JPH0650132A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine

Info

Publication number
JPH0650132A
JPH0650132A JP4203635A JP20363592A JPH0650132A JP H0650132 A JPH0650132 A JP H0650132A JP 4203635 A JP4203635 A JP 4203635A JP 20363592 A JP20363592 A JP 20363592A JP H0650132 A JPH0650132 A JP H0650132A
Authority
JP
Japan
Prior art keywords
nox
absorbent
exhaust gas
temperature
purification rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4203635A
Other languages
Japanese (ja)
Other versions
JP2658754B2 (en
Inventor
Shinichi Takeshima
伸一 竹島
Satomi Seto
里美 瀬戸
Toshiaki Tanaka
俊明 田中
Kenji Kato
健治 加藤
Satoru Iguchi
哲 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4203635A priority Critical patent/JP2658754B2/en
Publication of JPH0650132A publication Critical patent/JPH0650132A/en
Application granted granted Critical
Publication of JP2658754B2 publication Critical patent/JP2658754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To use each of NOx absorbents in the state where an NOx purification rate come to be at its peak. CONSTITUTION:A plural number of NOx absorbents to absorb NOx at the time when an air-fuel ratio of inflow exhaust gas is lean and discharge the absorbed NOx at the time when oxygen density in the inflow exhaust gas is lowered and which are different from each other in their temperature ranges where their NOx purification rates come to be at their peak are arranged in an engine exhaust passage. The exhaust gas of high temperature is delivered to a NOx absorbent 17 the NOx purification rate of which comes to be at its peak at the time when temperature is high, and the exhaust gas lowered in temperature is delivered to a NOx absorbent 23 the NOx purification rate of which come to be at its peak at the time when temperature is low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の排気浄化装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification device for an internal combustion engine.

【0002】[0002]

【従来の技術】リーン混合気を燃焼せしめるようにした
内燃機関において、流入排気ガスの空燃比がリーンのと
きにはNOxを吸収し、流入排気ガス中の酸素濃度が低
下すると吸収したNOxを放出するNOx吸収剤を機関
排気通路内に配置し、リーン混合気を燃焼せしめた際に
発生するNOxをNOx吸収剤により吸収し、NOx吸
収剤のNOx吸収能力が飽和する前にNOx吸収剤への
流入排気ガスの空燃比を一時的にリッチにしてNOx吸
収剤からNOxを放出させると共に放出されたNOxを
還元するようにした内燃機関が本出願人により既に提案
されている(特願平3−284095号参照)。
2. Description of the Related Art In an internal combustion engine that burns a lean mixture, NOx absorbs NOx when the air-fuel ratio of the inflowing exhaust gas is lean and releases the absorbed NOx when the oxygen concentration in the inflowing exhaust gas decreases. An absorbent is placed in the engine exhaust passage to absorb NOx generated when a lean air-fuel mixture is burned by the NOx absorbent, and the exhaust gas flowing into the NOx absorbent before the NOx absorbent capacity of the NOx absorbent is saturated. The applicant has already proposed an internal combustion engine in which the air-fuel ratio of the gas is temporarily made rich to release NOx from the NOx absorbent and reduce the released NOx (Japanese Patent Application No. 3-284095). reference).

【0003】[0003]

【発明が解決しようとする課題】しかしながらこのよう
なNOx吸収剤はNOxを吸収して保持する能力、即ち
NOxの浄化率が特定の温度領域においてピークにな
り、NOx吸収剤の温度がこの温度領域に対して低くな
っても高くなってもNOx吸収剤によるNOx浄化率が
低下する。従ってNOx浄化率がピークとなる温度領域
でNOx吸収剤を使用することが必要となるが上述の内
燃機関では複数のNOx吸収剤を用いた場合に各NOx
吸収剤を夫々NOx浄化率が高い状態で使用することに
関して何ら示唆していない。
However, such an NOx absorbent has the ability to absorb and retain NOx, that is, the purification rate of NOx reaches a peak in a specific temperature range, and the temperature of the NOx absorbent falls within this temperature range. However, the NOx purification rate by the NOx absorbent is reduced regardless of whether the NOx absorbent is low or high. Therefore, it is necessary to use the NOx absorbent in a temperature range where the NOx purification rate reaches its peak. However, in the above-mentioned internal combustion engine, when a plurality of NOx absorbents are used, each NOx absorbent is used.
There is no suggestion as to the use of the absorbents at high NOx purification rates, respectively.

【0004】[0004]

【課題を解決するための手段】本発明によれば、NOx
浄化率がピークとなる温度領域でNOx吸収剤を使用す
るために流入排気ガスの空燃比がリーンのときにはNO
xを吸収し、流入排気ガス中の酸素濃度が低下すると吸
収したNOxを放出するNOx吸収剤であってNOx浄
化率がピークとなる温度領域の異なる複数のNOx吸収
剤を機関排気通路内に配置し、温度の高い排気ガスは温
度が高いときにNOx浄化率がピークとなるNOx吸収
剤に送り込むと共に温度の低い排気ガスは温度が低いと
きにNOx浄化率がピークとなるNOx吸収剤に送り込
むようにしている。
According to the present invention, NOx
When the air-fuel ratio of the inflowing exhaust gas is lean, NO is used because the NOx absorbent is used in the temperature range where the purification rate reaches its peak.
A plurality of NOx absorbents that absorb x and release the absorbed NOx when the oxygen concentration in the inflowing exhaust gas decreases and that have different NOx purification rates in different temperature regions are arranged in the engine exhaust passage. However, the exhaust gas with a high temperature is sent to the NOx absorbent whose NOx purification rate has a peak when the temperature is high, and the exhaust gas with a low temperature is sent to the NOx absorbent whose NOx purification rate has a peak when the temperature is low. I have to.

【0005】[0005]

【作用】温度の高い排気ガスは温度が高いときにNOx
浄化率がピークとなるNOx吸収剤に送り込まれ、温度
の低い排気ガスは温度が低いときにNOx浄化率がピー
クとなるNOx吸収剤に送り込まれるので各NOx吸収
剤は夫々NOx浄化率がピークとなる状態で使用され
る。
[Function] Exhaust gas having a high temperature is NOx when the temperature is high.
The exhaust gas having a low purification rate is sent to the NOx absorbent, and the exhaust gas having a low temperature is sent to the NOx absorbent having a peak NOx purification rate when the temperature is low. Therefore, each NOx absorbent has a peak NOx purification rate. Used in the condition.

【0006】[0006]

【実施例】図1を参照すると、1は機関本体、2はピス
トン、3は燃焼室、4は点火栓、5は吸気弁、6は吸気
ポート、7は排気弁、8は排気ポートを夫々示す。吸気
ポート6は対応する枝管9を介してサージタンク10に
連結され、各枝管9には夫々吸気ポート6内に向けて燃
料を噴射する燃料噴射弁11が取付けられる。サージタ
ンク10は吸気ダクト12およびエアフローメータ13
を介してエアクリーナ14に連結され、吸気ダクト12
内にはスロットル弁15が配置される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, 1 is an engine body, 2 is a piston, 3 is a combustion chamber, 4 is a spark plug, 5 is an intake valve, 6 is an intake port, 7 is an exhaust valve, and 8 is an exhaust port. Show. The intake port 6 is connected to the surge tank 10 via a corresponding branch pipe 9, and each branch pipe 9 is provided with a fuel injection valve 11 for injecting fuel into the intake port 6. The surge tank 10 includes an intake duct 12 and an air flow meter 13
Is connected to the air cleaner 14 through the intake duct 12
A throttle valve 15 is arranged inside.

【0007】一方、排気ポート8は排気マニホルド16
を介して第1のNOx吸収剤17を内蔵したケーシング
18に連結され、このケーシング18は排気管19を介
して第2のNOx吸収剤20を内蔵したケーシング21
に連結される。更にこのケーシング21は排気管22を
介して第3のNOx吸収剤23を内蔵したケーシング2
4に連結される。従って排気通路内には排気ガスの流れ
方向において順に第1NOx吸収剤17、第2NOx吸
収剤20、第3NOx吸収剤23が配置されることにな
る。図1に示す内燃機関では燃焼室3内に供給される混
合気の空燃比はリーンとされ、従って燃焼室3内ではリ
ーン混合気が燃焼せしめられることになる。
On the other hand, the exhaust port 8 is connected to the exhaust manifold 16
Is connected to a casing 18 containing a first NOx absorbent 17 via a pipe, and the casing 18 is provided with a casing 21 containing a second NOx absorbent 20 via an exhaust pipe 19.
Connected to. Further, this casing 21 is a casing 2 in which a third NOx absorbent 23 is built in via an exhaust pipe 22.
4 is connected. Therefore, the first NOx absorbent 17, the second NOx absorbent 20, and the third NOx absorbent 23 are sequentially arranged in the exhaust passage in the flow direction of the exhaust gas. In the internal combustion engine shown in FIG. 1, the air-fuel ratio of the air-fuel mixture supplied into the combustion chamber 3 is lean, so that the lean air-fuel mixture is burned in the combustion chamber 3.

【0008】図2は燃焼室3から排出される排気ガス中
の代表的な成分の濃度を概略的に示している。図2から
わかるように燃焼室3から排出される排気ガス中の未燃
HC,COの量は燃焼室3内に供給される混合気の空燃
比がリッチになるほど増大し、燃焼室3から排出される
排気ガス中の酸素O2 の量は燃焼室3内に供給される混
合気の空燃比がリーンになるほど増大する。
FIG. 2 schematically shows the concentrations of typical components in the exhaust gas discharged from the combustion chamber 3. As can be seen from FIG. 2, the amount of unburned HC and CO in the exhaust gas discharged from the combustion chamber 3 increases as the air-fuel ratio of the air-fuel mixture supplied into the combustion chamber 3 becomes richer, and is discharged from the combustion chamber 3. The amount of oxygen O 2 in the generated exhaust gas increases as the air-fuel ratio of the air-fuel mixture supplied into the combustion chamber 3 becomes leaner.

【0009】各ケーシング18,21,24内に収容さ
れている各NOx吸収剤17,20,23は例えばアル
ミナを担体とし、この担体上に例えばカリウムK、ナト
リウムNa、リチウムLi、セシウムCsのようなアル
カリ金属、バリウムBa、カルシウムCaのようなアル
カリ土類、ランタンLa、イットリウムYのような希土
類から選ばれた少くとも一つと、白金Ptのような貴金
属と、必要に応じてその他の金属とが担持されている。
機関吸気通路およびNOx吸収剤17上流の排気通路内
に供給された空気および燃料の比を各NOx吸収剤1
7,20,23への流入排気ガスの空燃比と称すると各
NOx吸収剤17,20,23は流入排気ガスの空燃比
がリーンのときにはNOxを吸収し、流入排気ガス中の
酸素濃度が低下すると吸収したNOxを放出するNOx
の吸放出作用を行う。なお、NOx吸収剤17上流の排
気通路内に燃料或いは空気が供給されない場合には流入
排気ガスの空燃比は燃焼室3内に供給される混合気の空
燃比に一致し、従ってこの場合には各NOx吸収剤1
7,20,23は燃焼室3内に供給される混合気の空燃
比がリーンのときにはNOxを吸収し、燃焼室3内に供
給される混合気中の酸素濃度が低下すると吸収したNO
xを放出することになる。
Each of the NOx absorbents 17, 20, and 23 contained in each of the casings 18, 21, and 24 uses, for example, alumina as a carrier, on which potassium K, sodium Na, lithium Li, and cesium Cs are formed. At least one selected from the group consisting of alkaline metals, barium Ba, alkaline earths such as calcium Ca, lanthanum La, rare earths such as yttrium Y, precious metals such as platinum Pt, and optionally other metals. Is carried.
The ratio of the air and the fuel supplied into the exhaust passage upstream of the engine intake passage and the NOx absorbent 17 is determined by the NOx absorbent 1
When referred to as the air-fuel ratio of the inflowing exhaust gas to 7, 20, 23, each NOx absorbent 17, 20, 23 absorbs NOx when the air-fuel ratio of the inflowing exhaust gas is lean, and the oxygen concentration in the inflowing exhaust gas decreases. Then, NOx that releases the absorbed NOx
It absorbs and releases. When fuel or air is not supplied into the exhaust passage upstream of the NOx absorbent 17, the air-fuel ratio of the inflowing exhaust gas matches the air-fuel ratio of the air-fuel mixture supplied into the combustion chamber 3, and in this case, Each NOx absorbent 1
7, 20 and 23 absorb NOx when the air-fuel ratio of the air-fuel mixture supplied to the combustion chamber 3 is lean, and absorb NOx when the oxygen concentration in the air-fuel mixture supplied to the combustion chamber 3 decreases.
will emit x.

【0010】上述の各NOx吸収剤17,20,23を
機関排気通路内に配置すれば各NOx吸収剤17,2
0,23は実際にNOxの吸放出作用を行うがこの吸放
出作用の詳細なメカニズムについては明らかでない部分
もある。しかしながらこの吸放出作用は図3に示すよう
なメカニズムで行われているものと考えられる。次にこ
のメカニズムについて担体上に白金Ptおよびバリウム
Baを担持させた場合を例にとって説明するが他の貴金
属、アルカリ金属、アルカリ土類、希土類を用いても同
様なメカニズムとなる。
If the above NOx absorbents 17, 20 and 23 are arranged in the engine exhaust passage, the NOx absorbents 17 and 2 will be arranged.
Nos. 0 and 23 actually perform the NOx absorption / release action, but there is a part where the detailed mechanism of this absorption / release action is not clear. However, it is considered that this absorbing and releasing action is performed by the mechanism shown in FIG. Next, this mechanism will be described by taking the case where platinum Pt and barium Ba are supported on the carrier as an example, but the same mechanism can be obtained by using other noble metals, alkali metals, alkaline earths and rare earths.

【0011】即ち、流入排気ガスがかなりリーンになる
と流入排気ガス中の酸素濃度が大巾に増大し、図3
(A)に示されるようにこれら酸素O2 がO2 - の形で
白金Ptの表面に付着する。一方、流入排気ガス中のN
Oは白金Ptの表面上でO2 - と反応し、NO2 となる
(2NO+O2 →2NO2 )。次いで生成されたNO2
の一部は白金Pt上で更に酸化されつつ吸収剤内に吸収
されて酸化バリウムBaOと結合しながら、図3(A)
に示されるように硝酸イオンNO3 - の形で吸収剤内に
拡散する。このようにしてNOxが各NOx吸収剤1
7,20,23内に吸収される。
That is, when the inflowing exhaust gas becomes considerably lean, the oxygen concentration in the inflowing exhaust gas greatly increases.
As shown in (A), these oxygen O 2 attaches to the surface of platinum Pt in the form of O 2 . On the other hand, N in the inflowing exhaust gas
O reacts with O 2 on the surface of platinum Pt to become NO 2 (2NO + O 2 → 2NO 2 ). NO 2 produced next
3A is partially oxidized on the platinum Pt, is absorbed in the absorbent and is bonded to the barium oxide BaO, and FIG.
As shown in ( 3 ), it diffuses into the absorbent in the form of nitrate ion NO 3 . In this way, NOx is converted to each NOx absorbent 1
Absorbed in 7, 20, 23.

【0012】流入排気ガス中の酸素濃度が高い限り白金
Ptの表面でNO2 が生成され、吸収剤のNOx吸収能
力が飽和しない限りNO2 が吸収剤内に吸収されて硝酸
イオンNO3 - が生成される。これに対して流入排気ガ
ス中の酸素濃度が低下してNO2 の生成量が低下すると
反応が逆方向(NO3 - →NO2 )に進み、斯くして吸
収剤内の硝酸イオンNO3 - がNO2 の形で吸収剤から
放出される。即ち、流入排気ガス中の酸素濃度が低下す
ると各NOx吸収剤17,20,23からNOxが放出
されることになる。図2に示されるように流入排気ガス
のリーンの度合が低くなれば流入排気ガス中の酸素濃度
が低下し、従って流入排気ガスのリーンの度合を低くす
れば各NOx吸収剤17,20,23からNOxが放出
されることになる。
NO 2 is produced on the surface of platinum Pt as long as the oxygen concentration in the inflowing exhaust gas is high, and NO 2 is absorbed in the absorbent as long as the NOx absorption capacity of the absorbent is not saturated, and nitrate ions NO 3 are produced. Is generated. In contrast the reaction with the amount of NO 2 oxygen concentration is lowered in the inflowing exhaust gas is lowered backward (NO 3 - → NO 2) proceeds to, thus nitrate ions to the absorber NO 3 - Are released from the absorbent in the form of NO 2 . That is, when the oxygen concentration in the inflowing exhaust gas decreases, NOx is released from each NOx absorbent 17, 20, 23. As shown in FIG. 2, if the lean degree of the inflowing exhaust gas is low, the oxygen concentration in the inflowing exhaust gas is low. Therefore, if the lean degree of the inflowing exhaust gas is low, each NOx absorbent 17, 20, 23 is reduced. NOx will be released from.

【0013】一方、このとき流入排気ガスの空燃比をリ
ッチにすると図2に示されるように機関からは多量の未
燃HC,COが排出され、これら未燃HC,COは白金
Pt上の酸素O2 - と反応して酸化せしめられる。ま
た、流入排気ガスの空燃比をリッチにすると流入排気ガ
ス中の酸素濃度が極度に低下するために吸収剤からNO
2 が放出され、このNO2 は図3(B)に示されるよう
に未燃HC,COと反応して還元せしめられる。このよ
うにして白金Ptの表面上にNO2 が存在しなくなると
吸収剤から次から次へとNO2 が放出される。従って流
入排気ガスの空燃比をリッチにすると短時間のうちに各
NOx吸収剤17,20,23からNOxが放出される
ことになる。
On the other hand, at this time, the air-fuel ratio of the inflowing exhaust gas is
As shown in Fig. 2, a large amount of
Burned HC and CO are discharged, and these unburned HC and CO are platinum
Oxygen O on Pt2 -It reacts with and is oxidized. Well
In addition, when the air-fuel ratio of the inflow exhaust gas is made rich, the inflow exhaust gas
Since the oxygen concentration in the gas is extremely low, NO
2Is released and this NO2As shown in FIG. 3 (B)
It is reduced by reacting with unburned HC and CO. This
Thus NO on the surface of platinum Pt2When no longer exists
Absorbent NO one after another2Is released. Therefore flow
If the air-fuel ratio of the incoming and exhaust gas is made rich, each
NOx is released from the NOx absorbent 17, 20, 23
It will be.

【0014】このように流入排気ガスの空燃比がリーン
になるとNOxが各NOx吸収剤17,20,23に吸
収され、流入排気ガスの空燃比をリッチにするとNOx
が各NOx吸収剤17,20,23から短時間のうちに
放出される。従って図1に示す内燃機関ではリーン混合
気の燃焼期間が一定期間経過したときに機関シリンダ内
に供給される混合気の空燃比を一時的にリッチにして各
NOx吸収剤17,20,23からNOxを放出させる
ようにしている。
As described above, when the air-fuel ratio of the inflowing exhaust gas becomes lean, NOx is absorbed by the NOx absorbents 17, 20, 23, and when the air-fuel ratio of the inflowing exhaust gas is made rich, NOx.
Is released from each NOx absorbent 17, 20, 23 in a short time. Therefore, in the internal combustion engine shown in FIG. 1, the air-fuel ratio of the air-fuel mixture supplied to the engine cylinder is temporarily made rich when the combustion period of the lean air-fuel mixture has passed for a certain period of time, from each NOx absorbent 17, 20, 23. It is designed to release NOx.

【0015】ところが各NOx吸収剤17,20,23
がNOxを吸収して保持しておく能力、即ちNOxの浄
化率は担体上に担持されている金属の種数によって温度
依存性を有し、これを図4に示す。図4の縦軸はNOx
浄化率を示しており、図4の横軸は各NOx吸収剤1
7,20,23の温度を示している。図4からわかるよ
うに白金PtとバリウムBaの組合せからなるPt−B
a吸収剤は吸収剤の温度が250℃から350℃の中温
においてNOxの浄化率がピークとなる。これに対して
白金PtとランタンLaの組合せからなるPt−La吸
収剤および白金Pt、バリウムBaおよび鉄Feの組合
せからなるPt−Ba−Fe吸収剤は250℃以下の低
温においてNOx浄化率がピークとなり、白金Ptとカ
リウムKとの組合せからなるPt−K吸収剤、白金P
t、バリウムBaおよびニッケルNiからなるPt−B
a−Ni吸収剤、および白金Pt、バリウムBaおよび
銅CuからなるPt−Ba−Cu吸収剤は350℃以上
の高温においてNOx浄化率がピークとなる。
However, each NOx absorbent 17, 20, 23
The ability of NOx to absorb and retain NOx, that is, the NOx purification rate, has temperature dependence depending on the number of metals supported on the carrier, which is shown in FIG. The vertical axis of FIG. 4 is NOx
The purification rate is shown, and the horizontal axis of FIG. 4 shows each NOx absorbent 1
The temperatures of 7, 20, and 23 are shown. As can be seen from FIG. 4, Pt-B composed of a combination of platinum Pt and barium Ba
The NOx purification rate of the absorbent a peaks at an intermediate temperature of the absorbent of 250 to 350 ° C. On the other hand, the Pt-La absorbent composed of a combination of platinum Pt and lanthanum La and the Pt-Ba-Fe absorbent composed of a combination of platinum Pt, barium Ba and iron Fe show a peak NOx purification rate at a low temperature of 250 ° C or lower. Pt-K absorbent composed of platinum Pt and potassium K, platinum P
Pt-B composed of t, barium Ba and nickel Ni
The NOx purification rate of the a-Ni absorbent and the Pt-Ba-Cu absorbent composed of platinum Pt, barium Ba, and copper Cu peaks at a high temperature of 350 ° C or higher.

【0016】例えば図4のPt−Ba吸収剤は低温にな
ると白金Ptの表面上におけるNOxの酸化作用が進ま
なくなり、また吸収剤へのNOxの吸収作用が遅くなる
ためにNOx浄化率が低下してくる。一方、高温になる
と吸収剤内において硝酸塩が分解されてNOxが放出さ
れるためにNOx浄化率が低下してくる。ところがこの
ようなNOxの酸化作用や吸収作用および硝酸塩の分解
作用と温度との関係は担体上に担持されている金属の種
数によって異なり、従って図4に示すように担体上に担
持される金属の種類によってNOx浄化率がピークとな
る温度領域が異なることになる。
For example, in the Pt-Ba absorbent shown in FIG. 4, when the temperature is low, the oxidation effect of NOx on the surface of platinum Pt does not proceed, and the absorption effect of NOx on the absorbent is slowed, so that the NOx purification rate decreases. Come on. On the other hand, when the temperature rises, the nitrate is decomposed in the absorbent and NOx is released, so that the NOx purification rate decreases. However, the relationship between the oxidizing action and absorbing action of NOx and the decomposing action of nitrate and the temperature depends on the kind of the metal supported on the carrier. Therefore, as shown in FIG. The temperature range in which the NOx purification rate reaches a peak varies depending on the type.

【0017】このように担体上に担持される金属の種類
によってNOx浄化率がピークとなる温度領域が異なる
のでこれを考慮してNOx吸収剤を使用しなければなら
ない。そこで図1に示す実施例では第1NOx吸収剤1
7としてPt−K吸収剤、Pt−Ba−Ni吸収剤、P
t−Ba−Cu吸収剤のようにNOx浄化率が高温でピ
ークとなる吸収剤が用いられ、第2NOx吸収剤20と
してPt−Ba吸収剤のようにNOx浄化率が中温でピ
ークとなる吸収剤が用いられ、第3NOx吸収剤23と
してPt−Ba−Fe吸収剤、Pt−La吸収剤のよう
にNOx浄化率が低温でピークとなる吸収剤が用いられ
ている。
As described above, the temperature range in which the NOx purification rate reaches a peak varies depending on the type of metal supported on the carrier, and therefore the NOx absorbent must be used in consideration of this. Therefore, in the embodiment shown in FIG. 1, the first NOx absorbent 1
7, Pt-K absorbent, Pt-Ba-Ni absorbent, P
An absorbent having a high NOx purification rate at a high temperature such as a t-Ba-Cu absorbent is used, and an absorbent having a NOx purification rate peaking at an intermediate temperature, such as a Pt-Ba absorbent, is used as the second NOx absorbent 20. Is used as the third NOx absorbent 23, such as a Pt-Ba-Fe absorbent or a Pt-La absorbent having a NOx purification rate that peaks at a low temperature.

【0018】図1に示す内燃機関では各NOx吸収剤1
7,20,23に流入する排気ガス温は下流にいくほど
低くなる。従って上述のようにNOx浄化率が高温でピ
ークとなる吸収剤を第1NOx吸収剤17として用い、
NOx浄化率が低温でピークとなる吸収剤を第2NOx
吸収剤20として用い、NOx浄化率が高温でピークと
なる吸収剤を第3NOx吸収剤23として用いることに
よって各吸収剤17,20,23をNOx浄化率がピー
クとなる温度で使用することができ、斯くしてNOxの
浄化効率を高めることができることになる。
In the internal combustion engine shown in FIG. 1, each NOx absorbent 1
The exhaust gas temperature flowing into 7, 20, and 23 becomes lower as it goes downstream. Therefore, as described above, the absorbent having the peak NOx purification rate at a high temperature is used as the first NOx absorbent 17,
When the NOx purification rate reaches a peak at low temperature, the second NOx
By using the absorbent that is used as the absorbent 20 and the NOx purification rate peaks at a high temperature as the third NOx absorbent 23, each of the absorbents 17, 20, and 23 can be used at the temperature where the NOx purification rate peaks. Therefore, the purification efficiency of NOx can be improved.

【0019】図5は別の実施例を示す。この実施例では
排気マニホルド16が排気管30を介して電磁切換弁3
1に連結され、この電磁切換弁31からは3個の排気管
32,33,34が延びている。排気管32は第1のN
Ox吸収剤35を内蔵したケーシング36に連結され、
排気管33は第2のNOx吸収剤37を内蔵したケーシ
ング38に連結され、排気管34は第3のNOx吸収剤
39を内蔵したケーシング40に連結されている。
FIG. 5 shows another embodiment. In this embodiment, the exhaust manifold 16 is connected to the electromagnetic switching valve 3 via the exhaust pipe 30.
Three exhaust pipes 32, 33, 34 extend from the electromagnetic switching valve 31. The exhaust pipe 32 is the first N
Connected to a casing 36 containing an Ox absorbent 35,
The exhaust pipe 33 is connected to a casing 38 containing a second NOx absorbent 37, and the exhaust pipe 34 is connected to a casing 40 containing a third NOx absorbent 39.

【0020】この実施例では第1NOx吸収剤35とし
てPt−K吸収剤、Pt−Ba−Ni吸収剤、Pt−B
a−Cu吸収剤のようにNOx浄化率が高温でピークと
なる吸収剤が用いられ、第2NOx吸収剤37としてP
t−Ba吸収剤のようにNOx浄化率が中温でピークと
なる吸収剤が用いられ、第3NOx吸収剤40としてP
t−Ba−Fe吸収剤、Pt−La吸収剤のようにNO
x浄化率が低温でピークとなる吸収剤が用いられてい
る。
In this embodiment, the first NOx absorbent 35 is Pt-K absorbent, Pt-Ba-Ni absorbent, Pt-B.
An absorbent having a NOx purification rate that peaks at a high temperature, such as an a-Cu absorbent, is used, and P is used as the second NOx absorbent 37.
An absorbent whose NOx purification rate has a peak at an intermediate temperature, such as a t-Ba absorbent, is used, and P is used as the third NOx absorbent 40.
NO like t-Ba-Fe absorbent, Pt-La absorbent
An absorbent having an x purification rate that peaks at a low temperature is used.

【0021】電磁切換弁31は電子制御ユニット50の
出力信号により制御される。この電子制御ユニット50
はディジタルコンピュータからなり、双方向性バス51
によって相互に接続されたROM(リードオンリメモ
リ)52、RAM(ランダムアクセスメモリ(RAM)
53、CPU(マイクロプロセッサ)54、入力ポート
55および出力ポート56を具備する。エアフローメー
タ13は吸入空気量に比例した出力電圧を発生し、この
出力電圧がAD変換器57を介して入力ポート55に入
力される。排気管30には排気ガス温に比例した出力電
圧を発生する温度センサ58が取付けられ、この温度セ
ンサ58の出力電圧がAD変換器59を介して入力ポー
ト55に入力される。また、入力ポート55には機関回
転数を表わす出力パルスを発生する回転数センサ60が
接続される。一方、出力ポート56は対応する駆動回路
61を介して夫々点火栓4、燃料噴射弁11および電磁
切換弁31に接続される。
The electromagnetic switching valve 31 is controlled by the output signal of the electronic control unit 50. This electronic control unit 50
Is a digital computer and has a bidirectional bus 51.
ROM (Read Only Memory) 52, RAM (Random Access Memory (RAM)) mutually connected by
53, a CPU (microprocessor) 54, an input port 55 and an output port 56. The air flow meter 13 generates an output voltage proportional to the intake air amount, and this output voltage is input to the input port 55 via the AD converter 57. A temperature sensor 58 that generates an output voltage proportional to the exhaust gas temperature is attached to the exhaust pipe 30, and the output voltage of the temperature sensor 58 is input to the input port 55 via the AD converter 59. Further, the input port 55 is connected to a rotation speed sensor 60 that generates an output pulse representing the engine rotation speed. On the other hand, the output port 56 is connected to the spark plug 4, the fuel injection valve 11 and the electromagnetic switching valve 31 via the corresponding drive circuit 61, respectively.

【0022】図6は電磁切換弁31の制御ルーチンを示
しており、このルーチンは一定時間毎の割込みによって
実行される。図6を参照するとまず初めにステップ70
において温度センサ58の出力信号に基いて排気ガス温
Tが予め定められた一定値T1 、例えば250℃よりも
低いか否かが判別される。T≧T1 のとき、即ち排気ガ
ス温Tが低温でないときにはステップ71に進んで排気
ガス温Tが予め定められた一定値T2 、例えば350℃
よりも高いか否かが判別される。T≦T2 のとき、即ち
排気ガス温Tが高温でないときにはステップ72に進
む。即ち、排気ガス温Tが中温のときにステップ72に
進む。
FIG. 6 shows a control routine for the solenoid operated directional control valve 31, and this routine is executed by interruption at regular time intervals. Referring to FIG. 6, first, step 70
At, it is determined whether the exhaust gas temperature T is lower than a predetermined constant value T 1 , for example, 250 ° C., based on the output signal of the temperature sensor 58. When T ≧ T 1 , that is, when the exhaust gas temperature T is not low, the routine proceeds to step 71, where the exhaust gas temperature T is a predetermined constant value T 2 , for example 350 ° C.
Is higher than the above. When T ≦ T 2 , that is, when the exhaust gas temperature T is not high, the routine proceeds to step 72. That is, when the exhaust gas temperature T is a medium temperature, the routine proceeds to step 72.

【0023】ステップ72では排気管30を排気管33
に接続するように電磁切換弁31が切換えられる。従っ
てこのときには排気ガスは第2NOx吸収剤37内に流
入する。このとき排気ガス温Tは中温であり、一方第2
NOx吸収剤37のNOx浄化率は中温のときにピーク
になるので第2NOx吸収剤37のNOx浄化率はピー
クとなる。斯くしてNOxは第2NOx吸収剤37によ
って良好に浄化されることになる。
In step 72, the exhaust pipe 30 is connected to the exhaust pipe 33.
The electromagnetic switching valve 31 is switched so as to be connected to. Therefore, at this time, the exhaust gas flows into the second NOx absorbent 37. At this time, the exhaust gas temperature T is a medium temperature, while the second
Since the NOx purification rate of the NOx absorbent 37 peaks at the medium temperature, the NOx purification rate of the second NOx absorbent 37 peaks. Thus, the NOx is satisfactorily purified by the second NOx absorbent 37.

【0024】一方、ステップ70においてT<T1 であ
ると判断されたとき、即ち排気ガス温Tが低温であると
きにはステップ73に進んで排気管30を排気管39に
接続するように電磁切換弁31が切換えられる。従って
このときには排気ガスは第3NOx吸収剤39内に流入
する。このとき排気ガス温Tは低温であり、一方第3N
Ox吸収剤39のNOx浄化率は低温のときにピークに
なるので第3NOx吸収剤39のNOx浄化率はピーク
となる。斯くしてNOxは第3NOx吸収剤39によっ
て良好に浄化されることになる。
On the other hand, when it is judged at step 70 that T <T 1, that is, when the exhaust gas temperature T is low, the routine proceeds to step 73, where the electromagnetic switching valve is arranged to connect the exhaust pipe 30 to the exhaust pipe 39. 31 is switched. Therefore, at this time, the exhaust gas flows into the third NOx absorbent 39. At this time, the exhaust gas temperature T is low, while the third N
Since the NOx purification rate of the Ox absorbent 39 peaks at a low temperature, the NOx purification rate of the third NOx absorbent 39 peaks. Thus, the NOx will be satisfactorily purified by the third NOx absorbent 39.

【0025】一方、ステップ71においてT>T2 であ
ると判断されたとき、即ち排気ガス温Tが高温であると
きにはステップ74に進んで排気管30を排気管32に
接続するように電磁切換弁31が切換えられる。従って
このときには排気ガスは第1NOx吸収剤35内に流入
する。このとき排気ガス温Tは高温であり、一方第1N
Ox吸収剤35のNOx浄化率は高温のときにピークに
なるので第1NOx吸収剤35のNOx浄化率はピーク
となる。斯くしてNOxは第1NOx吸収剤35によっ
て良好に浄化されることになる。
On the other hand, when it is judged at step 71 that T> T 2, that is, when the exhaust gas temperature T is high, the routine proceeds to step 74, where the electromagnetic switching valve is arranged to connect the exhaust pipe 30 to the exhaust pipe 32. 31 is switched. Therefore, at this time, the exhaust gas flows into the first NOx absorbent 35. At this time, the exhaust gas temperature T is high, while the first N
Since the NOx purification rate of the Ox absorbent 35 peaks at high temperature, the NOx purification rate of the first NOx absorbent 35 peaks. Thus, the NOx is satisfactorily purified by the first NOx absorbent 35.

【0026】このようにこの実施例では排気ガス温Tに
応じてNOx浄化率がピークとなるNOx吸収剤を選択
的に使用するようにしているので排気ガス温Tにかかわ
らずにNOxを良好に浄化できることになる。なお、こ
の実施例では排気管30内の排気ガス温Tを温度センサ
58により検出するようにしているが排気管30内の排
気ガス温Tは機関負荷Q/N(吸入空気量Q/機関回転
数N)と機関回転数Nの関数となる。従って排気管30
内の排気ガス温Tを機関負荷Q/Nと機関回転数Nの関
数として予め実験により求めておき、これらの関係を図
7に示すようなマップの形で予めROM52内に記憶し
ておいてこのマップから排気ガス温Tを求めるようにす
ることもできる。この場合には温度センサ58を設ける
必要がなくなる。
As described above, in this embodiment, the NOx absorbent having the NOx purification rate peaking in accordance with the exhaust gas temperature T is selectively used, so that the NOx is improved regardless of the exhaust gas temperature T. It can be purified. In this embodiment, the exhaust gas temperature T in the exhaust pipe 30 is detected by the temperature sensor 58, but the exhaust gas temperature T in the exhaust pipe 30 is determined by the engine load Q / N (intake air amount Q / engine rotation speed). Number N) and engine speed N. Therefore, the exhaust pipe 30
The exhaust gas temperature T therein is obtained in advance as a function of the engine load Q / N and the engine speed N by experiments, and the relationship between them is stored in advance in the ROM 52 in the form of a map as shown in FIG. It is also possible to obtain the exhaust gas temperature T from this map. In this case, it is not necessary to provide the temperature sensor 58.

【0027】[0027]

【発明の効果】各NOx吸収剤をNOx浄化率がピーク
となる状態で使用することによって良好なNOxの浄化
作用を行うことができる。
EFFECTS OF THE INVENTION By using each NOx absorbent in a state where the NOx purification rate reaches its peak, a good NOx purification action can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】内燃機関の全体図である。FIG. 1 is an overall view of an internal combustion engine.

【図2】機関から排出される排気ガス中の未燃HC,C
Oおよび酸素の濃度を概略的に示す線図である。
[Fig. 2] Unburned HC and C in exhaust gas discharged from the engine
It is a diagram which shows the concentration of O and oxygen roughly.

【図3】NOxの吸放出作用を説明するための図であ
る。
FIG. 3 is a diagram for explaining the action of NOx absorption and release.

【図4】各NOx吸収剤のNOx浄化率を示す線図であ
る。
FIG. 4 is a diagram showing the NOx purification rate of each NOx absorbent.

【図5】内燃機関の別の実施例の全体図である。FIG. 5 is an overall view of another embodiment of the internal combustion engine.

【図6】電磁切換弁を制御するためのフローチャートで
ある。
FIG. 6 is a flowchart for controlling an electromagnetic switching valve.

【図7】排気ガス温Tのマップを示す図である。FIG. 7 is a diagram showing a map of an exhaust gas temperature T.

【符号の説明】[Explanation of symbols]

16…排気マニホルド 17,35…第1NOx吸収剤 20,37…第2NOx吸収剤 23,39…第3NOx吸収剤 16 ... Exhaust manifold 17,35 ... First NOx absorbent 20,37 ... Second NOx absorbent 23, 39 ... Third NOx absorbent

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 健治 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 井口 哲 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Kato 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Co., Ltd. (72) Inventor Satoshi Iguchi 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流入排気ガスの空燃比がリーンのときに
はNOxを吸収し、流入排気ガス中の酸素濃度が低下す
ると吸収したNOxを放出するNOx吸収剤であってN
Ox浄化率がピークとなる温度領域の異なる複数のNO
x吸収剤を機関排気通路内に配置し、温度の高い排気ガ
スは温度が高いときにNOx浄化率がピークとなるNO
x吸収剤に送り込むと共に温度の低い排気ガスは温度が
低いときにNOx浄化率がピークとなるNOx吸収剤に
送り込むようにした内燃機関の排気浄化装置。
1. A NOx absorbent that absorbs NOx when the air-fuel ratio of the inflowing exhaust gas is lean and releases the absorbed NOx when the oxygen concentration in the inflowing exhaust gas decreases,
A plurality of NOs in different temperature regions where the Ox purification rate reaches a peak
NOx purification rate is peaked when the temperature of exhaust gas having a high temperature is high by placing the x-absorbent in the engine exhaust passage.
An exhaust gas purification apparatus for an internal combustion engine, which sends exhaust gas having a low temperature to the NOx absorbent, which has a peak NOx purification rate when the temperature is low.
JP4203635A 1992-07-30 1992-07-30 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP2658754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4203635A JP2658754B2 (en) 1992-07-30 1992-07-30 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4203635A JP2658754B2 (en) 1992-07-30 1992-07-30 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0650132A true JPH0650132A (en) 1994-02-22
JP2658754B2 JP2658754B2 (en) 1997-09-30

Family

ID=16477316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4203635A Expired - Lifetime JP2658754B2 (en) 1992-07-30 1992-07-30 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2658754B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332396A (en) * 1994-06-01 1995-12-22 Gkn Viscodrive Gmbh Viscous coupling
US6370869B1 (en) 1999-07-28 2002-04-16 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of an engine
JP2003536012A (en) * 2000-06-06 2003-12-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Diesel exhaust system including NOx trap
US6820417B2 (en) * 2001-11-29 2004-11-23 Analytical Engineering, Inc. Exhaust aftertreatment system and method for an internal combustion engine
EP1609962A1 (en) * 2004-06-23 2005-12-28 GM Global Technology Operations, Inc. Exhaust system for improving the NOx reduction efficiency in vehicles
JP2015025433A (en) * 2013-07-29 2015-02-05 三菱自動車工業株式会社 Exhaust emission control device for internal combustion engine
JP2018021564A (en) * 2017-10-26 2018-02-08 三菱自動車工業株式会社 Exhaust emission control device for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4432923B2 (en) 2006-03-23 2010-03-17 トヨタ自動車株式会社 Exhaust gas purification device for compression ignition type internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332396A (en) * 1994-06-01 1995-12-22 Gkn Viscodrive Gmbh Viscous coupling
US5791446A (en) * 1994-06-01 1998-08-11 Gkn Viscodrive Gmbh Viscous coupling having a toothed hub used as a carrier for the inner
US6370869B1 (en) 1999-07-28 2002-04-16 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of an engine
JP2003536012A (en) * 2000-06-06 2003-12-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Diesel exhaust system including NOx trap
US6820417B2 (en) * 2001-11-29 2004-11-23 Analytical Engineering, Inc. Exhaust aftertreatment system and method for an internal combustion engine
EP1609962A1 (en) * 2004-06-23 2005-12-28 GM Global Technology Operations, Inc. Exhaust system for improving the NOx reduction efficiency in vehicles
JP2015025433A (en) * 2013-07-29 2015-02-05 三菱自動車工業株式会社 Exhaust emission control device for internal combustion engine
JP2018021564A (en) * 2017-10-26 2018-02-08 三菱自動車工業株式会社 Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JP2658754B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JP2605556B2 (en) Exhaust gas purification device for internal combustion engine
JP2605553B2 (en) Exhaust gas purification device for internal combustion engine
JP2692530B2 (en) Internal combustion engine
JP2586738B2 (en) Exhaust gas purification device for internal combustion engine
EP0598916B1 (en) Exhaust emission control system for internal combustion engine
JP2658754B2 (en) Exhaust gas purification device for internal combustion engine
JP2605580B2 (en) Exhaust gas purification device for internal combustion engine
JP2658756B2 (en) Exhaust gas purification device for internal combustion engine
JP3344215B2 (en) Exhaust gas purification device for internal combustion engine
JP2743751B2 (en) Exhaust gas purification device for internal combustion engine
JP2663807B2 (en) Exhaust gas purification device for internal combustion engine
JPH06294319A (en) Exhaust purifying device for internal combustion engine
JP2605571B2 (en) Exhaust gas purification device for internal combustion engine
JP2689829B2 (en) Exhaust gas purification device for internal combustion engine
JP2852589B2 (en) Exhaust gas purification device for internal combustion engine
JP2743750B2 (en) Exhaust gas purification device for internal combustion engine
JP3123513B2 (en) Exhaust gas purification device for internal combustion engine
JP3075214B2 (en) Exhaust gas purification device for internal combustion engine
JP2682343B2 (en) Exhaust gas purification device for internal combustion engine
JP3144183B2 (en) Exhaust gas purification device for internal combustion engine
JPH07189660A (en) Exhaust emission control device of internal combustion engine
JP2881262B2 (en) Exhaust gas purification device for internal combustion engine
JP3512062B2 (en) Exhaust gas purification device for internal combustion engine
JP2658757B2 (en) Exhaust gas purification device for internal combustion engine
JP3211520B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 16