JPH065310A - Charge control method for secondary battery - Google Patents

Charge control method for secondary battery

Info

Publication number
JPH065310A
JPH065310A JP4181899A JP18189992A JPH065310A JP H065310 A JPH065310 A JP H065310A JP 4181899 A JP4181899 A JP 4181899A JP 18189992 A JP18189992 A JP 18189992A JP H065310 A JPH065310 A JP H065310A
Authority
JP
Japan
Prior art keywords
battery
charging
amount
charge
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4181899A
Other languages
Japanese (ja)
Other versions
JP3184308B2 (en
Inventor
Noboru Sato
登 佐藤
Kazuhiro Hara
一広 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP18189992A priority Critical patent/JP3184308B2/en
Publication of JPH065310A publication Critical patent/JPH065310A/en
Application granted granted Critical
Publication of JP3184308B2 publication Critical patent/JP3184308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To charge a secondary battery at a high energy efficiency by setting a desired charging value at which an energy efficiency defined by a specified expression is a specified value, and charging the desired charging value subtracted by a residual capacity. CONSTITUTION:For a secondary battery, charging quantity at which an energy efficiency defined by an expression (EE:EE(%)=[(discharged coulomb quantity Xaverage voltage at the time of discharge)/(charged coulomb quantity Xaverage voltage at the time of charge)]X 100 is 80% or more is set as a desired charging value. After setting the desired charging value CM, a residual capacity CX of a battery is measured, a difference (CM-CX) between the desired charging quantity CM and the residual capacity CX is then determined, and this difference is charged. C0 indicates a point at which the capacity of the subject battery is 0, and C100 indicates the capacity which the battery primarily has (capacity 100%).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二次電池の充電制御方法
に関し、さらに詳しくは、エネルギー効率(電池の放電
エネルギー/充電エネルギー)を考慮し、これが小さく
ならないように配慮した充電制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging control method for a secondary battery, and more particularly to a charging control method that takes into consideration energy efficiency (battery discharge energy / charging energy) so as not to decrease it.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ニッカ
ド電池(Ni−Cd電池)は代表的な二次電池であり、家電
を始めとする種々の分野に広く利用されている。また、
最近では、ニッカド電池よりも高エネルギー密度を達成
することができる二次電池としてニッケル−水素電池が
開発され、一部実用化されている。
BACKGROUND OF THE INVENTION Ni-Cd batteries (Ni-Cd batteries) are typical secondary batteries and are widely used in various fields such as home appliances. Also,
Recently, a nickel-hydrogen battery has been developed and partially put into practical use as a secondary battery capable of achieving a higher energy density than that of a nickel-cadmium battery.

【0003】従来、このような二次電池を充電する場
合、電池容量の150 %以上にもおよぶ電気量を充電する
(50%以上の過充電を行う)のが一般的であり、場合に
よっては、70〜100 %程度の過充電(電池容量の170 〜
200 %程度の充電)を行うこともあった。すなわち、従
来の充電操作においては、上記した程度の過充電を行う
ことによって、電池容量いっぱいに充電することが目指
されていた。
Conventionally, in the case of charging such a secondary battery, it is common to charge an amount of electricity of 150% or more of the battery capacity (overcharging of 50% or more), and in some cases. , 70 to 100% overcharge (battery capacity 170 to
In some cases, it was charged about 200%). That is, in the conventional charging operation, it has been aimed to charge the battery to the full capacity by performing the above-described overcharge.

【0004】ところが、充電量が電池容量の120 %程度
またはそれを超えるような比較的大きな度合いの過充電
を行うと、上述の通りほぼ電池容量いっぱいに充電を行
うことはできるが、エネルギー効率は小さくなる。ここ
で、エネルギー効率(EE)とは、 EE=〔(放電したクーロン量×放電時の平均電圧)/
(充電したクーロン量×充電時の平均電圧)〕×100
(%) により定義されるものであり、充電において電池に与え
たエネルギー量(入力電力量)に対する電池から取り出
されるエネルギー量(使用電力量)の割合を意味する。
したがって、エネルギー効率が小さいということは、使
用電力量が入力電力量に比して小さいことであり、経済
的ではない。
However, if the battery is overcharged to a relatively large extent such that the charged amount is about 120% or more of the battery capacity, the battery can be charged almost to the full battery capacity as described above, but the energy efficiency is low. Get smaller. Here, the energy efficiency (EE) is EE = [(amount of Coulomb discharged × average voltage at discharge) /
(Amount of charged coulomb x average voltage during charging)] x 100
It is defined by (%) and means the ratio of the amount of energy (used power amount) extracted from the battery to the amount of energy (input power amount) given to the battery during charging.
Therefore, low energy efficiency means that the amount of power used is smaller than the amount of input power, which is not economical.

【0005】一方、実質的に過充電を行わず、電池の所
定容量以下(電池容量の100 %以下)の充電量とする
と、上記したエネルギー効率を高くすることはできる
が、電池が本来有する容量よりも少ないエネルギー量し
か電池内に蓄積することができない。これでは、電池容
量をフルに利用しているとは言えず、電池から取り出せ
るエネルギーの絶対量が少なくなる。
On the other hand, if the charge amount is not more than the predetermined capacity of the battery (100% or less of the battery capacity) without substantially overcharging, the above-mentioned energy efficiency can be increased, but the capacity originally possessed by the battery is high. Less energy can be stored in the battery. This does not mean that the battery capacity is fully utilized, and the absolute amount of energy that can be extracted from the battery is reduced.

【0006】なお、実際に行われている二次電池の充電
制御方法の一つに、いわゆる「−ΔV検知方式」といわ
れる充電方法がある。この方法は、電池の端子間の電位
差をあるインターバル(時間)をおいて測定しながら充
電を行い、1つのインターバルの前後の端子間の電位差
の変化ΔVがプラス(+)である場合は充電を続け、こ
の電位差の変化ΔVがゼロ又はマイナス(−)に転じた
ら、充電を終了する方法である。
Note that one of the charging control methods for the secondary battery that is actually used is a charging method called the so-called "-ΔV detection method". In this method, charging is performed while measuring the potential difference between the terminals of the battery at certain intervals (time), and charging is performed when the change ΔV in the potential difference between the terminals before and after one interval is positive (+). Then, when the change ΔV of the potential difference turns to zero or minus (−), the charging is terminated.

【0007】しかしながら、この方法では過大な過充電
をしやすく、エネルギー効率が小さくなる。
However, this method tends to cause excessive overcharge, resulting in low energy efficiency.

【0008】したがって、本発明の目的は、高いエネル
ギー効率で二次電池を充電する方法を提供することであ
る。
Therefore, it is an object of the present invention to provide a method of charging a secondary battery with high energy efficiency.

【0009】[0009]

【課題を解決するための手段】上記目的を達成すべく二
次電池の充放電操作について鋭意研究の結果、本発明者
らは、上述したエネルギー効率(EE)は充電電流値又
は充電時間に個別的に依存せず、充電電流値と充電時間
の積である充電量に直接依存することを発見した。そし
て、このエネルギー効率は、電池容量より小さな充電量
ではほぼ一定で高い値をとるが、電池容量と同程度又は
それ以上の充電量においては、充電量が大きくなるにつ
れて、一次式で近似できるような減少傾向を示すことを
発見した。
As a result of earnest research on charging / discharging operation of a secondary battery in order to achieve the above-mentioned object, the present inventors have found that the above-mentioned energy efficiency (EE) is independent of charging current value or charging time. It was found that it directly depends on the amount of charge, which is the product of the charging current value and the charging time, without depending on the target. And, this energy efficiency takes a constant and high value at a charge amount smaller than the battery capacity, but at a charge amount equal to or higher than the battery capacity, it can be approximated by a linear expression as the charge amount becomes larger. It has been found that it shows a declining trend.

【0010】そこで、なるべく電池容量をフルに活用で
き、エネルギー効率(EE)の値が特定の値以上となる
ような充電目標値を設定し、この充電目標値から充電直
前の電池の残存容量を差し引いた量を充電すれば、エネ
ルギー効率的に無駄の少ない充電を行うことができるこ
とを発見し、本発明を完成した。
Therefore, a charging target value is set so that the battery capacity can be fully utilized as much as possible and the energy efficiency (EE) value is a specific value or more, and the remaining capacity of the battery immediately before charging is set from the charging target value. The present invention has been completed by discovering that charging with a subtracted amount enables energy-efficient charging with less waste.

【0011】すなわち、二次電池における本発明の充電
制御方法は、(a) 前記電池について以下の式により定義
されるエネルギー効率(EE): EE(%)=〔(放電したクーロン量×放電時の平均電
圧)/(充電したクーロン量×充電時の平均電圧)〕×
100 が80%以上となるような充電量を充電目標値として設
定し、(b) 前記電池の残存容量を測定し、(c) 前記充電
目標値から前記残存容量を差し引いた分を充電すること
を特徴とする。
That is, the charging control method of the present invention for a secondary battery is as follows: (a) Energy efficiency (EE) defined by the following equation for the battery: EE (%) = [(amount of Coulomb discharged x discharge time) Average voltage) / (amount of charged coulomb x average voltage during charging)] x
A charge amount such that 100 is 80% or more is set as a charge target value, (b) the remaining capacity of the battery is measured, and (c) the remaining charge is subtracted from the target charge value to charge. Is characterized by.

【0012】以下、本発明を詳細に説明する。本発明で
は、対象となる二次電池について、以下の式により定義
されるエネルギー効率(EE): EE(%)=〔(放電したクーロン量×放電時の平均電圧)/(充電したクー ロン量×充電時の平均電圧)〕×100・・・(1) が80%以上となるような充電量を充電目標値として設
定する。
The present invention will be described in detail below. In the present invention, the energy efficiency (EE) defined by the following formula for the target secondary battery: EE (%) = [(discharged coulomb amount x average voltage at discharge) / (charged coulomb amount) × average voltage during charging)] × 100 ... (1) is set to 80% or more as the charging target value.

【0013】なお、エネルギー効率(EE)は、以下に
示すクーロン効率及び電圧効率: クーロン効率(%)=(放電したクーロン量/充電した
クーロン量)×100 電圧効率(%)=(放電時の作動平均電圧/充電時の作
動平均電圧)×100 を用いて、 EE(%)=〔クーロン効率(%)〕×〔電圧効率
(%)〕×(1/100 ) として求めることもできる。
The energy efficiency (EE) is the following coulombic efficiency and voltage efficiency: Coulombic efficiency (%) = (Discharged coulomb amount / charged coulomb amount) × 100 Voltage efficiency (%) = (Discharging time) It is also possible to obtain EE (%) = [Coulomb efficiency (%)] × [voltage efficiency (%)] × (1/100) by using (operating average voltage / operating average voltage during charging) × 100.

【0014】まず、充電目標値について、ニッケル−水
素電池の場合を例にとり詳細に説明する。
First, the charge target value will be described in detail by taking a nickel-hydrogen battery as an example.

【0015】本発明者等の研究によれば、上記(1) 式で
表されるエネルギー効率(EE)は、実質的に充電電流
値又は充電時間に依存せず、電池の充電量に依存する。
充電量に対するエネルギー効率(EE)の変化は、ニッ
ケル−水素電池については図1の曲線Aに示すようにな
る。
According to the study by the present inventors, the energy efficiency (EE) represented by the above equation (1) does not substantially depend on the charging current value or the charging time, but depends on the charging amount of the battery. .
The change in energy efficiency (EE) with respect to the charge amount becomes as shown by the curve A in FIG. 1 for the nickel-hydrogen battery.

【0016】図1において、横軸の充電量(%)とは、
電池が本来有する容量に対する充電操作で電池に入力さ
れた電気量(充電電流値と充電時間との積で表される)
の割合を百分率で示したものであり、横軸の充電量
(%)が100 %である点においては、電池が本来有する
容量に相当する電気量を充電操作において電池に入力し
たことを意味する。
In FIG. 1, the charge amount (%) on the horizontal axis is
The amount of electricity input to the battery during the charging operation for the original capacity of the battery (expressed as the product of the charging current value and the charging time)
The percentage of charge is shown as a percentage, and the fact that the amount of charge (%) on the horizontal axis is 100% means that the amount of electricity corresponding to the original capacity of the battery was input to the battery during the charging operation. .

【0017】図1のエネルギー効率(EE)の変化を示
すグラフ(曲線A)から以下のことが言える。 (a) 充電量が電池の容量未満である場合(横軸にとった
充電量が100 %未満の場合)、エネルギー効率(EE)
はほぼ一定の高い値をとる。すなわち、この場合には、
充電した電気量のほとんど(90%程度)を放電電気量と
して得ることができる。 (b) 充電量が電池容量程度又はそれを超す値であると
(充電量が100 %以上となると)、充電量が大きくなる
につれてエネルギー効率はほぼ直線的に低下していく。
すなわち、この場合には、充電操作において電池に与え
た電気量に対する電池から取り出される電気量の割合が
低下する。この傾向は充電量を大きくすればするほど大
きくなる。
The following can be said from the graph (curve A) showing the change in energy efficiency (EE) in FIG. (a) Energy efficiency (EE) when the charge amount is less than the battery capacity (when the charge amount on the horizontal axis is less than 100%)
Takes an almost constant high value. That is, in this case,
Most (about 90%) of the charged electricity can be obtained as the discharged electricity. (b) When the charge amount is about the battery capacity or a value exceeding it (when the charge amount is 100% or more), the energy efficiency decreases almost linearly as the charge amount increases.
That is, in this case, the ratio of the amount of electricity taken out from the battery to the amount of electricity given to the battery in the charging operation decreases. This tendency increases as the charge amount increases.

【0018】したがって、本発明においては、上記した
式(1) により定義されるエネルギー効率(EE)が80
%以上となるような充電量を充電目標値とし、この充電
目標値を超さないように充電を行う。このような充電目
標値を導入することにより、エネルギー効率のよい充電
が可能となる。
Therefore, in the present invention, the energy efficiency (EE) defined by the above equation (1) is 80.
A charging amount that is equal to or higher than% is set as a charging target value, and charging is performed so as not to exceed the charging target value. By introducing such a charging target value, energy-efficient charging can be performed.

【0019】ところで、電池を有効に利用するには、当
然のことながらより多くのエネルギーを電池内に蓄積す
るのが好ましい。したがって、単純にエネルギー効率の
みを考えて充電を行うだけでは不十分であり、実際に電
池に蓄えられるエネルギーの絶対量を考慮して充電する
ことが好ましい。
By the way, in order to effectively use the battery, it is naturally preferable to store more energy in the battery. Therefore, it is not sufficient to simply charge the battery by considering only energy efficiency, and it is preferable to charge the battery in consideration of the absolute amount of energy actually stored in the battery.

【0020】充電量を電池容量に比して小さくした場合
(充電量が100 %未満の場合)、エネルギー効率は前述
の通り高い値を示すが、実際に電池に蓄積されるエネル
ギー量(実際に電池に充電される電気量)は少なくな
る。すなわち、電池が本来保有している容量を十分活用
せず、少量のエネルギーしか蓄積しないことになる。
When the charge amount is smaller than the battery capacity (when the charge amount is less than 100%), the energy efficiency shows a high value as described above, but the amount of energy actually stored in the battery (actually, The amount of electricity that is charged in the battery) will decrease. In other words, the capacity originally possessed by the battery is not fully utilized and only a small amount of energy is stored.

【0021】一方、充電量が電池容量以上となる過充電
を行った場合(充電量が100 %以上の場合)、エネルギ
ー効率(EE)は低下するが、実際に電池に蓄積される
エネルギー量(実際に電池に充電される電気量)は電池
が有する容量に近づく。
On the other hand, when the battery is overcharged so that the charged amount is more than the battery capacity (the charged amount is 100% or more), the energy efficiency (EE) is reduced, but the amount of energy actually stored in the battery ( The amount of electricity actually charged in the battery) approaches the capacity of the battery.

【0022】図1中に、エネルギー効率を表すグラフ
(曲線A)に加えて、充電量(充電操作において電池に
入力された電気量)と、実際に電池内に蓄積された電気
量との関係を定性的に表すグラフ(曲線B)を示す。こ
のグラフ(曲線B)は、充電量150 %のときの電池の電
気量を100 %とし、それに対する各充電量における電池
の電気量の割合を表したものである。以下この割合を最
大容量比(単位は%である)と呼ぶ。なお、最大容量比
の算出において、充電量150 %のときの電気量を基準と
したのは、これより大きな充電量としても、実際に電池
に蓄積される電気量に実質的に変化はみられず、充電量
が150 %のときの電池容量を最大容量とみなすことがで
きるからである。この最大容量比のスケールは図1右側
の縦軸に示してある。
In addition to the graph showing the energy efficiency (curve A) in FIG. 1, the relationship between the amount of charge (the amount of electricity input to the battery during the charging operation) and the amount of electricity actually stored in the battery is shown. The graph (curve B) qualitatively showing is shown. This graph (curve B) represents the ratio of the amount of electricity of the battery in each amount of charge to the amount of electricity of the battery of 100% when the amount of charge is 150%. Hereinafter, this ratio is referred to as a maximum capacity ratio (unit is%). In the calculation of the maximum capacity ratio, the amount of electricity when the charge amount was 150% was used as a reference, because even if the charge amount is larger than this, there is substantially no change in the amount of electricity actually stored in the battery. Instead, the battery capacity when the charge is 150% can be regarded as the maximum capacity. The scale of this maximum capacity ratio is shown on the vertical axis on the right side of FIG.

【0023】図1の曲線Bからわかるように、最大容量
比は、充電量が100 %未満では、充電量の増加にしたが
ってほぼ直線的に増加するが、充電量100 %付近から最
大容量比の増加率は鈍ってゆき、充電量120 %以上で
は、実質的に最大容量比の増加はみられない。
As can be seen from the curve B in FIG. 1, when the charge amount is less than 100%, the maximum capacity ratio increases almost linearly as the charge amount increases. The rate of increase slowed down, and virtually no increase in the maximum capacity ratio was observed at a charge level of 120% or more.

【0024】本発明では、この最大容量比を参照して、
上述したエネルギー効率(EE)のみならず、実際に電
池に蓄えられる電気量も考慮して充電目標値を設定する
のが好ましい。具体的には、充電量が電池容量の80%
以上となるような充電目標値を設定するのが好ましい。
このような充電目標値とすると良好なエネルギー効率
で、十分な電気量を電池に蓄積することができる。
In the present invention, referring to this maximum capacity ratio,
It is preferable to set the charging target value in consideration of not only the energy efficiency (EE) described above but also the amount of electricity actually stored in the battery. Specifically, the amount of charge is 80% of the battery capacity.
It is preferable to set the charging target value as described above.
With such a charging target value, a sufficient amount of electricity can be stored in the battery with good energy efficiency.

【0025】以上をまとめると、本発明の好ましい態様
では、図1に示す2つのグラフ(曲線A及びB)がとも
に高い値をとるような充電量を充電目標値として設定す
る。エネルギー効率、及び最大容量比(実際に電池に蓄
えられる電気量の大きさ)のどちらか一方が低くなるよ
うな充電目標値の設定は避けるのが好ましい。図1に示
すようなエネルギー効率及び最大容量比を有するニッケ
ル−水素電池の場合には、充電目標値は充電量105 ±15
%程度とするのが好ましい。
To summarize the above, in the preferred embodiment of the present invention, the charging amount is set as the charging target value such that the two graphs (curves A and B) shown in FIG. 1 both have high values. It is preferable to avoid setting the charging target value such that one of the energy efficiency and the maximum capacity ratio (the amount of electricity actually stored in the battery) becomes low. In the case of a nickel-hydrogen battery having energy efficiency and maximum capacity ratio as shown in Fig. 1, the target charging value is 105 ± 15
% Is preferable.

【0026】以上に説明した条件を満たす充電目標値を
設定したら、以下に示す手順で二次電池の充電を行う。
After setting the charging target value satisfying the conditions described above, the secondary battery is charged in the following procedure.

【0027】まず電池の残存容量を求める。次に、上記
した充電目標値とこの残存容量との差分を計算し、この
差分を充足するだけの充電を行う。なお、残存容量の測
定は、公知の方法により行うことができる。
First, the remaining capacity of the battery is determined. Next, the difference between the above-mentioned charge target value and this remaining capacity is calculated, and charging is performed to satisfy this difference. The remaining capacity can be measured by a known method.

【0028】図2を参照して上述の手順をさらに説明す
ると、充電目標値CM を設定した後、電池の残存容量C
X を測定し、次に充電目標値CM と残存容量CX との差
(CM −CX )分を求め、この差分を充電する。なお、
図2において、C0 は対象となる電池の容量がゼロであ
る点を示しており、また、C100 は電池の本来有する容
量(容量100 %)を示している。
The above procedure will be further described with reference to FIG. 2. After setting the charging target value C M , the remaining capacity C of the battery is calculated.
Measuring the X, then obtains the difference (C M -C X) component of the charging target value C M and the residual capacity C X, charge this difference. In addition,
In FIG. 2, C 0 indicates that the target battery has a capacity of zero, and C 100 indicates the original capacity of the battery (capacity 100%).

【0029】上述したように、エネルギー効率(EE)
は実質的に充電電流値又は充電時間に依存せず、電池の
充電量に依存する。したがって、実際の充電では、時間
一定の条件、又は電流一定の条件のどちらの条件を採用
してもよく、また時間と電流の両方を変化させてもよ
い。ただし、充電電流をX(A)、充電時間をY(h)
として、下記式: (CM −CX )=X(A)・Y(h)・・・(2) を満足するようにX及びYを適宜設定する。
As mentioned above, energy efficiency (EE)
Does not substantially depend on the charging current value or the charging time, but depends on the charge amount of the battery. Therefore, in the actual charging, either the constant time condition or the constant current condition may be adopted, and both the time and the current may be changed. However, the charging current is X (A) and the charging time is Y (h).
Then, X and Y are appropriately set so as to satisfy the following formula: (C M −C X ) = X (A) · Y (h) (2).

【0030】充電操作で電池に与えるべき充電量〔Cv
=X(A)・Y(h)〕は、エネルギー効率を所定の値
(本発明では80%以上)にセットすれば、図1に示す
曲線Aの回帰線から求めることができる。たとえば、充
電量100 %以上の領域においては、エネルギー効率(E
E)を充電量(Cv)の一次関数として近似することが
できるが、その近似式(回帰直線):EE=a・Cv+
b・・・(3)を参照すれば、設定したエネルギー効率の
値に対応する充電量Cvを得ることができる。そして、
この充電量Cvに合うように、充電操作を行えばよい。
The amount of charge [Cv
= X (A) · Y (h)] can be obtained from the regression line of the curve A shown in FIG. 1 by setting the energy efficiency to a predetermined value (80% or more in the present invention). For example, the energy efficiency (E
E) can be approximated as a linear function of the charge amount (Cv), and its approximation formula (regression line): EE = a · Cv +
By referring to b ... (3), the charge amount Cv corresponding to the set energy efficiency value can be obtained. And
The charging operation may be performed so as to match the charge amount Cv.

【0031】本発明を以下の具体的実施例により更に詳
細に説明する。実施例1 正極材としてニッケル塩類を用い、また負極材として水
素吸蔵合金を用い、電解質として水酸化カリウムを用い
てニッケル−水素電池を構成した。
The present invention will be described in more detail with reference to the following specific examples. Example 1 A nickel-hydrogen battery was constructed by using nickel salts as a positive electrode material, a hydrogen storage alloy as a negative electrode material, and potassium hydroxide as an electrolyte.

【0032】このニッケル−水素電池について、充電時
間を8時間と一定とし、充電電流値を3.1 〜5.0 アンペ
アの範囲で変化させ、充電量が91〜148 %となる複数回
の充電操作を行った。そして、各充電操作の後に放電を
行い、それぞれの放電における放電容量、平均放電電圧
を測定した。
With respect to this nickel-hydrogen battery, the charging time was kept constant at 8 hours, the charging current value was changed in the range of 3.1 to 5.0 amperes, and the charging operation was repeated a plurality of times so that the charging amount was 91 to 148%. . Then, discharge was performed after each charging operation, and the discharge capacity and average discharge voltage in each discharge were measured.

【0033】各充電操作におけるパラメータ(充電電
流、充電時間、平均電圧)及び放電におけるパラメータ
から、それぞれクーロン効率、電圧効率、及びエネルギ
ー効率を計算した。結果を表1に示す。
Coulombic efficiency, voltage efficiency, and energy efficiency were calculated from the parameters (charging current, charging time, average voltage) in each charging operation and the parameters in discharging, respectively. The results are shown in Table 1.

【0034】 表1 充電量 充電電流 放電容量 クーロン効率 電圧効率 エネルギー効率(%) (A) (Ah) (%) (%) (%) 91.9 3.1 22.8 91.9 91.1 83.7 100.7 3.4 25.3 93.0 92.0 85.6 103.7 3.5 26.0 92.9 91.1 84.6 109.6 3.7 26.7 90.0 90.5 81.5 112.6 3.8 27.6 90.6 88.6 80.3 118.5 4.0 27.4 85.6 88.9 76.1 148.1 5.0 27.9 69.8 88.3 61.6 Table 1 Charge amount Charge current Discharge capacity Coulomb efficiency Voltage efficiency Energy efficiency (%) (A) (Ah) (%) (%) (%) 91.9 3.1 22.8 91.9 91.1 83.7 100.7 3.4 25.3 93.0 92.0 85.6 103.7 3.5 26.0 92.9 91.1 84.6 109.6 3.7 26.7 90.0 90.5 81.5 112.6 3.8 27.6 90.6 88.6 80.3 118.5 4.0 27.4 85.6 88.9 76.1 148.1 5.0 27.9 69.8 88.3 61.6

【0035】表1からわかるように、実施例1のニッケ
ル−水素電池では、充電量を110 %以下にした場合に、
エネルギー効率が80%以上となる。
As can be seen from Table 1, in the nickel-hydrogen battery of Example 1, when the charged amount was 110% or less,
Energy efficiency is 80% or more.

【0036】また、表1に示すエネルギー効率の値を充
電量に対してプロットし、回帰直線Cを求めた。結果を
図3に示す。なお、回帰直線Cは充電量をCvとして以
下の式で表される。 EE=−0.528 Cv+137.22
Further, the energy efficiency values shown in Table 1 were plotted against the charge amount, and the regression line C was obtained. The results are shown in Fig. 3. The regression line C is represented by the following formula with the charge amount Cv. EE = -0.528 Cv + 137.22

【0037】図3に示す回帰直線Cを用いれば、どれぐ
らいの充電量でどれぐらいのエネルギー効率を得ること
ができるかという情報を得ることができる。この回帰直
線Cによれば、エネルギー効率を80%にするには、充
電量を108 %にすればよいのがわかる。
By using the regression line C shown in FIG. 3, it is possible to obtain information as to how much energy efficiency can be obtained with what charge amount. According to this regression line C, it can be seen that the charge amount should be 108% in order to achieve the energy efficiency of 80%.

【0038】実施例2 実施例1と同一のニッケル−水素電池を用い、こんどは
充電電流を2.5 アンペアと一定として充電時間を8〜1
6時間で変化させ、充電量を74〜148 %とした充電操作
を行った。そして、各充電操作におけるパラメータ及び
放電におけるパラメータから、実施例1と同様に、それ
ぞれクーロン効率、電圧効率、及びエネルギー効率を計
算した。結果を表2に示す。
Example 2 The same nickel-hydrogen battery as in Example 1 was used, and the charging time was 8 to 1 with the charging current being constant at 2.5 amps.
The charging operation was performed by changing the charging amount for 6 hours and changing the charging amount to 74 to 148%. Then, the Coulomb efficiency, the voltage efficiency, and the energy efficiency were calculated from the parameters in each charging operation and the parameters in discharging, respectively, as in the first embodiment. The results are shown in Table 2.

【0039】 表2 充電量 充電時間 放電容量 クーロン効率 電圧効率 エネルギー効率(%) (hr) (Ah) (%) (%) (%) 74.1 8 19.5 97.5 91.5 89.2 101.9 11 26.0 94.5 91.2 86.2 120.4 13 28.55 87.8 90.5 79.5 134.3 14.5 28.8 79.4 90.0 71.5 148.1 16.0 28.8 72.0 89.5 64.4 Table 2 Charge amount Charge time Discharge capacity Coulomb efficiency Voltage efficiency Energy efficiency (%) (hr) (Ah) (%) (%) (%) 74.1 8 19.5 97.5 91.5 89.2 101.9 11 26.0 94.5 91.2 86.2 120.4 13 28.55 87.8 90.5 79.5 134.3 14.5 28.8 79.4 90.0 71.5 148.1 16.0 28.8 72.0 89.5 64.4

【0040】表2からわかるように、充電量が101.9 %
以下において、エネルギー効率が86%以上となる。ま
た、表2に示すエネルギー効率の値を充電量に対してプ
ロットし、回帰直線Dを求めた。結果を図3に合わせて
示す。なお、回帰直線Dは充電量をCvとして以下の式
で表される。 EE=−0.478 Cv+135.69
As can be seen from Table 2, the charge amount is 101.9%
Below, energy efficiency will be 86% or more. Moreover, the value of energy efficiency shown in Table 2 was plotted with respect to the charge amount, and the regression line D was calculated. The results are also shown in FIG. The regression line D is represented by the following formula with the charge amount Cv. EE = -0.478 Cv + 135.69

【0041】回帰直線Dによっても、どれぐらいの充電
量でどれぐらいのエネルギー効率を得ることができるか
という情報を得ることができる。回帰直線Dによれば、
エネルギー効率を80%とするには、充電量を116 %と
すればよいのがわかる。
The regression line D also makes it possible to obtain information on how much energy efficiency can be obtained at what charge amount. According to the regression line D,
It can be seen that the charge amount can be set to 116% to achieve energy efficiency of 80%.

【0042】なお、回帰直線Cと回帰直線Dとは近接し
ているので、回帰直線Cによっても、また回帰直線Dに
よっても、同様の充電制御をすることができる。
Since the regression line C and the regression line D are close to each other, the same charging control can be performed by the regression line C and the regression line D.

【0043】[0043]

【発明の効果】上記の通り、本発明の方法によれば、エ
ネルギー効率を考慮した充電操作を行うので、無駄な過
充電を確実に防止することができる。
As described above, according to the method of the present invention, since the charging operation is performed in consideration of energy efficiency, useless overcharging can be reliably prevented.

【0044】本発明の方法は、ニッケル−水素電池を始
め、各種二次電池に適用することができる。
The method of the present invention can be applied to various secondary batteries including nickel-hydrogen batteries.

【図面の簡単な説明】[Brief description of drawings]

【図1】二次電池の充電量とエネルギー効率との関係、
及び充電量と最大容量比との関係を示すグラフである。
FIG. 1 shows the relationship between the charge amount of a secondary battery and energy efficiency,
3 is a graph showing the relationship between the charge amount and the maximum capacity ratio.

【図2】二次電池の充電を行う場合の制御システムを説
明するための模式図である。
FIG. 2 is a schematic diagram for explaining a control system when charging a secondary battery.

【図3】実施例1及び実施例2における充電量とエネル
ギー効率との関係をプロットしたグラフであり、各例の
結果から得られる回帰直線を合わせて示している。
FIG. 3 is a graph plotting the relationship between the charge amount and energy efficiency in Example 1 and Example 2, and also shows the regression line obtained from the results of each example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 二次電池の充電制御方法であって、(a)
前記電池について以下の式により定義されるエネルギー
効率(EE): EE(%)=〔(放電したクーロン量×放電時の平均電
圧)/(充電したクーロン量×充電時の平均電圧)〕×
100 が80%以上となるような充電量を充電目標値として設
定し、(b) 前記電池の残存容量を測定し、(c) 前記充電
目標値から前記残存容量を差し引いた分を充電すること
を特徴とする二次電池の充電制御方法。
1. A method for controlling charging of a secondary battery, comprising: (a)
Energy efficiency (EE) defined by the following formula for the battery: EE (%) = [(amount of coulomb discharged x average voltage during discharge) / (amount of coulomb charged x average voltage during charge)] x
A charge amount such that 100 is 80% or more is set as a charge target value, (b) the remaining capacity of the battery is measured, and (c) the remaining charge is subtracted from the target charge value to charge. A method of controlling charge of a secondary battery, comprising:
【請求項2】 請求項1に記載の方法において、前記充
電目標値が前記電池の容量の80%以上であることを特
徴とする二次電池の充電制御方法。
2. The method according to claim 1, wherein the target charging value is 80% or more of the capacity of the battery.
【請求項3】 請求項2に記載の方法において、前記二
次電池がニッケル−水素電池であり、前記充電目標値を
前記電池の容量の105±15%とすることを特徴とす
る二次電池の充電制御方法。
3. The secondary battery according to claim 2, wherein the secondary battery is a nickel-hydrogen battery, and the target charging value is 105 ± 15% of the capacity of the battery. Charge control method.
JP18189992A 1992-06-16 1992-06-16 Rechargeable battery charge control method Expired - Fee Related JP3184308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18189992A JP3184308B2 (en) 1992-06-16 1992-06-16 Rechargeable battery charge control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18189992A JP3184308B2 (en) 1992-06-16 1992-06-16 Rechargeable battery charge control method

Publications (2)

Publication Number Publication Date
JPH065310A true JPH065310A (en) 1994-01-14
JP3184308B2 JP3184308B2 (en) 2001-07-09

Family

ID=16108833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18189992A Expired - Fee Related JP3184308B2 (en) 1992-06-16 1992-06-16 Rechargeable battery charge control method

Country Status (1)

Country Link
JP (1) JP3184308B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138721B2 (en) 2008-06-03 2012-03-20 Samsung Sdi Co., Ltd. Battery pack and charging method for the same
JP2013186967A (en) * 2012-03-06 2013-09-19 Nec Access Technica Ltd Electronic equipment, and battery charging method for electronic equipment
US8945735B2 (en) 2009-02-23 2015-02-03 Samsung Sdi Co., Ltd. Built-in charge circuit for secondary battery and secondary battery with the built-in charge circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138721B2 (en) 2008-06-03 2012-03-20 Samsung Sdi Co., Ltd. Battery pack and charging method for the same
US8945735B2 (en) 2009-02-23 2015-02-03 Samsung Sdi Co., Ltd. Built-in charge circuit for secondary battery and secondary battery with the built-in charge circuit
JP2013186967A (en) * 2012-03-06 2013-09-19 Nec Access Technica Ltd Electronic equipment, and battery charging method for electronic equipment

Also Published As

Publication number Publication date
JP3184308B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
US11735940B2 (en) Methods and systems for recharging a battery
JP3620118B2 (en) Constant current / constant voltage charger
JP5950909B2 (en) Method and apparatus for recharging a battery
JPH04183232A (en) Charging method of secondary battery
JP2008504662A (en) Method for charging a lithium ion storage battery having a negative electrode
US6801017B2 (en) Charger for rechargeable nickel-zinc battery
JP2000030750A (en) Charging method of nonaqueous secondary battery
JPH065310A (en) Charge control method for secondary battery
JP3107407B2 (en) How to charge the battery pack
JP3746135B2 (en) Charging method for sealed lead-acid batteries
JP2003189498A (en) Charging method and charger of secondary battery
JPH1174001A (en) Charging method for lead-acid battery
JP3421398B2 (en) Vehicle secondary battery charging control method
JP2003223935A (en) Charging method of control valve lead storage battery
JPH0778637A (en) Charging method for lead-acid battery
JPS5814473A (en) Charging of sealed lead storage battery
JP3648752B2 (en) Lead storage battery charge control method
JP2001160422A (en) Charging control method of lead storage battery
JPH11297365A (en) Charging method for lead-acid battery
SU1758716A1 (en) Method f charging lead-acid storage batteries
JP2022075316A (en) Power storage battery control device, power storage battery control method, power storage battery control program, power storage system, and battery-equipped equipment
JPH02250274A (en) Method for charging sealed lead-acid battery
JP2002165378A (en) Charging system of control valve type lead-acid battery
JPH11176482A (en) Lead-acid battery charging method
JPH08329989A (en) Method for charging sealed lead-acid battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees