JP3059820B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP3059820B2
JP3059820B2 JP4116932A JP11693292A JP3059820B2 JP 3059820 B2 JP3059820 B2 JP 3059820B2 JP 4116932 A JP4116932 A JP 4116932A JP 11693292 A JP11693292 A JP 11693292A JP 3059820 B2 JP3059820 B2 JP 3059820B2
Authority
JP
Japan
Prior art keywords
battery
graphite
negative electrode
present
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4116932A
Other languages
Japanese (ja)
Other versions
JPH05290844A (en
Inventor
正久 藤本
宣之 好永
昌利 高橋
和郎 森脇
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14699269&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3059820(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4116932A priority Critical patent/JP3059820B2/en
Publication of JPH05290844A publication Critical patent/JPH05290844A/en
Application granted granted Critical
Publication of JP3059820B2 publication Critical patent/JP3059820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に係
わり、特に安全性の向上を目的とした負極材料の改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to an improvement of a negative electrode material for improving safety.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム二次電池の負極材料として、可撓性に優れるこ
と、モッシー状のリチウムが電析するおそれがないこと
などの理由から、コークスが、従来のリチウム金属に代
わる材料として検討されている。かかるリチウム二次電
池としては、負極材料としてコークスを、また電解液と
してヘキサフルオロリン酸リチウム(LiPF6 )を非
水系溶媒に溶かした電解液を使用したものが提案されて
いる。
2. Description of the Related Art In recent years,
Coke has been studied as a material that can replace conventional lithium metal because of its excellent flexibility as a negative electrode material for lithium secondary batteries and the fact that there is no risk of depositing mossy lithium. As such a lithium secondary battery, one using coke as a negative electrode material and an electrolyte obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) in a non-aqueous solvent as an electrolyte has been proposed.

【0003】ところで、本発明者らが他の炭素材料を検
討したところ、リチウムを吸蔵放出可能な量(容量)が
コークスに比し大きい点で、黒鉛、とりわけ天然黒鉛
が、負極材料として、好適であることが分かった。
By the way, the present inventors have examined other carbon materials, and found that graphite, especially natural graphite, is preferable as a negative electrode material because the amount (capacity) capable of inserting and extracting lithium is larger than that of coke. It turned out to be.

【0004】しかしながら、天然黒鉛を単独で使用した
場合、常温においては何ら問題はないものの、短絡など
により電池温度が高くなると、天然黒鉛と電解液中に含
まれるLiPF6 とが急激に反応(過反応)し、電池が
破損、破裂する危険性があることが分かった。因みに、
コークスには、このような危険性はない。
[0004] However, when natural graphite is used alone, there is no problem at normal temperature, but when the battery temperature rises due to a short circuit or the like, natural graphite and LiPF 6 contained in the electrolytic solution rapidly react (overheat). Reaction), and it was found that the battery might be damaged or exploded. By the way,
Coke is not at risk.

【0005】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、容量が大きく、し
かも安全性が高いリチウム二次電池を提供するにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lithium secondary battery having a large capacity and high safety.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム二次電池(以下、「本発明電
池」と称する。)は、電解液の溶質としてLiPF6
使用されてなるリチウム二次電池であって、リチウムを
吸蔵放出可能な負極材料として、天然黒鉛と人造黒鉛と
の混合物が使用されてなる。
A lithium secondary battery according to the present invention for achieving the above object (hereinafter, referred to as "battery of the present invention") uses LiPF 6 as a solute of an electrolytic solution. In a lithium secondary battery, a mixture of natural graphite and artificial graphite is used as a negative electrode material capable of inserting and extracting lithium.

【0007】本発明は、高温下においてLiPF6 と過
反応し易い天然黒鉛(斜方晶系)に、LiPF6 との反
応性が低い人造黒鉛(六方晶系)を配合することによ
り、過反応を抑制することを実現したものであるが、本
発明における人造黒鉛の好適な配合比率は、10〜50
重量%、より好ましくは15〜30重量%である。人造
黒鉛の配合比率が、10重量%未満であると、過反応抑
制効果が充分に発現されず、また50重量%を越える
と、増量に応じた過反応抑制効果が期待できないばかり
でなく充放電特性が低下する傾向があるので、ともに好
ましくない。
[0007] The present invention, in easy natural graphite over-react with LiPF 6 at a high temperature (orthorhombic), by reactivity with LiPF 6 is blended with low artificial graphite (hexagonal), hyperresponsiveness However, the preferred compounding ratio of artificial graphite in the present invention is 10 to 50.
%, More preferably 15 to 30% by weight. If the blending ratio of artificial graphite is less than 10% by weight, the overreaction suppressing effect is not sufficiently exhibited, and if it exceeds 50% by weight, not only the overreaction suppressing effect corresponding to the increased amount cannot be expected but also the charge / discharge. Both properties are not preferred because the properties tend to deteriorate.

【0008】何故、天然黒鉛に人造黒鉛を配合すること
により黒鉛とLiPF6 との過反応が抑制されるのかに
ついては、本発明者らにおいても必ずしも明らかではな
いが、X線回折によるc軸方向の結晶子の大きさ(l
c)や格子面(002)面におけるd値(d002 )など
についての両者の相違に起因して、人造黒鉛のLiPF
6 との反応性が天然黒鉛のそれに比し低いためと推察さ
れる。因みに、通常、天然黒鉛のc軸方向の結晶子の大
きさは1000Å以上、d002 は3.35Å程度である
のに対して、人造黒鉛のそれらは、それぞれ200〜9
50Å以上、3.35〜3.45Åである。
Although it is not necessarily clear to the present inventors as to why the overreaction between graphite and LiPF 6 is suppressed by blending artificial graphite with natural graphite, the c-axis direction by X-ray diffraction is not clear. Crystallite size (l
c) and the d value (d 002 ) on the lattice plane (002) plane due to the difference between the two.
It is presumed that the reactivity with 6 was lower than that of natural graphite. Incidentally, the size of crystallites in the c-axis direction of natural graphite is usually 1000 ° or more and d 002 is about 3.35 °, whereas those of artificial graphite are 200 to 9 mm, respectively.
It is 50 ° or more and 3.35 to 3.45 °.

【0009】本発明電池は、安全性を向上させるため
に、天然黒鉛に、それに比しLiPF6 との反応速度が
遅い人造黒鉛を配合してなる混合黒鉛を負極の炭素材料
として使用した点に特徴を有する。それゆえ、正極活物
質、電解液溶媒、セパレータ(液体電解質を使用する場
合)などの種類については、種々の材料を制限なく使用
することが可能である。
The battery of the present invention is characterized in that, in order to improve safety, a mixed graphite obtained by blending natural graphite with artificial graphite having a lower reaction rate with LiPF 6 than the natural graphite is used as a carbon material for the negative electrode. Has features. Therefore, various kinds of materials such as a positive electrode active material, an electrolyte solution solvent, and a separator (when a liquid electrolyte is used) can be used without limitation.

【0010】たとえば、正極活物質としては、リチウム
を吸蔵放出可能な物質であれば特に制限なく使用するこ
とができ、Li2 FeO3 、TiO2 、V2 5 などの
トンネル状の空孔を有する酸化物や、TiS2 、MoS
2 等の層状構造を有する金属カルコゲン化物が例示され
るが、組成式Lix MO2 又はLiy 2 4 (ただ
し、Mは遷移元素、0≦x≦1、0≦y≦2)で表され
る複合酸化物が好ましい。上記組成式で表される複合酸
化物の具体例としては、LiCoO2 、LiMnO2
LiNiO2 、LiCrO2 、LiMn2 4 が例示さ
れる。これらの正極活物質は、常法により、アセチレン
ブラック、カーボンブラック等の導電剤及びポリテトラ
フルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVdF)等の結着剤と混練して正極合剤として使用
される。
For example, as the positive electrode active material, any material capable of inserting and extracting lithium can be used without any particular limitation. Tunnel-shaped holes such as Li 2 FeO 3 , TiO 2 and V 2 O 5 can be used. Oxide, TiS 2 , MoS
Examples of the metal chalcogenide having a layered structure such as 2 include a composition formula Li x MO 2 or Li y M 2 O 4 (where M is a transition element, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2). The represented complex oxides are preferred. Specific examples of the composite oxide represented by the above composition formula include LiCoO 2 , LiMnO 2 ,
LiNiO 2 , LiCrO 2 and LiMn 2 O 4 are exemplified. These positive electrode active materials are kneaded with a conductive agent such as acetylene black and carbon black and a binder such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF) by a conventional method and used as a positive electrode mixture. You.

【0011】また、LiPF6 含有電解液を調製する際
の溶媒としても、エチレンカーボネート、ジメチルカー
ボネート、又はこれらの混合溶媒などの他、従来リチウ
ム二次電池用として使用され、或いは提案されている種
々の非水系溶媒を用いることができる。
As a solvent for preparing the LiPF 6 -containing electrolyte, ethylene carbonate, dimethyl carbonate, a mixed solvent thereof and the like, as well as various solvents conventionally used for lithium secondary batteries or proposed. Can be used.

【0012】[0012]

【作用】本発明電池においては、天然黒鉛に、それに比
しLiPF6 との反応速度の遅い人造黒鉛を配合した混
合黒鉛がリチウムを吸蔵放出可能な負極材料として使用
されているので、負極材料とLiPF6 との過反応が起
こりにくい。
In the battery of the present invention, a mixed graphite in which natural graphite is mixed with artificial graphite having a lower reaction rate with LiPF 6 than that is used as a negative electrode material capable of inserting and extracting lithium. Overreaction with LiPF 6 does not easily occur.

【0013】[0013]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples, and may be carried out by appropriately changing the scope of the present invention. Is possible.

【0014】(実施例1) 〔正極の作製〕正極活物質としてのLiCoO2 に、導
電剤としてのアセチレンブラックと、結着剤としてのフ
ッ素樹脂ディスパージョンとを、重量比90:6:4の
比率で混合して正極合剤を得た。次いで、この正極合剤
を正極集電体としてのアルミニウム箔の両面にドクター
ブレード法により塗布し、乾燥して正極を作製した。
Example 1 [Preparation of Positive Electrode] LiCoO 2 as a positive electrode active material was mixed with acetylene black as a conductive agent and fluororesin dispersion as a binder in a weight ratio of 90: 6: 4. The mixture was mixed at a ratio to obtain a positive electrode mixture. Next, this positive electrode mixture was applied to both surfaces of an aluminum foil as a positive electrode current collector by a doctor blade method, and dried to prepare a positive electrode.

【0015】〔負極の作製〕天然黒鉛80重量部と人造
黒鉛20重量部とを均一に混合し、次いでこの混合黒鉛
と結着剤としてのPVdFとを、重量比95:5の比率
で混合し、これを溶剤(N−メチルピロリドン)に分散
させてスラリーとした後、負極集電体としての銅箔の両
面にドクターブレード法により塗布し、乾燥して、負極
を作製した。
[Preparation of Negative Electrode] 80 parts by weight of natural graphite and 20 parts by weight of artificial graphite were uniformly mixed, and then the mixed graphite and PVdF as a binder were mixed at a weight ratio of 95: 5. This was dispersed in a solvent (N-methylpyrrolidone) to form a slurry, which was then applied to both surfaces of a copper foil as a negative electrode current collector by a doctor blade method, and dried to prepare a negative electrode.

【0016】〔電解液の調製〕エチレンカーボネートと
ジメチルカーボネートとの等体積混合溶媒に、LiPF
6 を1モル/リットル溶かして電解液を調製した。
[Preparation of electrolytic solution] LiPF was added to an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate.
6 was dissolved at 1 mol / liter to prepare an electrolytic solution.

【0017】〔本発明電池BA1の作製〕以上の正負両
極及び電解液を用いて本発明に係る円筒型のリチウム二
次電池BA1を作製した(電池寸法:直径14.2m
m;長さ50.0mm)。なお、セパレータとしてイオ
ン透過性のポリプロピレン製の微孔性薄膜(ポリプラス
チックス社製、商品名「セルガード2400」)を用い
た。
[Preparation of Battery BA1 of the Present Invention] A cylindrical lithium secondary battery BA1 according to the present invention was prepared using the positive and negative electrodes and the electrolyte described above (battery size: 14.2 m in diameter).
m; length 50.0 mm). As the separator, a microporous thin film made of ion-permeable polypropylene (manufactured by Polyplastics Co., Ltd., trade name "Celgard 2400") was used.

【0018】図1は作製した電池BA1の断面図であ
り、同図に示す電池BA1は、正極1及び負極2、これ
ら両電極を離隔するセパレータ3、正極リード4、負極
リード5、正極外部端子6、負極缶7などからなる。正
極1及び負極2は非水電解液が注入されたセパレータ3
を介して渦巻き状に巻き取られた状態で負極缶7内に収
容されており、正極1は正極リード4を介して正極外部
端子6に、また負極2は負極リード5を介して負極缶7
に接続され、電池BA1内部で生じた化学エネルギーを
電気エネルギーとして外部へ取り出し得るようになって
いる。
FIG. 1 is a cross-sectional view of the battery BA1 produced. The battery BA1 shown in FIG. 1 has a positive electrode 1, a negative electrode 2, a separator 3 separating these electrodes, a positive electrode lead 4, a negative electrode lead 5, and a positive external terminal. 6, a negative electrode can 7 and the like. The positive electrode 1 and the negative electrode 2 are separators 3 into which a non-aqueous electrolyte is injected.
The positive electrode 1 is accommodated in the negative electrode can 7 via the positive electrode lead 4, and the negative electrode 2 is accommodated in the negative electrode can 7 via the negative electrode lead 5.
, So that the chemical energy generated inside the battery BA1 can be extracted to the outside as electric energy.

【0019】(比較例1)混合黒鉛に代えてコークスを
使用したこと以外は実施例1と同様にして、比較電池B
C1を作製した。
Comparative Example 1 Comparative battery B was prepared in the same manner as in Example 1 except that coke was used instead of mixed graphite.
C1 was produced.

【0020】(比較例2)混合黒鉛に代えて天然黒鉛を
一種単独で使用したこと以外は実施例1と同様にして、
比較電池BC2を作製した。
Comparative Example 2 The procedure of Example 1 was repeated, except that natural graphite was used alone in place of mixed graphite.
A comparative battery BC2 was produced.

【0021】(容量特性)本発明電池BA1、比較電池
BC1及びBC2について、充放電時の電池電圧と充放
電容量との関係を、充電電流200mAで充電終止電圧
4.1Vまで充電した後、放電電流200mAで放電終
止電圧3Vまで放電を行い、各電池の電池特性を調べ
た。図2は、各電池の電池特性を、縦軸に電池電圧
(V)を、また横軸に容量(mAh)をとって示したグ
ラフである。
(Capacity Characteristics) With respect to the battery BA1 of the present invention and the comparative batteries BC1 and BC2, the relationship between the battery voltage and the charge / discharge capacity during charging / discharging was determined by charging the battery to a final charging voltage of 4.1 V at a charging current of 200 mA, and then discharging. The battery was discharged at a current of 200 mA to a discharge end voltage of 3 V, and the battery characteristics of each battery were examined. FIG. 2 is a graph showing the battery characteristics of each battery, with the vertical axis representing battery voltage (V) and the horizontal axis representing capacity (mAh).

【0022】同図より、本発明電池BA1及び比較電池
BC2では、容量の大きい黒鉛が使用されているので、
500mAhもの大きな電池容量を有しているのに対し
て、比較電池BC1では、容量の小さいコークスが使用
されているため、350mAhと、電池容量が小さいこ
とが分かる。
As can be seen from FIG. 2, the battery BA1 of the present invention and the comparative battery BC2 use graphite having a large capacity.
It can be seen that the comparative battery BC1 has a small battery capacity of 350 mAh, whereas the comparative battery BC1 uses a small-capacity coke while having a large battery capacity of 500 mAh.

【0023】(短絡試験)各電池について短絡試験を行
った。図3は、短絡試験における短絡後の温度上昇の様
子を、縦軸に電池温度(°C)を、横軸に短絡開始後の
時間(分)をとって示したグラフである。
(Short Circuit Test) A short circuit test was performed for each battery. FIG. 3 is a graph showing the temperature rise after a short circuit in the short circuit test, the battery temperature (° C.) on the vertical axis, and the time (minute) after the start of the short circuit on the horizontal axis.

【0024】同図より、混合黒鉛を使用した本発明電池
BA1及びコークスを使用した比較電池BC1では、短
絡しても130°C程度までしか上昇せず、また短絡後
1分後には常温付近まで温度が下がるため安全であるの
に対して、天然黒鉛単独を使用した比較電池BC2で
は、過反応が起こるため、短絡後急激に温度が上昇し、
3分経過後は300°C近くまで電池温度が上昇し、電
池が破裂する虞れがあるので極めて危険であることが分
かる。
From the figure, it can be seen that in the battery BA1 of the present invention using mixed graphite and the comparative battery BC1 using coke, even when short-circuited, the temperature rises only up to about 130 ° C., and one minute after short-circuiting, it reaches around room temperature. While the temperature is lowered and thus safe, the comparative battery BC2 using natural graphite alone has an over-reaction and the temperature rises sharply after a short circuit,
After the elapse of 3 minutes, the battery temperature rises to around 300 ° C., and the battery may be ruptured, which is extremely dangerous.

【0025】叙上の実施例では本発明を円筒型電池を具
体例に挙げて説明したが、電池の形状に特に制限はな
く、本発明は扁平型、角型等、種々の形状のリチウム二
次電池に適用し得るものである。
In the above embodiments, the present invention has been described by taking a cylindrical battery as a specific example. However, the shape of the battery is not particularly limited, and the present invention is applicable to lithium batteries having various shapes such as a flat battery and a square battery. It can be applied to a secondary battery.

【0026】[0026]

【発明の効果】本発明電池においては、負極材料たる炭
素材料として天然黒鉛と人造黒鉛との混合物が使用され
ているので、炭素材料とLiPF6 とが急激に反応する
ことがなく、電池が破損したり破裂したりする危険性が
ないなど、本発明は優れた特有の効果を奏する。
In the battery of the present invention, since a mixture of natural graphite and artificial graphite is used as the carbon material as the negative electrode material, the carbon material and LiPF 6 do not react rapidly, and the battery is damaged. The present invention has excellent unique effects, such as no danger of dripping or bursting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】円筒型の本発明電池BA1の断面図である。FIG. 1 is a cross-sectional view of a cylindrical battery BA1 of the present invention.

【図2】電池特性図である。FIG. 2 is a battery characteristic diagram.

【図3】短絡後の温度上昇の様子を示すグラフである。FIG. 3 is a graph showing how the temperature rises after a short circuit.

【符号の説明】[Explanation of symbols]

BA1 円筒型の本発明電池 1 正極 2 負極 3 セパレータ BA1 cylindrical battery of the present invention 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森脇 和郎 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平5−121066(JP,A) 特開 平1−311565(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/58 H01M 10/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuo Moriwaki 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-18-18 Keihanhondori, Moriguchi-shi, Osaka (56) References JP-A-5-121066 (JP, A) JP-A-1-3111565 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4 / 02-4/04 H01M 4/58 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】LiPF6 含有電解液が使用されてなるリ
チウム二次電池であって、リチウムを吸蔵放出可能な負
極材料として、天然黒鉛と人造黒鉛との混合物が使用さ
れていることを特徴とするリチウム二次電池。
1. A lithium secondary battery using an LiPF 6 -containing electrolytic solution, wherein a mixture of natural graphite and artificial graphite is used as a negative electrode material capable of inserting and extracting lithium. Rechargeable lithium battery.
【請求項2】前記混合物は前記人造黒鉛を10〜50重
量%含有するものである請求項1記載のリチウム二次電
池。
2. The lithium secondary battery according to claim 1, wherein said mixture contains 10 to 50% by weight of said artificial graphite.
JP4116932A 1992-04-09 1992-04-09 Lithium secondary battery Expired - Lifetime JP3059820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4116932A JP3059820B2 (en) 1992-04-09 1992-04-09 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4116932A JP3059820B2 (en) 1992-04-09 1992-04-09 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH05290844A JPH05290844A (en) 1993-11-05
JP3059820B2 true JP3059820B2 (en) 2000-07-04

Family

ID=14699269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116932A Expired - Lifetime JP3059820B2 (en) 1992-04-09 1992-04-09 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3059820B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2719161B1 (en) * 1994-04-22 1996-08-02 Accumulateurs Fixes Electrochemical rechargeable lithium battery with carbon anode.
JP3359220B2 (en) * 1996-03-05 2002-12-24 キヤノン株式会社 Lithium secondary battery
KR100303538B1 (en) * 1998-12-01 2001-11-30 김순택 Cathode active material for lithium secondary battery and its manufacturing method
US6921610B2 (en) * 2001-07-11 2005-07-26 The Gillette Company Battery
KR100424643B1 (en) * 2002-03-20 2004-03-25 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery
US7052803B2 (en) * 2002-07-31 2006-05-30 Matsushita Electric Industrial Co., Ltd. Lithium rechargeable battery
JP4310646B2 (en) * 2005-02-09 2009-08-12 ソニー株式会社 Negative electrode and battery using the same
CN103733391B (en) * 2011-07-29 2016-05-18 丰田自动车株式会社 Lithium rechargeable battery
KR101599168B1 (en) 2011-10-07 2016-03-02 도요타지도샤가부시키가이샤 Lithium-ion secondary battery
CN105074996B (en) 2013-04-01 2017-10-03 宇部兴产株式会社 Nonaqueous electrolytic solution and the electric energy storage device for having used the nonaqueous electrolytic solution
PL3007261T3 (en) * 2013-06-05 2020-02-28 Lg Chem, Ltd. Novel secondary battery
US10749179B2 (en) 2014-03-31 2020-08-18 Envision Aesc Energy Devices Ltd. Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
US11637322B2 (en) 2016-02-12 2023-04-25 Samsung Sdi Co., Ltd. Lithium battery
JP6848363B2 (en) * 2016-11-09 2021-03-24 株式会社Gsユアサ Negative electrode and non-aqueous electrolyte power storage element
WO2021190650A1 (en) * 2020-03-27 2021-09-30 宁德时代新能源科技股份有限公司 Secondary battery, battery module comprising same, battery pack, and device

Also Published As

Publication number Publication date
JPH05290844A (en) 1993-11-05

Similar Documents

Publication Publication Date Title
JP3059832B2 (en) Lithium secondary battery
JP3187929B2 (en) Lithium secondary battery
JP4412778B2 (en) Polymer electrolyte battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
KR20000052412A (en) Positive electrode for nonaqueous electrolyte battery and method of manufacturing the same, and nonaqueous electrolyte battery using the positive electrode and method of manufacturing the same
JP3059820B2 (en) Lithium secondary battery
JPH1069922A (en) Non-aqueous electrolyte lithium secondary battery
US9136529B2 (en) Method of charging and discharging a non-aqueous electrolyte secondary battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JP3203118B2 (en) Non-aqueous electrolyte secondary battery
JP3244389B2 (en) Lithium secondary battery
JP2000243437A (en) Solute for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JPH0684542A (en) Nonaqueous electrolytic solution secondary battery
US6482546B1 (en) Rechargeable lithium battery
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JP3188032B2 (en) Lithium secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP3519766B2 (en) Non-aqueous secondary battery
JPH08171934A (en) Lithium secondary battery
JPWO2002067355A1 (en) Lithium polymer battery
JP3615416B2 (en) Lithium secondary battery
JPH06275273A (en) Nonaqueous secondary battery
JPH06243869A (en) Nonaqueous secondary battery
JPH06275271A (en) Lithium secondary battery
JPH05290887A (en) Lithium secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term