JPH0652860A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH0652860A
JPH0652860A JP4220733A JP22073392A JPH0652860A JP H0652860 A JPH0652860 A JP H0652860A JP 4220733 A JP4220733 A JP 4220733A JP 22073392 A JP22073392 A JP 22073392A JP H0652860 A JPH0652860 A JP H0652860A
Authority
JP
Japan
Prior art keywords
graphite powder
battery
particle size
graphite
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4220733A
Other languages
Japanese (ja)
Inventor
Masahisa Fujimoto
正久 藤本
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4220733A priority Critical patent/JPH0652860A/en
Publication of JPH0652860A publication Critical patent/JPH0652860A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To lessen self-discharge and improve storage property of a lithium secondary battery by using graphite powder for a negative pole material and containing practically no graphite powder with less than 10mum particle size. CONSTITUTION:In the case graphite powder is used for a negative pole material which can absorb and desorb lithium, practically no graphite powder with less than 10mum particle size is contained. For the physical properties of the graphite powder, d value (d002) in grating plane (002) of an X-ray diffraction is 3.35-3.40Angstrom , crystallite size in c-axial direction is 150Angstrom or more, specific surface area by BET method is 0.5-50m<2>/g, vacuum degree 1.9-2.3g/cm<3>. By using graphite powder containing no graphite powder whose particle size is small and has a lot of active points, sefl-discharge due to the reaction of the graphite and an electrolytic liquid is lessened and the storage property of the electrolytic liquid for a battery is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、黒鉛粉末を負極材料と
するリチウム二次電池に係わり、特に保存特性の向上を
目的とした当該黒鉛粉末の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery using graphite powder as a negative electrode material, and more particularly to improvement of the graphite powder for the purpose of improving storage characteristics.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム二次電池の負極材料として、可撓性に優れるこ
と、モッシー状のリチウムが電析するおそれがないこと
などの理由から、黒鉛粉末などの炭素材料が、従前のリ
チウムやリチウム合金に代わる負極材料として検討され
ている。特に、黒鉛粉末は、リチウムを吸蔵・放出可能
な量(容量)が多いため最近とみにその実用化が検討さ
れている負極材料である。
2. Description of the Related Art In recent years,
As a negative electrode material for a lithium secondary battery, a carbon material such as graphite powder replaces the conventional lithium or lithium alloy because of its excellent flexibility and the fact that there is no risk of electrodeposition of mossy lithium. Considered as a material. In particular, graphite powder is a negative electrode material that has recently been considered for practical use because it has a large amount (capacity) capable of inserting and extracting lithium.

【0003】しかしながら、黒鉛粉末にはコークスに比
し数多くの活性点が存在するため、黒鉛粉末を負極材料
とする電池には、黒鉛が電解液と反応して自己放電し易
く、保存特性が良くないという問題があった。
However, since graphite powder has a large number of active sites as compared with coke, in a battery using graphite powder as a negative electrode material, graphite easily reacts with an electrolytic solution and self-discharges, resulting in good storage characteristics. There was a problem of not having.

【0004】本発明は、この問題を解決するべくなされ
たものであって、その目的とするところは、自己放電の
少ない、すなわち保存特性に優れたリチウム二次電池を
提供するにある。
The present invention has been made to solve this problem, and an object of the present invention is to provide a lithium secondary battery having less self-discharge, that is, excellent storage characteristics.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム二次電池は、リチウムを吸蔵放
出可能な負極材料として黒鉛粉末が使用されてなるリチ
ウム二次電池であって、前記黒鉛粉末が粒径10μm未
満の黒鉛粉末を実質的に含有していないことを特徴とす
る。
A lithium secondary battery according to the present invention for achieving the above object is a lithium secondary battery in which graphite powder is used as a negative electrode material capable of inserting and extracting lithium. It is characterized in that the graphite powder does not substantially contain graphite powder having a particle size of less than 10 μm.

【0006】本発明における負極材料たる黒鉛粉末は、
天然黒鉛であるか人造黒鉛であるかを問われないが、次
に挙げる物性を有するものが好ましい。 X線回折における格子面(002)面のd値
(d002 ):3.35〜3.40Å X線回折におけるc軸方向の結晶子の大きさ(L
c):150Å以上 BET法による比表面積:0.5〜50m2 /g 真密度:1.9〜2.3g/cm3
The graphite powder used as the negative electrode material in the present invention is
It does not matter whether it is natural graphite or artificial graphite, but those having the following physical properties are preferable. D value (d 002 ) of lattice plane (002) plane in X-ray diffraction: 3.35-3.40 Å Crystallite size in the c-axis direction in X-ray diffraction (L
c): 150 Å or more Specific surface area by BET method: 0.5 to 50 m 2 / g True density: 1.9 to 2.3 g / cm 3

【0007】本発明においては、10μm未満の粒径の
黒鉛粉末を実質的に含まない黒鉛粉末が負極材料として
使用される。従来種々の平均粒径の黒鉛粉末が上市され
ているが、これらの上市品は、一般に粒径1〜40μm
の黒鉛粉末の混合物である。したがって、本発明におい
ては、たとえば上市品を篩いにかけて10μm未満の粒
径の黒鉛粉末を除去したものが使用されることとなる。
In the present invention, graphite powder substantially free of graphite powder having a particle size of less than 10 μm is used as the negative electrode material. Conventionally, graphite powders with various average particle sizes have been put on the market, but these marketed products generally have a particle size of 1 to 40 μm.
It is a mixture of graphite powder. Therefore, in the present invention, for example, a commercially available product which has been sieved to remove the graphite powder having a particle size of less than 10 μm is used.

【0008】このように本発明において10μm未満の
粒径の黒鉛粉末を含まない黒鉛粉末を使用することとし
たのは、黒鉛粉末はその粒径が小さくなるにつれて活性
点の数が多くなるので、黒鉛と電解液との反応による自
己放電を実際上問題とならない程度にまで抑制するため
には、10μm未満の粒径の黒鉛粉末を含まない比較的
低活性の黒鉛粉末を使用することが好ましいからであ
る。
As described above, the reason why the graphite powder not containing the graphite powder having a particle size of less than 10 μm is used in the present invention is that the number of active points increases as the particle size of the graphite powder decreases. In order to suppress the self-discharge due to the reaction between the graphite and the electrolytic solution to such an extent that there is no practical problem, it is preferable to use a relatively low activity graphite powder that does not contain graphite powder having a particle size of less than 10 μm. Is.

【0009】本発明における黒鉛粉末は、ポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)等の結着剤と混練して合剤として負極に使
用される。
The graphite powder in the present invention is kneaded with a binder such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF) and used as a mixture for the negative electrode.

【0010】本発明は、リチウムを吸蔵放出可能な負極
材料として黒鉛粉末が使用されたリチウム二次電池の保
存特性を改良するために、10μm未満の黒鉛粉末を含
まない黒鉛粉末を負極材料として使用した点に特徴を有
する。それゆえ、電池を構成する他の要素、たとえば正
極材料、電解液などについては、従来リチウム二次電池
用として使用され、或いは提案されている種々の材料を
使用することが可能である。
In order to improve the storage characteristics of a lithium secondary battery in which graphite powder is used as a negative electrode material capable of inserting and extracting lithium, the present invention uses graphite powder containing no graphite powder of less than 10 μm as a negative electrode material. It has a feature in the point. Therefore, for other elements constituting the battery, such as the positive electrode material and the electrolytic solution, various materials conventionally used for lithium secondary batteries or proposed can be used.

【0011】正極材料としては、リチウムを吸蔵放出可
能な化合物であれば特に制限なく使用することができ
る。たとえば無機化合物としては、TiO2 、V2 5
などの所謂トンネル状の空孔を有する酸化物や、TiS
2 、MoS2 等の層状構造の金属カルコゲン化物が例示
されるが、組成式Lix MO2 又はLiy 2 4 (た
だし、Mは遷移元素、0≦x≦1、0≦y≦2)で表さ
れる複合酸化物が好適である。かかる複合酸化物の具体
例としては、LiCoO2 、LiMnO2 、LiNiO
2 、LiCrO2 、LiMn2 4 が挙げられる。
As the positive electrode material, any compound capable of inserting and extracting lithium can be used without particular limitation. For example, inorganic compounds include TiO 2 , V 2 O 5
Such as oxides having so-called tunnel-shaped holes, TiS
2 , a metal chalcogenide having a layered structure such as MoS 2 is exemplified as a composition formula Li x MO 2 or Li y M 2 O 4 (where M is a transition element, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2 ) A composite oxide represented by Specific examples of such a composite oxide include LiCoO 2 , LiMnO 2 , and LiNiO.
2 , LiCrO 2 and LiMn 2 O 4 can be mentioned.

【0012】その他、ポリアニリン等の導電性ポリマー
や導電性ポリマーにポルフィリンなどの陰イオンをドー
プしてなるドーパント含有導電性ポリマーを使用するこ
とも可能である。
In addition, it is also possible to use a conductive polymer such as polyaniline or a conductive polymer containing a dopant obtained by doping a conductive polymer with an anion such as porphyrin.

【0013】上記正極材料は、アセチレンブラック、カ
ーボンブラック等の導電剤及びポリテトラフルオロエチ
レン(PTFE)、ポリフッ化ビニリデン(PVDF)
等の結着剤と混練して合剤として正極に使用される。
The positive electrode material is a conductive agent such as acetylene black or carbon black, and polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF).
It is used for the positive electrode as a mixture by kneading with a binder such as.

【0014】電解液についても、特に制限されず、エチ
レンカーボネート、ジメチルカーボネート又はこれらの
混合溶媒に、LiPF6 、LiBF4 、LiCF3 SO
3 、LiAsF6 、LiSbF6 、LiC(CF3 SO
2 3 、LiN(CF3 SO2 2 等のフッ素含有リチ
ウム塩を溶かした溶液など、従来リチウム二次電池用の
電解液として提案され、或いは実用されている種々の電
解液を使用することができる。
The electrolytic solution is not particularly limited either, and ethylene carbonate, dimethyl carbonate or a mixed solvent thereof may be added to LiPF 6 , LiBF 4 , LiCF 3 SO.
3 , LiAsF 6 , LiSbF 6 , LiC (CF 3 SO
2 ) Use various electrolytic solutions that have been proposed or are practically used as electrolytic solutions for lithium secondary batteries, such as solutions in which fluorine-containing lithium salts such as 3 and LiN (CF 3 SO 2 ) 2 are dissolved. You can

【0015】[0015]

【作用】本発明電池においては、10μm未満の粒径の
黒鉛粉末を含まない活性点の数が比較的少ない黒鉛粉末
が負極材料として使用されているので、黒鉛粉末と電解
液との反応が起こりにくい。このため、自己放電も起こ
りにくい。
In the battery of the present invention, the graphite powder, which does not contain the graphite powder having a particle size of less than 10 μm and has a relatively small number of active sites, is used as the negative electrode material, so that the reaction between the graphite powder and the electrolytic solution occurs. Hateful. Therefore, self-discharge is unlikely to occur.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0017】(実施例1) 〔正極の作製〕LiCoO2 と、導電剤としてのアセチ
レンブラックと、結着剤としてのフッ素樹脂ディスパー
ジョンとを、重量比85:10:5で混合して正極合剤
を得た。この正極合剤を集電体としてのアルミニウム箔
に圧延し、250°Cで2時間真空下で加熱処理して正
極を作製した。
Example 1 [Preparation of Positive Electrode] LiCoO 2 , acetylene black as a conductive agent, and fluororesin dispersion as a binder were mixed at a weight ratio of 85: 10: 5 to prepare a positive electrode mixture. I got an agent. This positive electrode mixture was rolled into an aluminum foil as a current collector and heat-treated under vacuum at 250 ° C. for 2 hours to produce a positive electrode.

【0018】〔負極の作製〕平均粒径20μmの天然黒
鉛を、粒径10μm未満パスの篩いにかけて、粒径10
μm以上の黒鉛粉末を得た。この篩い操作により、除去
された粒径10μm未満の黒鉛粉末は天然黒鉛の総量に
対して約10重量%であった。このようにして得た粒径
10μm以上の黒鉛粉末に、結着剤としてのフッ素樹脂
ディスパージョンを、重量比95:5の比率で混合して
負極合剤を得た。この負極合剤を集電体としての銅箔に
圧延し、250°Cで2時間真空下で加熱処理して負極
を作製した。
[Preparation of Negative Electrode] Natural graphite having an average particle size of 20 μm was sieved with a pass having a particle size of less than 10 μm to obtain a particle size of 10 μm.
A graphite powder having a size of μm or more was obtained. By this sieving operation, the amount of the removed graphite powder having a particle size of less than 10 μm was about 10% by weight based on the total amount of natural graphite. The graphite powder having a particle size of 10 μm or more thus obtained was mixed with a fluororesin dispersion as a binder at a weight ratio of 95: 5 to obtain a negative electrode mixture. This negative electrode mixture was rolled into a copper foil as a current collector and heat-treated under vacuum at 250 ° C. for 2 hours to produce a negative electrode.

【0019】〔電解液の調製〕エチレンカーボネートと
ジメチルカーボネートとの等体積混合溶媒に、溶質とし
てのLiPF6 を1モル/リットル溶かして電解液を調
製した。
[Preparation of Electrolytic Solution] LiPF 6 as a solute was dissolved at 1 mol / liter in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate to prepare an electrolytic solution.

【0020】〔本発明電池の作製〕以上の正負両極及び
電解液を用いて円筒型の本発明電池BA1を作製した
(電池寸法:直径14.2mm;長さ50.0mm)。
なお、セパレータとしては、ポリプロピレン製の微孔性
薄膜(ポリプラスチックス社製、商品名「セルガード3
401」)を用いた。
[Preparation of Battery of the Present Invention] A cylindrical battery BA1 of the present invention was prepared using the positive and negative electrodes and the electrolytic solution described above (battery size: diameter 14.2 mm; length 50.0 mm).
As the separator, a microporous thin film made of polypropylene (manufactured by Polyplastics Co., trade name "Celguard 3"
401 ”) was used.

【0021】図1は作製した本発明電池BA1の断面図
であり、図示の本発明電池BA1は、正極1及び負極
2、これら両電極を離隔するセパレータ3、正極リード
4、負極リード5、正極外部端子6、負極缶7などから
なる。正極1及び負極2は電解液が注入されたセパレー
タ3を介して渦巻き状に巻き取られた状態で負極缶7内
に収容されており、正極1は正極リード4を介して正極
外部端子6に、また負極2は負極リード5を介して負極
缶7に接続され、電池BA1内部で生じた化学エネルギ
ーを電気エネルギーとして外部へ取り出し得るようにな
っている。
FIG. 1 is a cross-sectional view of the produced battery BA1 of the present invention. The illustrated battery BA1 of the present invention includes a positive electrode 1 and a negative electrode 2, a separator 3 for separating these electrodes, a positive electrode lead 4, a negative electrode lead 5, and a positive electrode. The external terminal 6 and the negative electrode can 7 are included. The positive electrode 1 and the negative electrode 2 are housed in the negative electrode can 7 in a spirally wound state via the separator 3 into which the electrolytic solution is injected, and the positive electrode 1 is connected to the positive electrode external terminal 6 via the positive electrode lead 4. Further, the negative electrode 2 is connected to the negative electrode can 7 through the negative electrode lead 5 so that the chemical energy generated inside the battery BA1 can be taken out as electric energy to the outside.

【0022】(比較例1)実施例1で使用した天然黒鉛
と同じ天然黒鉛を、篩いにかけずにそのまま使用したこ
と以外は実施例1と同様にして、比較電池BC1を作製
した。
Comparative Example 1 A comparative battery BC1 was prepared in the same manner as in Example 1 except that the same natural graphite as that used in Example 1 was used as it was without sieving.

【0023】(保存特性試験)本発明電池BA1及び比
較電池BC1について、充電後保存せずに直ちに放電し
た場合及び充電後室温(25°C)にて1月保存した後
に放電した場合のそれぞれについて、充電電流200m
Aで充電終止電圧4.1Vまで充電した後、放電電流2
00mAで放電終止電圧3.0Vまで放電して、各電池
の放電特性を調べた。
(Storage characteristic test) The battery BA1 of the present invention and the comparative battery BC1 were respectively discharged immediately after being stored without being stored and after being stored at room temperature (25 ° C) for one month and then discharged. , Charging current 200m
After charging to the end-of-charge voltage of 4.1V with A, discharge current 2
The battery was discharged at a discharge end voltage of 3.0 V at 00 mA, and the discharge characteristics of each battery were examined.

【0024】図2は、各電池の放電特性を、縦軸に電池
電圧(V)を、横軸に放電容量(mAh)をとって示し
たグラフである。
FIG. 2 is a graph showing the discharge characteristics of each battery, with the vertical axis representing the battery voltage (V) and the horizontal axis representing the discharge capacity (mAh).

【0025】同図より、充電後保存せずに直ちに放電し
た場合は、両電池間に差異はないが、充電後室温にて1
月保存した後に放電した場合は、本発明電池BA1では
475mAh程度にしか容量低下しておらず自己放電率
が5%/月と小さいのに対して、比較電池BC1では4
50mAh程度にまで容量が低下しており自己放電率が
10%/月と、保存による容量低下が大きいことが分か
る。
From the figure, when the battery is immediately discharged without being stored after being charged, there is no difference between the two batteries, but it is 1 at room temperature after charging.
When discharged after being stored for a month, the capacity of the battery BA1 of the present invention decreased only to about 475 mAh and the self-discharge rate was as small as 5% / month, whereas the capacity of the comparative battery BC1 was 4%.
It can be seen that the capacity is reduced to about 50 mAh and the self-discharge rate is 10% / month, which is a large capacity reduction due to storage.

【0026】叙上の実施例では本発明を円筒型電池を例
に挙げて説明したが、電池の形状に特に制限はなく、本
発明は扁平型、角型等、種々の形状のリチウム二次電池
に適用し得るものである。
In the above embodiments, the present invention has been described by taking a cylindrical battery as an example. However, the shape of the battery is not particularly limited, and the present invention is a lithium secondary battery of various shapes such as flat type and rectangular type. It can be applied to batteries.

【0027】[0027]

【発明の効果】本発明電池では、負極材料として、粒径
が小さく活性点が数多く存在する黒鉛粉末を含まない黒
鉛粉末が使用されているので、黒鉛と電解液との反応に
因る自己放電が少なく、このため保存特性に優れるな
ど、本発明は優れた特有の効果を奏する。
EFFECTS OF THE INVENTION In the battery of the present invention, graphite powder containing no graphite powder having a small particle size and many active sites is used as the negative electrode material. Therefore, self-discharge caused by the reaction between graphite and the electrolytic solution is used. Therefore, the present invention has excellent unique effects such as excellent storage characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】円筒型の本発明電池BA1の断面図である。FIG. 1 is a sectional view of a cylindrical battery BA1 of the present invention.

【図2】放電特性図である。FIG. 2 is a discharge characteristic diagram.

【符号の説明】[Explanation of symbols]

BA1 円筒型の本発明電池 1 正極 2 負極 3 セパレータ BA1 Cylindrical battery 1 of the present invention 1 positive electrode 2 negative electrode 3 separator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウムを吸蔵放出可能な負極材料として
黒鉛粉末が使用されてなるリチウム二次電池であって、
前記黒鉛粉末が粒径10μm未満の黒鉛粉末を実質的に
含有していないことを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising graphite powder as a negative electrode material capable of occluding and releasing lithium.
A lithium secondary battery, wherein the graphite powder does not substantially contain graphite powder having a particle size of less than 10 μm.
JP4220733A 1992-07-27 1992-07-27 Lithium secondary battery Pending JPH0652860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4220733A JPH0652860A (en) 1992-07-27 1992-07-27 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4220733A JPH0652860A (en) 1992-07-27 1992-07-27 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0652860A true JPH0652860A (en) 1994-02-25

Family

ID=16755678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4220733A Pending JPH0652860A (en) 1992-07-27 1992-07-27 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0652860A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997012409A1 (en) * 1995-09-26 1997-04-03 Valence Technology, Inc. Lithium ion electrochemical cell
US6759169B1 (en) 1997-07-04 2004-07-06 Hitachi Powdered Metals Co., Ltd. Graphite powder for negative electrode of lithium ion secondary cell and method of production thereof
US7288342B2 (en) * 1996-08-08 2007-10-30 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7848081B2 (en) 2006-10-20 2010-12-07 Fuji Jukogyo Kabushiki Kaisha Lithium-ion capacitor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997012409A1 (en) * 1995-09-26 1997-04-03 Valence Technology, Inc. Lithium ion electrochemical cell
US5660948A (en) * 1995-09-26 1997-08-26 Valence Technology, Inc. Lithium ion electrochemical cell
USRE37076E1 (en) * 1995-09-26 2001-02-27 Valence Technology, Inc. Lithium ion electrochemical cell
US7410727B2 (en) 1996-08-08 2008-08-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7288342B2 (en) * 1996-08-08 2007-10-30 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7335447B2 (en) 1996-08-08 2008-02-26 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7378191B2 (en) 1996-08-08 2008-05-27 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7399553B2 (en) 1996-08-08 2008-07-15 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7700239B2 (en) 1996-08-08 2010-04-20 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7947395B2 (en) 1996-08-08 2011-05-24 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8129051B2 (en) 1996-08-08 2012-03-06 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8580437B2 (en) 1996-08-08 2013-11-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8802297B2 (en) 1996-08-08 2014-08-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US9508980B2 (en) 1996-08-08 2016-11-29 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative
US6759169B1 (en) 1997-07-04 2004-07-06 Hitachi Powdered Metals Co., Ltd. Graphite powder for negative electrode of lithium ion secondary cell and method of production thereof
US7848081B2 (en) 2006-10-20 2010-12-07 Fuji Jukogyo Kabushiki Kaisha Lithium-ion capacitor

Similar Documents

Publication Publication Date Title
JP3059832B2 (en) Lithium secondary battery
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
KR100943193B1 (en) Cathode active material and lithium battery using the same
JP3187929B2 (en) Lithium secondary battery
JP3685500B2 (en) Nonaqueous electrolyte secondary battery
JP4412778B2 (en) Polymer electrolyte battery
US20080070122A1 (en) Cathode active material and lithium battery employing the same
US20050191553A1 (en) Lithium secondary battery
US20050266316A1 (en) Non-aqueous electrolyte secondary battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
US20030180618A1 (en) Nonaqueous electrolyte secondary battery
JP4767484B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
KR100946006B1 (en) Nonaqueous Electrolytic Secondary Battery and Method of Manufacturing the Same
JP3609612B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP3059820B2 (en) Lithium secondary battery
JP3244389B2 (en) Lithium secondary battery
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JP2000243437A (en) Solute for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JPH0684542A (en) Nonaqueous electrolytic solution secondary battery
US6482546B1 (en) Rechargeable lithium battery
JP3229769B2 (en) Lithium secondary battery
JPH0652860A (en) Lithium secondary battery
JP2003331922A (en) Cell
JPH08171934A (en) Lithium secondary battery
US6465131B1 (en) Lithium secondary cell with a stannous electrode material