the circumferential weld toe portion. We have found that it has an adverse effect, and conducted further research, and by using a high-toughness electric resistance welded steel pipe with virtually no problem in the degree of softening even when it receives heat during welding, it is possible to effectively crack the toe part. The inventors have found that they can be prevented and have completed the present invention.

すなわち、本発明は下記の技術手段から成る電縫鋼管で
ある。
That is, the present invention is an electric resistance welded steel pipe including the following technical means.

成分として、 C:0.03〜0.20重量%、 Mn:0.50〜1.5重量%、 Si:0.05〜0.50重量%、 Al:0.005〜0.060重量% の範囲内で含有し、かつ、Nb、V、Tiについて、 Nb+V+Ti≦0.040重量% を満足し、残部は実質的に鉄及び不可避的不純物よりな
る鋼で、かつ炭素当量Ceq及び溶接割れ感受性Pcm
が、 0.20≦Ceq≦0.36 Pcm≦0.25 を満足し、さらに、降伏比(=降伏応力/引張り強さ)
が85%以下であることを特徴とする溶接軟化部の少な
いリールバージ敷設に優れた高靭性電縫鋼管である。
As components, C: 0.03 to 0.20 wt%, Mn: 0.50 to 1.5 wt%, Si: 0.05 to 0.50 wt%, Al: 0.005 to 0.060 wt% Within the range of Nb, V, and Ti, satisfying Nb + V + Ti ≦ 0.040% by weight, the balance being steel essentially consisting of iron and inevitable impurities, and having a carbon equivalent Ceq and a weld cracking susceptibility. Pcm
Satisfies 0.20 ≦ Ceq ≦ 0.36 Pcm ≦ 0.25, and further, the yield ratio (= yield stress / tensile strength)
It is a high toughness electric resistance welded steel pipe excellent in reel barge laying with less weld softening part, characterized by being less than 85%.

但し、Ceq及びPcmは次式で与えられる。However, Ceq and Pcm are given by the following equations.

Ceq=C+Mn/6+Cu/15 +Ni/15+Cr/5 +Mo/5+V/5 Pcm=C+Si/30+Mn/20 +Cu/20+Ni/60 +Cr/20+Mo/15 +V/10+5B また、上記鋼に成分として (a)Ni:0.50重量%以下、 Cu:0.50重量%以下、 Ca:0.005重量%以下、 Cr:0.3重量%以下、 のうちから選ばれた1種もしくは2種以上または/およ
び (b)Mo:0.30重量%以下 B:0.002重量%以下 のうち一種または二種 を含有させることによって、リールバージ敷設にさらに
優れた高靭性電縫鋼管を得ることができる。
Ceq = C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V / 5 Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (a) Ni: 0 as a component in the steel. 50% by weight or less, Cu: 0.50% by weight or less, Ca: 0.005% by weight or less, Cr: 0.3% by weight or less, and one or more selected from or / and (b ) Mo: 0.30% by weight or less B: 0.002% by weight or less By incorporating one or two of them, it is possible to obtain a high toughness electric resistance welded steel pipe more excellent in reel barge laying.

〔作用〕[Action]

以下に本発明の作用を説明する。 The operation of the present invention will be described below.

本発明者らは、上記した円周溶接トウ部の割れについ
て、API1104に従って円周溶接部から試験片10
を取り出し、第5図に示すように曲げ試験機11を用い
て繰り返し曲げ試験(歪量5%)により再現試験を実施
し検討した結果、第4図に典型例にみられるように割れ
6が円周溶接7のトウ部より発生していることを確認す
ることができた。また、この割れは溶接熱影響部の軟化
の程度が大きい時に発生する傾向が大きく、溶接熱影響
部の軟化を小さくすれば有効に防止し得ることが明らか
となった。
Regarding the cracks in the above-described circumferential welded toe portion, the present inventors have made a test piece 10 from the circumferential welded portion according to API 1104.
Then, as shown in FIG. 5, a bending tester 11 was used to conduct a repeated bending test (strain amount 5%) and a reproduction test was conducted. As a result, cracks 6 were found as shown in a typical example in FIG. It was possible to confirm that it was generated from the toe part of the circumferential weld 7. Further, it has been clarified that this crack tends to occur when the degree of softening of the weld heat affected zone is large, and can be effectively prevented by reducing the softening of the weld heat affected zone.

この種の割れは第6図のグラフに示した硬さHvの分布
の模式図から解るように、溶接部7による溶接熱影響部
8と母材9の硬度の不連続に起因するものであり、巻き
取り巻き戻し時に溶接熱影響部8と母材9で塑性変形の
不均一が生じるために発生すると考えられる。すなわ
ち、割れの発生は、軟化域をもつ溶接熱影響部8に変形
が集中し、局部的に加工硬化し脆化することにより起る
と考えられる。
As can be seen from the schematic diagram of the distribution of hardness Hv shown in the graph of FIG. 6, this kind of crack is caused by the discontinuity in the hardness of the weld heat affected zone 8 and the base metal 9 due to the weld zone 7. It is considered that this occurs because nonuniform plastic deformation occurs in the weld heat affected zone 8 and the base material 9 during winding and rewinding. That is, the occurrence of cracks is considered to occur because the deformation is concentrated in the weld heat affected zone 8 having a softened region, and the work locally hardens due to work hardening.

また、第6図に示すように溶接熱影響部8が母材9に比
較して軟化する理由は、一般に電縫鋼管用鋼板は高強度
・高靭性を得るためにCR(コントロールド・ローリン
グ)法が採用されているが、溶接時の熱によりAC3点以
上に加熱され、CRの効果がなくなるためと考えられ
る。特に、電縫鋼管では巻き取り巻き戻し時の応力状態
より見て、問題となるのはシーム溶接部よりも円周溶接
部における軟化である。
Further, as shown in FIG. 6, the reason why the welding heat affected zone 8 is softened compared to the base material 9 is that the steel plate for ERW pipe is generally CR (controlled rolling) in order to obtain high strength and high toughness. Although the method is adopted, it is considered that the effect of CR is lost because the heat of welding heats it to the AC 3 point or higher. In particular, in the case of the electric resistance welded steel pipe, in view of the stress state at the time of winding and unwinding, what becomes a problem is softening at the circumferential weld portion rather than at the seam weld portion.

上記した検討結果より溶接熱影響部の軟化の程度を減少
させるために、種々の成分系について軟化の度合(△H
v)を調査し、ある特定の成分系にすれば軟化の度合を
非常に小さく抑えることができることが発見し、本発明
に至った。
From the above-mentioned examination results, in order to reduce the degree of softening of the weld heat affected zone, the degree of softening (ΔH
The present invention has been completed by investigating v) and found that the softening degree can be suppressed to a very small level by using a specific component system.

それは、第1図に示すように、Nb、V及びTiの合計
量とCeq(炭素当量)の値を規制することである。第
1図は、Nb+V+Tiの量を0.040重量%以下及
び0.040重量%超にした場合の軟化の度合(△H
v)とCeqの関係を示したものであり、定性的に、C
eqを増加させれば△Hvを減ずることができることが
わかる。定量的には、Ceqを0.20重量%以上にす
れば△Hvを8以下に抑えることができる。△Hvが8
以下では第5図に示した繰り返し曲げ試験より円周溶接
トウ部からの割れはほとんど皆無である。
That is, as shown in FIG. 1, the total amount of Nb, V, and Ti and the value of Ceq (carbon equivalent) are regulated. FIG. 1 shows the degree of softening (ΔH) when the amount of Nb + V + Ti is 0.040% by weight or less and more than 0.040% by weight.
v) and Ceq, and qualitatively, C
It can be seen that ΔHv can be reduced by increasing eq. Quantitatively, ΔHv can be suppressed to 8 or less by setting Ceq to 0.20% by weight or more. △ Hv is 8
From the repeated bending test shown in FIG. 5, below, there is almost no crack from the circumferential welded toe part.

Nb、V及びTiの合計量の制限が軟化抑制に効果があ
るのは、これらは、単体あるいはそれらの複合により、
母材の強度を上げる、すなわちCRの効果を上げる元素
であり、これらの元素を限定することにより、CRの効
果を減少することができるためと考えられる。さらに、
Ceqの上昇が軟化抑制に効果があるのは、基本的にC
Rの効果を減らすためと考えられ、円周溶接時の熱によ
る軟化の程度が少なくなり均一変形が行なわれ、曲げ延
性の改善には寄与すると考えられる。
The limitation of the total amount of Nb, V, and Ti is effective in suppressing softening.
It is considered that this is an element that enhances the strength of the base material, that is, enhances the CR effect, and the CR effect can be reduced by limiting these elements. further,
Basically, the increase of Ceq is effective in suppressing softening
This is considered to reduce the effect of R, and it is considered that the degree of softening due to heat during circumferential welding is reduced and uniform deformation is performed, which contributes to the improvement of bending ductility.

Nb+V+Tiを0.040重量%以下に規制するの
は、溶接熱影響部の軟化を、実際上問題のない程度まで
抑えるために、また降伏比を85%以下にするために、
Nb+V+Tiが0.040重量%以下であることが必
要である。よって、0.040重量%以下の範囲とし
た。また、Ceqの範囲については0.20重量%未満
では、その効果がなく、0.36重量%を越えると、C
eqの上昇の効果が飽和するだけでなく、著しい靭性の
劣化が起る。よって、0.20重量%以上0.36重量
%以下の範囲とした。
The Nb + V + Ti content is restricted to 0.040% by weight or less in order to suppress the softening of the weld heat affected zone to such an extent that there is practically no problem, and to set the yield ratio to 85% or less,
It is necessary that Nb + V + Ti is 0.040% by weight or less. Therefore, the range is 0.040% by weight or less. Regarding the range of Ceq, if it is less than 0.20% by weight, the effect is not exerted, and if it exceeds 0.36% by weight, C
Not only is the effect of increasing eq saturated, but significant deterioration of toughness occurs. Therefore, the range is set to 0.20% by weight or more and 0.36% by weight or less.

その他、本発明の鋼における各成分の限定理由について
説明する。
In addition, the reasons for limiting each component in the steel of the present invention will be described.

Cは必要な強度を得るために、0.03重量%以上の含
有が必須であるが、0.20重量%を越えると、溶接割
れ感受性が増大するため0.03〜0.20重量%の範
囲とした。
C is required to be contained in an amount of 0.03% by weight or more in order to obtain the required strength, but if it exceeds 0.20% by weight, the susceptibility to welding cracks increases, so 0.03 to 0.20% by weight is required. The range was set.

Siは脱酸剤としてまた強度を確保する目的で0.05
重量%以上の添加が必要であるが、0.50重量%を越
えると、低温靭性の劣化及び、溶接割れ感受性を高める
ので、0.05〜0.50重量%の範囲とした。
Si is 0.05 as a deoxidizer and for the purpose of securing strength.
It is necessary to add more than 0.5% by weight, but if it exceeds 0.50% by weight, the low temperature toughness deteriorates and the weld cracking susceptibility increases, so the range was made 0.05 to 0.50% by weight.

Mnは強度を確保するために、0.50重量%以上の添
加が必要であるが、1.5重量%を越えると、溶接割れ
感受性が増大しラインパイプ敷設時に必要な曲げ延性の
劣化を招くため、0.50〜1.5重量%の範囲とし
た。
Mn needs to be added in an amount of 0.50% by weight or more in order to secure the strength, but if it exceeds 1.5% by weight, the susceptibility to welding cracks increases and the bending ductility required for laying a line pipe deteriorates. Therefore, the range is 0.50 to 1.5% by weight.

Alは強力な脱酸元素であるが、0.005重量%未満
ではその効果がなく、一方0.060重量%を越える
と、効果はほぼ飽和に達するだけでなく非金属介在物の
増加をもたらす。よって、0.005〜0.060重量
%の範囲とした。
Al is a strong deoxidizing element, but if it is less than 0.005% by weight, it has no effect. On the other hand, if it exceeds 0.060% by weight, the effect not only reaches almost saturation but also increases nonmetallic inclusions. . Therefore, the range is 0.005 to 0.060% by weight.

Niは強度及び耐HIC性を向上させ、さらに母材及び
溶接熱影響部の靭性を著しく改善するため有効である
が、0.50重量%を越えるとスケールきずの発生が著
しくなり、鋼板の表面性状を害するので、0.50重量
%以下の範囲とした。
Ni is effective because it improves strength and HIC resistance, and also significantly improves the toughness of the base metal and the weld heat affected zone. However, if it exceeds 0.50% by weight, scale flaws occur remarkably and the surface of the steel sheet Since it impairs the properties, the amount was made 0.50% by weight or less.

CuはpHが高い環境下で鋼表面に安定な皮膜を生成し
て、耐蝕性を向上させると共に、耐HIC性向上にも効
果を示す。しかしながら、Cu添加量が0.50重量%
を越えれば熱間加工性を損なうので0.50重量%以下
の範囲とした。
Cu forms a stable film on the steel surface in an environment with a high pH, improves corrosion resistance, and is also effective in improving HIC resistance. However, the amount of Cu added is 0.50% by weight
If it exceeds the range, the hot workability is impaired, so the range was made 0.50% by weight or less.

Caは硫化物系介在物の形状を球状化して、硫化物系介
在物がHICの起点となることを抑制し、これにより耐
HIC性を確保するに有効な元素であるが、0.005
重量%を越えるCaの添加は大型介在物を増加させて耐
HIC性及び耐水素ふくれ性を低下させるおそれがある
から、0.005重量%以下の範囲とした。
Ca is an element effective in making the shape of the sulfide-based inclusion spherical and suppressing the sulfide-based inclusion from becoming the starting point of HIC, thereby ensuring the HIC resistance.
Addition of Ca in excess of wt% may increase large inclusions and reduce HIC resistance and hydrogen blistering resistance, so the content was made 0.005 wt% or less.

Crは鋼の耐蝕性を向上させて鋼中への水素侵入を低下
させると共に、Ni添加に伴う耐SSC性の劣化を防ぐ
効果がある。しかし、0.30重量%を越えれば特に溶
接部の靭性が劣化するため、0.30重量%以下の範囲
とした。
Cr has the effects of improving the corrosion resistance of the steel, reducing the penetration of hydrogen into the steel, and preventing the deterioration of the SSC resistance due to the addition of Ni. However, when the content exceeds 0.30% by weight, the toughness of the welded portion is particularly deteriorated, so the range is set to 0.30% by weight or less.

Mo,B: Mo,Bはともに強度を高めるために添加する。しかし
Moは0.30重量%を越えて添加しても効果が飽和し
経済的でなく、またBは0.002重量%を越えると靭
性が劣化するのでMoは0.30%重量以下、Bは0.
002重量%以下にそれぞれ限定する。
Mo, B: Both Mo and B are added to increase the strength. However, if Mo is added in an amount exceeding 0.30% by weight, the effect is saturated and it is not economical, and if B exceeds 0.002% by weight, the toughness deteriorates. Is 0.
It is limited to 002% by weight or less.

Pcmは、溶接割れ感受性の指標であり、該成分系では
0.25を越えると著しく溶接割れ感受性が高まり、円
周溶接部の曲げ延性が劣化する。
Pcm is an index of susceptibility to welding cracks, and in the case of this component system, when it exceeds 0.25, susceptibility to welding cracks remarkably increases and bending ductility of the circumferential welded portion deteriorates.

よって、0.25以下の範囲とした。Therefore, the range is set to 0.25 or less.

降伏比(降伏点/引張強さ)が85%以下の規定は以下
の理由による。一般に、第7図に示す応力−歪曲線中の
曲線Aで示す降伏比が高い材料は、応力がσを越える
と歪がεを突破し、小さい応力で歪が著しく増加する
ことになる。特に円周溶接熱影響部に軟化部が生じ易い
材料(局部的に弱い部分をもつ材料)では、わずかな応
力の増加であっても歪が軟化部に集中し、トウ部に割れ
が発生し易く、最終的には第8図に示すように局部座屈
13を起し易い傾向にある。しかし、第7図の曲線Bで
示す降伏比が低い材料では、第9図に示すパイプの中央
部に最大の曲げ応力がかかったとき、中央部が加工硬化
し、中央部から端の方向へ変形或が拡がるだけで均一変
形14を起し、トウ部に割れは発生しにくく、さらに局
部座屈には至らない。このような数多くの実験事実よ
り、少なくとも降伏比が85%以下であることが必要で
ある。
The reason why the yield ratio (yield point / tensile strength) is 85% or less is as follows. Generally, in a material having a high yield ratio shown by a curve A in the stress-strain curve shown in FIG. 7, the strain exceeds ε 1 when the stress exceeds σ 1 , and the strain significantly increases with a small stress. . Especially in the case of a material where a softened portion is likely to occur in the circumferential weld heat affected zone (a material with a locally weak portion), the strain concentrates in the softened portion even with a slight increase in stress and cracks occur in the toe portion. It is easy to cause local buckling 13 as shown in FIG. 8 in the end. However, in the case of a material having a low yield ratio shown by the curve B in FIG. 7, when the maximum bending stress is applied to the central part of the pipe shown in FIG. 9, the central part is work hardened, and the direction from the central part to the end is increased. Even if it deforms or spreads, uniform deformation 14 occurs, cracks are less likely to occur in the toe portion, and further local buckling does not occur. From such a lot of experimental facts, it is necessary that the yield ratio is at least 85% or less.

この考え方でわかるように、母材と継手の強度の均一性
は非常に大事であり、円周溶接の熱で局部的に弱い部分
ができるということは絶対に避けなければならない。
As can be seen from this way of thinking, the uniformity of the strength of the base material and the joint is very important, and it is absolutely necessary to avoid the formation of a locally weak portion due to the heat of circumferential welding.

電縫鋼管の製造工程の概略を第10図によって説明す
る。
An outline of the manufacturing process of the electric resistance welded steel pipe will be described with reference to FIG.

一般に電縫鋼管は、コイル状に巻かれた帯板をアンコイ
ラによって巻戻し、レベラで平坦化した後、帯板両サイ
ドをトリミング装置によって、所定の帯幅に加工すると
共に帯板継目エッジ部端面の仕上加工をするいわゆる前
処理を行う。
Generally, in electric resistance welded steel pipe, a coiled strip is unwound by an uncoiler and flattened by a leveler, and then both sides of the strip are processed into a predetermined strip width by a trimming device and the end face of the strip seam edge part. A so-called pretreatment for finishing processing is performed.

さらにブレークダウンロールフォーミング方式では、第
10図に示す如く、所要の幅にトリミングされた鋼帯2
0の両エッジ部21を、先ずエッジフォーミングロール
31によって所要の曲率に曲げ成形し、次いで数段のブ
レークダウンロール32、及びサイドロール33によっ
て、ほぼ断面円形の素管22に成形し、成形された素管
22の継目エッジ部23の角度コントロール、仕上げ成
形、センタリングを数段のフインパスロール34によっ
て行い、数段のフインパスロール34の出側において、
図示してないコンタクトチップにより素管22の継目エ
ッジ部23を加熱し、加熱された素管22の継目エッジ
部23をスクイズロール35により圧着接合するもので
ある。
Further, in the breakdown roll forming method, as shown in FIG. 10, the steel strip 2 trimmed to a required width is used.
Both edge portions 21 of No. 0 are first bent and formed by the edge forming roll 31 to a required curvature, and then formed by the breakdown roll 32 and the side rolls 33 of several stages into the bare pipe 22 having a substantially circular cross section. The angle control, finish forming, and centering of the seam edge portion 23 of the raw pipe 22 are performed by the fin pass rolls 34 of several stages, and at the exit side of the fin pass rolls 34 of several stages,
The seam edge portion 23 of the raw pipe 22 is heated by a contact tip (not shown), and the heated seam edge portion 23 of the raw pipe 22 is pressure-bonded by a squeeze roll 35.

この圧着接合により生じた溶鋼ビートをスクイズロール
35の後流側に設置したビード切削装置により切削除去
する一連の工程によって製造される。
It is manufactured by a series of steps of cutting and removing the molten steel beat produced by this pressure bonding by a bead cutting device installed on the downstream side of the squeeze roll 35.

〔実施例〕〔Example〕

次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.

第1表に示す組成のパイプ(外径273.1mm肉厚1
2.7mm)を素材に、被覆アーク溶接にてセルロース
系の溶接棒を用いて6層6パスで円周溶接を行い、AP
I1104に従って円周溶接部を含んで12.7mm×
幅25.4mm×長さ230mmの試験片(n=10
0)を採取し、第5図に示すように、歪量が5%の繰返
し曲げ試験を行い合計10回曲げ後、溶接部近傍のわれ
発生の有無を調査した。結果を第2表に示した。
Pipes with the composition shown in Table 1 (outer diameter 273.1 mm, wall thickness 1
(2.7 mm) as a raw material, and covered by arc welding using a cellulosic welding rod in 6 layers and 6 passes to obtain AP.
12.7 mm including circumferential welds according to I1104
Width 25.4 mm x length 230 mm test piece (n = 10
0) was sampled and, as shown in FIG. 5, a repeated bending test with a strain amount of 5% was performed, and after bending a total of 10 times, the occurrence of cracks near the weld was investigated. The results are shown in Table 2.

第1表において、本発明に基いた成分系No.8〜No.3
3は、ほとんど割れの発生が見られなかった。これに対
し、比較例No.1は、母材のC量及び溶接割れ感受性式
(Pcm)の上限をはずれる場合であり、割れ発生率は
高い。比較例No.2は溶接割れ感受性式(Pcm)の値
は0.099と小さいものの、炭素当量(Ceq)の値
が下限をはずれ、溶接熱影響部の軟化部発生により34
%の割れ発生率となっている。比較例No.3及びNo.4
はそれぞれ、Ceq及びPcmが上限値を越えているた
め、高い発生率になっている。比較例No.5は、Pc
m、Ceq及び降伏比(YR)が規定値を満足している
ものの、Nb+V+Tiの含有量が規定値を越えている
ため割れの発生率が高い。さらに比較例No.6及びNo.
7では、YRが上限をはずれるために極めて高い割れ発
生率である。
In Table 1, the component systems No. 8 to No. 3 according to the present invention are shown.
In No. 3, almost no cracks were observed. On the other hand, Comparative Example No. 1 is a case where the C content of the base metal and the upper limit of the weld crack susceptibility formula (Pcm) deviate from each other, and the crack occurrence rate is high. In Comparative Example No. 2, although the value of the weld crack susceptibility formula (Pcm) is as small as 0.099, the value of carbon equivalent (Ceq) deviates from the lower limit, and the softening part of the weld heat affected zone causes 34
The crack occurrence rate is%. Comparative Examples No. 3 and No. 4
In each case, since Ceq and Pcm exceed the upper limit values, the occurrence rate is high. Comparative Example No. 5 is Pc
Although m, Ceq and the yield ratio (YR) satisfy the specified values, the crack occurrence rate is high because the content of Nb + V + Ti exceeds the specified values. Further, Comparative Examples No. 6 and No.
In No. 7, since the YR is out of the upper limit, the crack occurrence rate is extremely high.

すなわち、本発明の電縫鋼管を用いることにより、溶接
部の曲げ延性が改善され、リールバージ敷設用電縫鋼管
として極めて有効であることが実証された。
That is, by using the electric resistance welded steel pipe of the present invention, the bending ductility of the welded portion was improved, and it was proved to be extremely effective as an electric resistance welded steel pipe for reel barge laying.

なお、電縫鋼管用鋼板の製造については、鋼片を118
0〜1260℃の温度に加熱し、その後の圧延にあたっ
て960℃以上で累積圧下率を50%以上とし、仕上が
り温度を800℃以下にした。
For the production of the steel plate for ERW pipe,
It was heated to a temperature of 0 to 1260 ° C., and in the subsequent rolling, the cumulative rolling reduction was 50% or more at 960 ° C. or more, and the finishing temperature was 800 ° C. or less.

電縫鋼管は、ブレークダウンロールフォーミング方式に
よって製造した。製造装置は、ブレークダウンロール4
段、サイドロール3段、フィンパスロール3段、エッジ
フォーミングロール及びスクイズロールは共に1段であ
る。この装置を用いて鋼板を逐次円筒形状に成形し、外
径273.1mmに仕上げた後、高周波溶接を行い、さ
らにポストアニーリングを施して所要の電縫鋼管を得
た。
ERW steel pipe was manufactured by a breakdown roll forming method. The production equipment is a breakdown roll 4
The number of steps, the number of side rolls, the number of fin pass rolls, the number of edge forming rolls, and the number of squeeze rolls are all one. Using this apparatus, steel plates were sequentially formed into a cylindrical shape, finished to have an outer diameter of 273.1 mm, subjected to high frequency welding, and further subjected to post annealing to obtain a required electric resistance welded steel pipe.

〔発明の効果〕 以上説明したように、本発明の電縫鋼管は、すぐれた円
周溶接部の靭性を有し、リールバージ敷設用電縫鋼管と
して利用できるので、工業的に極めて利用価値の高いも
のである。
[Effects of the Invention] As described above, the electric resistance welded steel pipe of the present invention has excellent toughness of the circumferential welded portion and can be used as a reel barge laying electric resistance welded steel pipe, and thus has an extremely high industrial value. It is expensive.

【図面の簡単な説明】[Brief description of drawings]

第1図は軟化の度合い(△Hv)とCeqの関係を示す
グラフ、第2図は一般的な海底ラインパイプの施工方法
の説明図、第3図はリールバージ法の説明図、第4図は
円周溶接トウ部に見られる典型的な割れを示す溶接部断
面図、第5図は繰返し曲げ試験方法の説明図、第6図は
CR材での硬さ分布を示す模式図、第7図は応力−歪曲
線、第8図は局部的に弱い部分をもち、かつ降伏比が高
いパイプの変形状態を示す斜視図、第9図は降伏比が低
いパイプの変形状態を示す斜視図、第10図は電縫鋼管
の製造工程の平面図である。 1……バージ、2……電縫鋼管 3……リール、4……海底 5……陸上、6……割れ 7……溶接部、8……熱影響部 9……母材、10……試験片 11……曲げ試験機、20……鋼帯 21……エッジ部、22……素管 23……継目エッジ部 31……エッジフォーミングロール 32……ブレークダウンロール 33……サイドロール 34……フィンパスロール 35……スクイズロール
FIG. 1 is a graph showing the relationship between the degree of softening (ΔHv) and Ceq, FIG. 2 is an explanatory diagram of a general seabed line pipe construction method, FIG. 3 is an explanatory diagram of the reel barge method, and FIG. Is a cross-sectional view of a weld showing typical cracks found in a circumferential weld toe, FIG. 5 is an explanatory view of a repeated bending test method, FIG. 6 is a schematic view showing hardness distribution in a CR material, and FIG. The figure is a stress-strain curve, FIG. 8 is a perspective view showing a deformed state of a pipe having a locally weak portion, and a high yield ratio, and FIG. 9 is a perspective view showing a deformed state of a pipe having a low yield ratio. FIG. 10 is a plan view of a process for manufacturing an electric resistance welded steel pipe. 1 ... barge, 2 ... electric resistance welded steel pipe 3 ... reel, 4 ... sea bottom 5 ... land, 6 ... cracking 7 ... welded portion, 8 ... heat affected zone 9 ... base metal, 10 ... Test piece 11 …… Bending tester, 20 …… Steel strip 21 …… Edge part, 22 …… Element tube 23 …… Seam edge part 31 …… Edge forming roll 32 …… Breakdown roll 33 …… Side roll 34… … Fin pass roll 35 …… Squeeze roll

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】C:0.03〜0.20重量%、 Mn:0.50〜1.5重量%、 Si:0.05〜0.50重量%、 Al:0.005〜0.060重量% の範囲内で含有し、Nb、V、Tiが、 Nb+V+Ti≦0.040重量% を満足し、残部は実質的に鉄及び不可避的不純物よりな
り、かつ下記で与えられる炭素当量Ceqが0.20以
上0.36以下、及び溶接割れ感受性Pcmが0.25
以下であることを特徴とする降伏比が85%以下で、溶
接軟化部の少ない、リールバージ敷設性に優れた高靭性
電縫鋼管。 Ceq=C+Mn/6+Cu/15 +Ni/15+Cr/5 +Mo/5+V/5 Pcm=C+Si/30+Mn/20 +Cu/20+Ni/60 +Cr/20+Mo/15 +V/10+5B
1. C: 0.03 to 0.20% by weight, Mn: 0.50 to 1.5% by weight, Si: 0.05 to 0.50% by weight, Al: 0.005 to 0.060. The content of Nb, V, and Ti satisfies Nb + V + Ti ≦ 0.040% by weight, the balance is substantially iron and unavoidable impurities, and the carbon equivalent Ceq given below is 0. .20 or more and 0.36 or less, and weld crack susceptibility Pcm is 0.25
A high toughness electric resistance welded steel pipe having a yield ratio of 85% or less, a small weld softening portion, and excellent reel barge layability, which is characterized by being as follows. Ceq = C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V / 5 Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
【請求項2】前記の成分に加えて、 Ni:0.50重量%以下、 Cu:0.50重量%以下、 Ca:0.005重量%以下、 Cr:0.3重量%以下、 のうちから選ばれた1種もしくは2種以上を含有する請
求項1記載のリールバージ敷設性に優れた高靭性電縫鋼
管。
2. In addition to the above components, Ni: 0.50 wt% or less, Cu: 0.50 wt% or less, Ca: 0.005 wt% or less, Cr: 0.3 wt% or less, A high toughness electric resistance welded steel pipe excellent in reel barge layability according to claim 1, containing one or more selected from the group consisting of:
【請求項3】前記の成分に加えて、 Mo:0.30重量%以下、 B:0.002重量%以下、 のうち1種又は2種を含む請求項1または2記載のリー
ルバージ敷設性に優れた高靭性電縫鋼管。
3. The reel barge layability according to claim 1 or 2, further comprising, in addition to the above components, one or two of Mo: 0.30% by weight or less and B: 0.002% by weight or less. Excellent toughness electric resistance welded steel pipe.
JP1307610A 1989-07-06 1989-11-29 High toughness ERW steel pipe with excellent reel barge layability Expired - Fee Related JPH0653912B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1307610A JPH0653912B2 (en) 1989-09-08 1989-11-29 High toughness ERW steel pipe with excellent reel barge layability
US07/546,243 US5134267A (en) 1989-07-06 1990-06-29 Method of conducting circumferential welding of electric welded steel line pipe to be laid by reel barge
DE69013591T DE69013591T2 (en) 1989-07-06 1990-07-04 Process for circumferential seam welding of electrically welded pipes for a pipeline to be laid by unwinding a reel on a work ship.
EP90307318A EP0407175B1 (en) 1989-07-06 1990-07-04 Method of conducting circumferential welding of electric welded steel line pipe to be laid by reel barge
NO903014A NO300719B1 (en) 1989-07-06 1990-07-05 Procedure for carrying out an external roundabout

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23173389 1989-09-08
JP1-231733 1989-09-08
JP1307610A JPH0653912B2 (en) 1989-09-08 1989-11-29 High toughness ERW steel pipe with excellent reel barge layability

Publications (2)

Publication Number Publication Date
JPH03211255A JPH03211255A (en) 1991-09-17
JPH0653912B2 true JPH0653912B2 (en) 1994-07-20

Family

ID=26530056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1307610A Expired - Fee Related JPH0653912B2 (en) 1989-07-06 1989-11-29 High toughness ERW steel pipe with excellent reel barge layability

Country Status (1)

Country Link
JP (1) JPH0653912B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353760B2 (en) * 2010-02-26 2013-11-27 Jfeスチール株式会社 ERW steel pipe excellent in deformation characteristics and manufacturing method thereof
NO2692875T3 (en) 2011-03-30 2018-05-12
JP5293903B1 (en) 2011-08-23 2013-09-18 新日鐵住金株式会社 Thick ERW Steel Pipe and Method for Manufacturing the Same
CN104011245B (en) 2011-12-27 2017-03-01 杰富意钢铁株式会社 High-tension hot rolled steel plate and its manufacture method
BR112014018236B1 (en) 2012-01-27 2019-04-02 Nippon Steel & Sumitomo Metal Corporation PIPES AND PRODUCTION METHODS OF THE SAME

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227715A (en) * 1987-03-17 1988-09-22 Kawasaki Steel Corp Production of hot-rolled steel sheet for line pipe having excellent low-temperature toughness, low yield ratio, and high tensile strength

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227715A (en) * 1987-03-17 1988-09-22 Kawasaki Steel Corp Production of hot-rolled steel sheet for line pipe having excellent low-temperature toughness, low yield ratio, and high tensile strength

Also Published As

Publication number Publication date
JPH03211255A (en) 1991-09-17

Similar Documents

Publication Publication Date Title
KR101257547B1 (en) Steel pipes excellent in deformation characteristics and process for manufacturing the same
RU2404280C2 (en) Hot-bent pipe and its manufacturing method
JP5316721B2 (en) ERW steel pipe in which yield ratio is prevented from increasing after coating is heated, and method for manufacturing the same
JP4442541B2 (en) Manufacturing method of low YR ERW steel pipe for line pipe
EP3276024B1 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes.
WO2019176979A1 (en) Method for manufacturing square steel tube, and square steel tube
JP2016006209A (en) Hot rolled steel sheet having high strength and excellent in low temperature toughness and production method therefor
JP4466320B2 (en) Manufacturing method of low yield ratio ERW steel pipe for line pipe
JP4984447B2 (en) Manufacturing method of low YR ERW steel pipe for line pipe
JPH0653912B2 (en) High toughness ERW steel pipe with excellent reel barge layability
JP2006289482A (en) Manufacturing method of electric resistance welded steel pipe with low yield ratio for line pipe
JP2004143500A (en) High-strength steel pipe excellent in buckling resistance and its production method
JP5618017B2 (en) Pipeline and manufacturing method thereof
DE69013591T2 (en) Process for circumferential seam welding of electrically welded pipes for a pipeline to be laid by unwinding a reel on a work ship.
JP6658385B2 (en) Manufacturing method of steel pipe
EP3858506B1 (en) Long steel pipe for reel method and manufacturing method for same
JP5353760B2 (en) ERW steel pipe excellent in deformation characteristics and manufacturing method thereof
JP2892450B2 (en) Circumferential welding method for ERW line pipe for reel barge installation
WO2021065493A1 (en) Rectangular steel pipe and method for manufacturing same, and building structure
JP3772696B2 (en) Steel sheet for high-strength steel pipe and manufacturing method thereof
JP2001269713A (en) Stainless steel welded tube and its manufacturing method
JPWO2020196214A1 (en) Steel materials for line pipes and their manufacturing methods and line pipes and their manufacturing methods
JP3180705B2 (en) Continuous casting method for high strength steel with excellent central properties
JP2000226643A (en) Low carbon martensitic stainless steel sheet, its production and welded steel pipe
JPH07113122A (en) Production of electric resistance welded tube to be hot-dip galvanized

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080720

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090720

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees