JPH0649363B2 - Method for producing fiber molding for thermoforming - Google Patents

Method for producing fiber molding for thermoforming

Info

Publication number
JPH0649363B2
JPH0649363B2 JP62327722A JP32772287A JPH0649363B2 JP H0649363 B2 JPH0649363 B2 JP H0649363B2 JP 62327722 A JP62327722 A JP 62327722A JP 32772287 A JP32772287 A JP 32772287A JP H0649363 B2 JPH0649363 B2 JP H0649363B2
Authority
JP
Japan
Prior art keywords
mat
resin
thickness
plate
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62327722A
Other languages
Japanese (ja)
Other versions
JPH01166946A (en
Inventor
昌博 塚本
克彦 山路
正彦 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP62327722A priority Critical patent/JPH0649363B2/en
Publication of JPH01166946A publication Critical patent/JPH01166946A/en
Publication of JPH0649363B2 publication Critical patent/JPH0649363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車用天井材として好適な熱成形用繊維成
形体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a fiber molding for thermoforming, which is suitable as a ceiling material for automobiles.

(従来の技術) 自動車用天井材には、軽量で、剛性、耐熱性、吸音性、
熱賦形性などの性能に優れた材料が要求される。
(Prior Art) Light weight, rigidity, heat resistance, sound absorption,
Materials with excellent properties such as heat shaping properties are required.

この種の材料として、例えば特開昭60-83832号公報に
は、ガラス繊維などの無機繊維層の両面に、ポリエチレ
ンなどの合成樹脂層を積層成形体した自動車用天井材が
開示されている。ところが、かかる積層成形体は、特に
吸音性が低く、自動車用天井材としては不充分で問題が
ある。
As a material of this type, for example, Japanese Patent Laid-Open No. 60-83832 discloses an automobile ceiling material in which a synthetic resin layer such as polyethylene is laminated on both sides of an inorganic fiber layer such as glass fiber. However, such a laminated molded body has a particularly low sound absorbing property and is insufficient as a ceiling material for automobiles, which is problematic.

(発明が解決しようとする問題点) 本発明は、上記の問題点を解決するものであり、その目
的とするところは、軽量で、剛性、耐熱性、熱賦形性、
及び吸音性に優れた、自動車用天井材に適した熱成形用
繊維成形体の製造方法を提供することにある。
(Problems to be Solved by the Invention) The present invention is to solve the above-mentioned problems, and an object of the present invention is to provide lightweight, rigidity, heat resistance, heat shaping properties,
Another object of the present invention is to provide a method for producing a fiber molding for thermoforming, which is excellent in sound absorption and suitable for a ceiling material for automobiles.

(問題点を解決するための手段) 本発明においては、先ず、無機繊維を主成分とするマッ
ト状物の両面に熱可塑性樹脂からなるフィルムを積層す
る。
(Means for Solving Problems) In the present invention, first, a film made of a thermoplastic resin is laminated on both surfaces of a mat-like material containing inorganic fibers as a main component.

上記の無機繊維としては、ガラス繊維、ロックウール、
セラミック繊維、炭素繊維等があげられ、その長さはマ
ット状物の成形性の点から5〜200 mmが好ましく、50mm
以上のものが70重量%以上含まれているのがより好まし
い。又、その太さは細くなると機械的強度が低下し、太
くなると重くなって嵩密度が小さくなるので2〜30μm
が好ましく、より好ましくは7〜20μmである。
As the above-mentioned inorganic fiber, glass fiber, rock wool,
Ceramic fibers, carbon fibers, etc. can be mentioned, and the length thereof is preferably 5 to 200 mm from the viewpoint of moldability of the mat-like material, 50 mm.
It is more preferable that the above content is 70% by weight or more. If the thickness is thin, the mechanical strength is low, and if it is thick, it is heavy and the bulk density is low.
Is preferable, and more preferably 7 to 20 μm.

上記の無機繊維には熱可塑性樹脂繊維を混合してもよ
い。このような熱可塑性樹脂繊維を混合すると、マット
状物が嵩高になりマット化が容易となる。かかる熱可塑
性樹脂繊維としては、ポリエチレン繊維、ポリプロピレ
ン繊維、ポリエステル繊維、ポリアミド繊維等があげら
れ、長さは5〜200 mmが好ましく、より好ましくは20〜
100 mmであり、太さは3〜50μmが好ましく、より好ま
しくは20〜40μmである。
You may mix a thermoplastic resin fiber with the said inorganic fiber. When such a thermoplastic resin fiber is mixed, the mat-like material becomes bulky and matting becomes easy. Examples of such thermoplastic resin fibers include polyethylene fibers, polypropylene fibers, polyester fibers, polyamide fibers, etc., and the length is preferably 5 to 200 mm, more preferably 20 to
The thickness is 100 mm, and the thickness is preferably 3 to 50 μm, more preferably 20 to 40 μm.

このような熱可塑性樹脂繊維は、本発明の加熱工程にお
いて溶融して無機繊維のバインダーとなる場合と、溶融
せずに無機繊維に混在している場合とがあるが、いずれ
の状態であっても支障はない。
Such a thermoplastic resin fiber may be melted in the heating step of the present invention to be a binder of the inorganic fiber or may be mixed in the inorganic fiber without being melted, but in any state. There is no problem.

また、上記の無機繊維には、熱可塑性樹脂粉末を混合し
てもよい。かかる熱可塑性樹脂粉末としては、マット状
物の両面に積層するフィルムと同様な樹脂のうち、融点
がそれより低い樹脂であって、一般に50〜100 メッシュ
の粉末が用いられる。このような熱可塑性樹脂粉末は、
本発明の加熱工程において溶融して無機繊維のバインダ
ーとなる。
Further, thermoplastic resin powder may be mixed with the above-mentioned inorganic fibers. As the thermoplastic resin powder, among the resins similar to the film laminated on both surfaces of the mat-like material, a resin having a lower melting point and generally having a powder of 50 to 100 mesh is used. Such a thermoplastic resin powder,
In the heating step of the present invention, it is melted to become a binder for inorganic fibers.

マット状物の密度は、大きくなると重くなりすぎ、小さ
くなると機械的強度が低下するので0.01〜0.2 g/cm3
が好ましく、より好ましくは0.03〜0.07g/cm3であ
る。また、マット状物の厚みは薄くなると機械的強度が
低下し、厚くなると加熱の際に中心部まで熱が伝わりに
くく多量の熱量を要するので3〜100 mmの範囲が好まし
く、自動車用天井材としては4〜12mmが好ましい。
If the density of the mat-like material is too large, it becomes too heavy, and if it becomes too small, the mechanical strength decreases, so it is 0.01 to 0.2 g / cm 3
Is preferable, and more preferably 0.03 to 0.07 g / cm 3 . Also, as the thickness of the mat-like material decreases, the mechanical strength decreases, and when it increases, it is difficult for the heat to reach the central portion during heating, and a large amount of heat is required. Therefore, the range of 3 to 100 mm is preferable. Is preferably 4 to 12 mm.

上記マット状物の製造方法は任意の方法が採用されてよ
く、例えば無機繊維と熱可塑性樹脂繊維や熱可塑性樹脂
粉末などの樹脂成分をカードマシンに供給し、解繊、混
繊し、必要に応じてニードルパンチを施こしマット状物
を製造する方法があげられる。熱可塑性樹脂粉末を混合
する場合は、この粉末はマット状物の製造後に添加して
もよく、また、エマルジョンやサスペンションを散布し
てもよい。
As the method for producing the mat-like material, any method may be adopted, and for example, a resin component such as an inorganic fiber and a thermoplastic resin fiber or a thermoplastic resin powder is supplied to a card machine, defibrated, mixed, and if necessary. Accordingly, there is a method of producing a mat-like material by subjecting it to needle punching. When the thermoplastic resin powder is mixed, this powder may be added after the production of the mat-like material, or an emulsion or suspension may be dispersed.

本発明の加熱工程で溶融しない熱可塑性樹脂繊維を混合
する場合は、その混合量はマット状物中の無機繊維が50
重量%以上を占めるように抑えられる。無機繊維が50重
量%より少なくなると成形体の剛性が低下する。
When mixing the thermoplastic resin fibers that do not melt in the heating step of the present invention, the mixing amount is 50% of the inorganic fibers in the mat-like material.
It can be suppressed to account for more than weight%. If the content of the inorganic fibers is less than 50% by weight, the rigidity of the molded product will decrease.

マット状物の両面に積層するフィルムを構成する熱可塑
性樹脂としては、ポリエチレン、ポリプロピレン、ポリ
スチレン、ポリビニルブチラール、ポリウレタン、ポリ
塩化ビニル、ポリ酢酸ビニル、ポリエステル等があげら
れる。そして、かかる樹脂の中からその融点以上の温
度、好ましくは融点〜融点より 100℃高い温度の範囲に
おいて、溶融粘度が2,000〜50,000ポアズとなるものが
用いられる。上記の溶融粘度は高下式フローテスターに
より測定される。
Examples of the thermoplastic resin forming the film laminated on both surfaces of the mat-like material include polyethylene, polypropylene, polystyrene, polyvinyl butyral, polyurethane, polyvinyl chloride, polyvinyl acetate, polyester and the like. Among these resins, those having a melt viscosity of 2,000 to 50,000 poise in the temperature range above the melting point, preferably in the range of melting point to 100 ° C. higher than the melting point are used. The above melt viscosity is measured by a high and low flow tester.

上記の熱可塑性樹脂の溶融粘度が50,000ポアズを上まわ
ると、加圧圧縮工程において樹脂がフィルムの形状で残
り、マット状物の内部にあまり含浸されず、表面から内
部に亘る連通構造の形成が阻害され、特に高周波数領域
における吸音性が低下する。一方、 2,000ポアズを下ま
わると、加圧圧縮工程において樹脂がマット状物の内部
に殆んど含浸され、成形体の表面から内部に亘りほぼ均
一な空隙率を有する連通構造が形成され、高周波数領域
における吸音性は優れるものの、低周波数領域では充分
な吸音性が得られない。
When the melt viscosity of the above-mentioned thermoplastic resin exceeds 50,000 poise, the resin remains in the form of a film in the pressure compression step and is not so much impregnated into the inside of the mat-like material to form a communication structure from the surface to the inside. This impedes the sound absorption, especially in the high frequency range. On the other hand, when it is less than 2,000 poise, most of the resin is impregnated inside the mat-like material in the pressure and compression step, and a continuous structure having a substantially uniform porosity is formed from the surface of the molded body to the inside, and Although it has excellent sound absorption in the frequency range, it does not have sufficient sound absorption in the low frequency range.

上記の熱可塑性樹脂からなるフィルムは、一般に20〜50
0 μm、好ましくは50〜200 μmの厚さのものが用いら
れる。そして、この熱可塑性樹脂からなるフィルム及び
加熱工程で溶融する熱可塑性樹脂繊維や粉末を成分とす
る溶融成分の重量合計と、無機繊維や加熱工程で溶融し
ない熱可塑性樹脂繊維を成分とする不溶融成分の重量合
計との比率を5:1〜1:5の範囲とするのが好まし
い。
The film made of the above thermoplastic resin generally has a thickness of 20 to 50.
The thickness used is 0 μm, preferably 50 to 200 μm. And the total weight of the molten component containing the film made of the thermoplastic resin and the thermoplastic resin fiber or powder that is melted in the heating step, and the non-melting that is the inorganic fiber or the thermoplastic resin fiber that is not melted in the heating step as the component The ratio of the total weight of the components is preferably in the range of 5: 1 to 1: 5.

上記の溶融成分が多くなると相対的に無機繊維が少なく
なり、成形体の剛性が低下する。一方、上記の不溶融成
分が多くなると相対的にバインダーの働きをする溶融成
分が少なくなり、成形体の剛性が低下する。
When the amount of the above-mentioned molten component is increased, the amount of the inorganic fibers is relatively decreased, and the rigidity of the molded body is lowered. On the other hand, when the amount of the non-melting component increases, the amount of the melting component acting as a binder decreases relatively, and the rigidity of the molded body decreases.

本発明においては、マット状物の両面にフィルムを積層
し、その両面に、上記樹脂が溶融状態では接着するが非
溶融状態では接着しない板状体を積層する。
In the present invention, films are laminated on both sides of the mat-like material, and plate-like bodies which are adhered in the molten state but not in the non-molten state are laminated on both sides of the film.

マット状物の両面にフィルムを積層するには、単にフィ
ルムを重ね合わせるだけでよく、またフィルムを熱ラミ
ネートしてもよい。板状体は単に重ね合わせるだけでよ
い。上記の板状体としては、繊維強化ポリテトラフルオ
ロエチレン板状シート、表面がポリテトラフルオロエチ
レン加工されたプレス板、表面が離型処理されたポリエ
ステル板状シート等があげられる。
In order to laminate the films on both sides of the mat-like material, the films may be simply laminated, or the films may be heat-laminated. The plate-like bodies may simply be superposed. Examples of the plate-like body include a fiber-reinforced polytetrafluoroethylene plate-like sheet, a press plate having a surface treated with polytetrafluoroethylene, and a polyester plate-like sheet having a surface subjected to a mold release treatment.

本発明においては、上記のマット状物とフィルムと板状
体との積層物を、フィルムを構成する樹脂の融点以上の
温度に加熱して上記樹脂を2,000 〜50,000ポアズの溶融
粘度に溶融させた状態で加圧圧縮した後解圧する。
In the present invention, the laminate of the mat-like material, the film and the plate-like material is heated to a temperature equal to or higher than the melting point of the resin constituting the film to melt the resin to a melt viscosity of 2,000 to 50,000 poise. After pressing and compressing in that state, the pressure is released.

加熱方法は任意の方法が採用されてよく、例えば熱風加
熱方法、赤外線ヒーター、遠赤外線ヒーターなどによる
輻射加熱方法等があげられる。加熱温度は熱可塑性樹脂
からなるフィルムの融点以上であるが、あまり高くなる
と樹脂が劣化したり、必要以上に樹脂がマット状物の内
部に含浸されて目的とする成形体が安定して得られにく
く、上限は樹脂の融点より 100℃高い温度とするのが好
ましい。加熱時間は数分で充分である。
Any heating method may be adopted, and examples thereof include a hot air heating method, a radiant heating method using an infrared heater, a far infrared heater, and the like. The heating temperature is not less than the melting point of the film made of a thermoplastic resin, but if the heating temperature is too high, the resin deteriorates, or the resin is impregnated into the mat-like material more than necessary, and the desired molded product is stably obtained. However, the upper limit is preferably 100 ° C. higher than the melting point of the resin. A heating time of several minutes is sufficient.

なお、加熱と板状体の積層の順序は、加熱後に板状体を
積層してもよく、板状体の積層後に加熱してもよい。
The order of heating and laminating the plate-shaped bodies may be such that the plate-shaped bodies are laminated after the heating or the plate-shaped bodies are laminated and then heated.

また、加圧圧縮も任意の方法が採用されてよく、例えば
プレスする方法、ロールで圧縮する方法等があげられ
る。プレス圧力は0.1 〜20kg/cm2が好ましい。プレス
圧力が0.1 kg/cm2より小さいと樹脂の含浸を充分に行
うには長い圧縮時間を必要とし生産性が劣る。一方、プ
レス圧力が20kg/cm2より大きいと無機繊維が押し潰さ
れ、板状体の拡開の際に無機繊維が嵩高に分散しにくく
なる。
Further, any method may be adopted as the compression under pressure, and examples thereof include a pressing method and a rolling method. The pressing pressure is preferably 0.1 to 20 kg / cm 2 . If the pressing pressure is less than 0.1 kg / cm 2 , a long compression time is required to sufficiently impregnate the resin, resulting in poor productivity. On the other hand, when the pressing pressure is higher than 20 kg / cm 2 , the inorganic fibers are crushed, and it becomes difficult for the inorganic fibers to be bulky dispersed when the plate-shaped body is expanded.

なお、ロールで圧縮する際にはロール間をマット状物の
4/5 〜1/20に設定するのが好ましい。また圧縮時間は一
般に1秒〜20分の範囲に設定される。
In addition, when compressing with a roll, a mat-like material is used between the rolls.
It is preferably set to 4/5 to 1/20. The compression time is generally set in the range of 1 second to 20 minutes.

さらに、本発明においては、解圧した後上記樹脂が溶融
した状態で上記板状体を拡開することによりマット状物
の厚みを増大させ冷却する。板状体の拡開方法として
は、例えば、板状体の両端を持って行ってもよいし、真
空吸引によって反対方向に引張してもよい。拡開されて
厚みが増大し嵩高くなったマット状物は冷却されるが、
冷却は放冷であってもよいし冷風を吹き付けてもよい。
冷却して樹脂が固化した後に板状体を剥離すると熱成形
用繊維成形体が得られる。なお、マット状物の冷却は、
板状体の拡開後に冷却するほか、板状体を拡開しながら
冷却してもよい。
Further, in the present invention, after the pressure is released, the plate-shaped body is expanded in a state where the resin is melted, thereby increasing the thickness of the mat-shaped article and cooling it. As a method for expanding the plate-shaped body, for example, both ends of the plate-shaped body may be held, or the plate-shaped body may be pulled in the opposite direction by vacuum suction. The mat-like material that has been expanded to increase its thickness and become bulky is cooled,
Cooling may be cooling or blowing cold air.
When the plate is peeled off after the resin is solidified by cooling, a fiber molding for thermoforming can be obtained. In addition, cooling of the mat-like material
The plate-shaped body may be cooled after being expanded, or may be cooled while the plate-shaped body is being expanded.

板状体の拡開の際は、得られる成形体の空隙率が80〜98
%となるようにマット状物の厚みを調節するのが好まし
い。空隙率が80%を下まわると吸音性が低下する。一
方、空隙率が98%を上まわると剛性が低下する。このよ
うにマット状物の厚みを調節すると、内部で連通した多
数の空隙を有し、その空隙率が80〜98%で、表面の非連
通比率が50〜98%を占める熱成形用繊維成形体が得られ
る。
When expanding the plate-shaped body, the void ratio of the obtained molded body is 80 to 98.
It is preferable to adjust the thickness of the mat-like material so that the content becomes%. If the porosity is below 80%, the sound absorption will be reduced. On the other hand, when the porosity exceeds 98%, the rigidity decreases. When the thickness of the mat-like material is adjusted in this way, it has a large number of voids that communicate internally, the void ratio is 80-98%, and the non-communicating ratio of the surface is 50-98%. The body is obtained.

本発明の製造方法で得られた熱成形用繊維成形体を賦形
するには、樹脂成分の溶融温度以上の温度に再加熱し、
プレス金型等で賦形圧縮整形すればよく、自動車用天井
材として使用するには、賦形圧縮成形の際に塩化ビニル
レザー、不織布、織布等の化粧用表皮材や独立気泡もし
くは連続気泡を有するポリエチレン発泡シート、ポリプ
ロピレン発泡シート、ポリウレタン発泡シート等の発泡
シートを積層して一体化してもよい。又、熱成形用繊維
成形体の少なくとも一面に、上記表皮材、発泡シート等
との接着性を高めるために接着シートを積層してもよ
い。
To shape the thermoformed fiber molding obtained by the production method of the present invention, reheating to a temperature of the melting temperature of the resin component or higher,
It may be shaped and compressed and shaped with a press die, etc., and to be used as a ceiling material for automobiles, cosmetic skin material such as vinyl chloride leather, non-woven fabric, woven fabric or closed cells or open cells are used for shaping and compression molding. A foamed sheet such as a polyethylene foamed sheet, a polypropylene foamed sheet, or a polyurethane foamed sheet having the above may be laminated and integrated. Further, an adhesive sheet may be laminated on at least one surface of the thermoformed fiber molded article in order to enhance the adhesiveness with the skin material, the foamed sheet or the like.

(作用) 本発明において、無機繊維を主成分とするマット状物
と、熱可塑性樹脂からなるフィルムと、板状体との積層
物を加熱して上記樹脂を溶融し、この溶融状態で上記の
積層物が加圧圧縮されると、溶融した樹脂は無機繊維中
に適度に含浸される。
(Operation) In the present invention, a laminate of a mat-like material containing inorganic fibers as a main component, a film made of a thermoplastic resin, and a plate-like material is heated to melt the resin, and in the molten state, the above When the laminate is pressed and compressed, the molten resin is appropriately impregnated into the inorganic fiber.

次に解圧すると、マット状物は元の厚さに回復しようと
するが、無機繊維は一度押し潰されているので充分に厚
みが回復しない。そこで、板状体を拡開してやると、マ
ット状物は板状体に接着しているので、マット状物が厚
み方向に引張られ無機繊維が嵩高に分散し厚みが回復増
大する。
Next, when the pressure is released, the mat-like material tries to recover to the original thickness, but the inorganic fiber is once crushed, so the thickness is not sufficiently recovered. Therefore, when the plate-shaped body is expanded, since the mat-shaped material is adhered to the plate-shaped material, the mat-shaped material is stretched in the thickness direction, the inorganic fibers are bulky dispersed, and the thickness is recovered and increased.

この際、樹脂は溶融しているので無機繊維から離れるこ
とはなく、その後に冷却されて無機繊維が互いに部分的
に強固に結合され、内部で連通した多数の空隙が形成さ
れる。そして、冷却されたマット状物から板状体を剥離
すると、表面に適度の非連通比率の薄膜を有する成形体
が得られる。
At this time, since the resin is molten, it does not separate from the inorganic fibers, and is then cooled to partially and firmly bond the inorganic fibers to each other to form a large number of voids communicating with each other inside. Then, when the plate-shaped body is peeled from the cooled mat-shaped material, a molded body having a thin film having an appropriate non-communication ratio on the surface is obtained.

(実施例) 次に本発明の実施例を説明する。(Example) Next, the Example of this invention is described.

実施例1 ガラス繊維(長さ4〜100mm、太さ9〜13mm)と高密度
ポリエチレン繊維(長さ4〜100 mm、太さ6デニール、
融点 135℃)とを4:1(重量比)の割合で、カードマ
シンに供給し混繊してマット状とし、ニードルパンチ加
工を施し、厚さ10mm、重さ 500g/m2のマット状物を得
た。
Example 1 Glass fiber (length 4 to 100 mm, thickness 9 to 13 mm) and high density polyethylene fiber (length 4 to 100 mm, thickness 6 denier)
(Melting point: 135 ° C) at a ratio of 4: 1 (weight ratio), mixed into a card machine and mixed to form a mat, needle-punched, 10 mm thick, 500 g / m 2 weight mat Got

このマット状物の両面に高密度ポリエチレンフィルム
〔厚さ 150μm、融点 135℃、 200℃における溶融粘度
20,000ポアズ(島津製作所製フローテスター CFT 5000
で測定)〕を積層し、この積層物の両面にガラス繊維強
化ポリテトラフルオロエチレン板状シートを積層し、こ
れを 200℃で3分間加熱し、10cm/分の速さのロールで
1mmに加圧圧縮した。その後温度を 200℃に保ちながら
上記の板状シートを真空吸引により反対方向に引張りマ
ット状物の厚さを9mmまで回復増大させ、冷却した後上
記の板状シートを剥離して熱成形用繊維成形体を得た。
High density polyethylene film [thickness 150μm, melting point 135 ℃, melt viscosity at 200 ℃] on both sides of this mat
20,000 Poise (Shimadzu flow tester CFT 5000
)], And a glass fiber reinforced polytetrafluoroethylene plate-like sheet is laminated on both sides of this laminate, which is heated at 200 ° C. for 3 minutes and applied to 1 mm by a roll at a speed of 10 cm / min. Compressed. Then, while maintaining the temperature at 200 ° C, the above plate-like sheet was pulled in the opposite direction by vacuum suction to recover and increase the thickness of the mat-like material to 9 mm, and after cooling, the plate-like sheet was peeled off to form a thermoforming fiber. A molded body was obtained.

上記の成形体を 200℃の熱風オーブンで2分間加熱し、
これを速やかに30℃の金型に入れ1kg/cm2の圧力で1
分間圧縮成形して最終の形状に賦形した。得られた賦形
成形体は縦1400mm、横1150mmであった。上記金型は最小
肉厚部が3.0 mm、最大肉厚部が8.0 mmに設計されてお
り、また曲率半径が5mmの凹部を有しており、この凹部
に対応する部分の曲率半径(R)を測定して熱賦形性を
評価した。
Heat the above molded body in a hot air oven at 200 ° C for 2 minutes,
Immediately place this in a mold at 30 ° C and apply pressure of 1 kg / cm 2 to 1
It was compression molded for minutes and shaped into the final shape. The obtained shaped body had a length of 1400 mm and a width of 1150 mm. The die is designed to have a minimum wall thickness of 3.0 mm and a maximum wall thickness of 8.0 mm, and has a recess with a radius of curvature of 5 mm. The radius of curvature (R) of the part corresponding to this recess Was measured to evaluate the heat formability.

上記の賦形された成形体を95℃の熱風オーブン中で四辺
を保持して20時間後の耐熱変位量(垂れ下った距離)を
測定した。また、上記の賦形された成形体から厚さ5m
m、幅50mm、長さ 150mmの試料片を切り取り、JIS K 721
1に準じ曲げ強度の評価を行なった。さらに、前記の成
形体から厚さ8mm、直径90mmの試料片を切り取り、JIS
A 1405に準じ垂直入射法による1KHz(低周波数領域)
及び1.5 並びに2.0 KHz(高周波数領域)における吸音
率を測定した。その結果を第1表に示した。
The above-mentioned shaped body was held on all sides in a hot air oven at 95 ° C, and the amount of heat-resistant displacement (hanging distance) after 20 hours was measured. In addition, a thickness of 5 m from the above shaped body
m, width 50mm, length 150mm cut out a sample piece, JIS K 721
The bending strength was evaluated according to 1. Further, a sample piece having a thickness of 8 mm and a diameter of 90 mm was cut out from the above-mentioned molded body and
1KHz (low frequency range) by vertical incidence method according to A 1405
The sound absorption coefficient at 1.5, 2.0 and 2.0 KHz (high frequency range) was measured. The results are shown in Table 1.

実施例2 マット状物を厚さ10mmまで回復増大させた以外は、実施
例1と同様に行なった。その結果を第1表に示した。
Example 2 The procedure of Example 1 was repeated except that the thickness of the mat-like material was increased to 10 mm. The results are shown in Table 1.

実施例3 実施例1で用いた高密度ポリエチレンフィルムを低密度
ポリエチレンフィルム(厚さ 150μm、融点 107℃、 2
00℃における溶融粘度 4,000ポアズ)に変更した以外
は、実施例と同様に行なった。その結果を第1表に示し
た。
Example 3 The high-density polyethylene film used in Example 1 was replaced with a low-density polyethylene film (thickness 150 μm, melting point 107 ° C., 2
The same procedure as in Example was performed except that the melt viscosity at 00 ° C. was 4,000 poise). The results are shown in Table 1.

実施例4 実施例1で用いた高密度ポリエチレンフィルムを高密度
ポリエチレンフィルム(厚さ 150μm、融点 135℃、 2
00℃における溶融粘度 3,500ポアズ)に変更した以外
は、実施例1と同様に行なった。その結果を第1表に示
した。
Example 4 The high-density polyethylene film used in Example 1 was replaced with a high-density polyethylene film (thickness 150 μm, melting point 135 ° C., 2
Example 1 was repeated except that the melt viscosity at 00 ° C was changed to 3,500 poise). The results are shown in Table 1.

比較例1 実施例1で用いた高密度ポリエチレンフィルムを高密度
ポリエチレン(厚さ150μm、融点 135℃、 200℃にお
ける溶融粘度 70,000 ポアズ)に変更した以外は、実施
例と同様に行った。その結果を第1表に示した。
Comparative Example 1 The procedure of Example 1 was repeated, except that the high-density polyethylene film used in Example 1 was changed to high-density polyethylene (thickness 150 μm, melting point 135 ° C., melt viscosity at 200 ° C. 70,000 poise). The results are shown in Table 1.

比較例2 実施例1で用いた高密度ポリエチレンフィルムを高密度
ポリエチレン(厚さ 150μm、融点135℃、200℃におけ
る溶融粘度 1,200ポアズ)に変更した以外は、実施例1
と同様であった。その結果を第1表に示した。
Comparative Example 2 Example 1 was repeated except that the high density polyethylene film used in Example 1 was changed to high density polyethylene (thickness 150 μm, melting point 135 ° C., melt viscosity at 200 ° C. 1,200 poise).
Was similar to. The results are shown in Table 1.

(発明の効果) 本発明の熱成形用繊維成形体の製造方法は、上述のよう
に構成されているので、無機繊維が溶融樹脂により互い
に部分的に強固に結合され、内部で連通した多数の空隙
を有し、しかも表面に適度の非連通比率の薄膜を有する
コストの安い熱成形用成形体を容易に得ることができ
る。
(Effects of the Invention) Since the method for producing a thermoformed fiber molded article of the present invention is configured as described above, a large number of inorganic fibers that are partially strongly bonded to each other by a molten resin and communicated internally It is possible to easily obtain a low-cost thermoforming molded article having voids and having a thin film having an appropriate non-communication ratio on the surface.

そして、この熱成形用成形体は嵩高で、無機繊維と空隙
が存在することにより軽量で、剛性、耐熱性、熱賦形性
及び特に高周波数領域での吸音性に優れ、しかも表面の
適度の非連通比率の薄膜が存在することにより、特に低
周波数領域での吸音性にも優れ、自動車用天井材に好適
に使用することができる。
And, this thermoforming molded article is bulky, is lightweight due to the presence of the inorganic fibers and voids, is excellent in rigidity, heat resistance, heat shapeability and sound absorption particularly in a high frequency region, and has a suitable surface area. Due to the presence of the thin film having a non-communication ratio, it is also excellent in sound absorption, particularly in a low frequency region, and can be suitably used as a ceiling material for automobiles.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B29C 51/14 7421−4F D06M 23/16 B29L 31:58 4F ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location // B29C 51/14 7421-4F D06M 23/16 B29L 31:58 4F

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】無機繊維を主成分とするマット状物の両面
に熱可塑性樹脂からなるフィルムを積層し、その両面
に、上記樹脂が溶融状態では接着するが非溶融状態では
接着しない板状体を積層し、上記樹脂の融点以上の温度
に加熱して樹脂を 2,000〜50,000ポアズの溶融粘度に溶
融させた状態で加圧圧縮した後解圧し、上記樹脂が溶融
した状態で上記板状体を拡開することによりマット状物
の厚みを増大させ冷却することを特徴とする熱成形用繊
維成形体の製造方法。
1. A plate-like body in which a film made of a thermoplastic resin is laminated on both surfaces of a mat-like material containing inorganic fibers as a main component, and the resin adheres to both surfaces in a molten state but not in a non-molten state. Are laminated and heated to a temperature not lower than the melting point of the above resin to be pressure-compressed in a state where the resin is melted to a melt viscosity of 2,000 to 50,000 poise, and then decompressed, and the above plate-shaped body is melted in a state where the above resin is molten. A method for producing a fiber molding for thermoforming, which comprises expanding to increase the thickness of the mat-like material and cooling it.
JP62327722A 1987-12-23 1987-12-23 Method for producing fiber molding for thermoforming Expired - Fee Related JPH0649363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327722A JPH0649363B2 (en) 1987-12-23 1987-12-23 Method for producing fiber molding for thermoforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327722A JPH0649363B2 (en) 1987-12-23 1987-12-23 Method for producing fiber molding for thermoforming

Publications (2)

Publication Number Publication Date
JPH01166946A JPH01166946A (en) 1989-06-30
JPH0649363B2 true JPH0649363B2 (en) 1994-06-29

Family

ID=18202258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327722A Expired - Fee Related JPH0649363B2 (en) 1987-12-23 1987-12-23 Method for producing fiber molding for thermoforming

Country Status (1)

Country Link
JP (1) JPH0649363B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226740A (en) * 1993-02-03 1994-08-16 Sekisui Chem Co Ltd Production of fiber composite
US5491182A (en) * 1994-07-27 1996-02-13 National Starch And Chemical Investment Holding Corporation Glass fiber sizing compositions and methods of using same
JP2004217052A (en) * 2003-01-14 2004-08-05 Toyoda Spinning & Weaving Co Ltd Vehicular interior material and manufacturing method of vehicular interior material
CN105339164B (en) * 2013-03-14 2019-03-12 施内勒公司 The flexible touch laminated material with improved flame-retarding characteristic for transport

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07864B2 (en) * 1987-09-16 1995-01-11 積水化学工業株式会社 Method for producing composite material for thermoforming

Also Published As

Publication number Publication date
JPH01166946A (en) 1989-06-30

Similar Documents

Publication Publication Date Title
US5055341A (en) Composite molded articles and process for producing same
JPH0649363B2 (en) Method for producing fiber molding for thermoforming
JP2831673B2 (en) Method for producing fiber molded body
JPH01207458A (en) Fiber molded article for heat molding and production thereof
JP2582858B2 (en) Method for producing fiber molded article for thermoforming
JPH0733072B2 (en) Method of manufacturing composite material
JPH062976B2 (en) Method for producing fiber molding for thermoforming
JP2776615B2 (en) Method for producing porous composite material
JP3121652B2 (en) Automotive ceiling materials
JPH07864B2 (en) Method for producing composite material for thermoforming
JPH04228665A (en) Production of fiber composite material
JP2536908B2 (en) Method for producing thermoformable composite material
JP3095503B2 (en) Thermoformable core material and method for producing the same
JPH03161335A (en) Preparation of lightweight composite material
JPH03161575A (en) Production of light weight composite material
JP2960269B2 (en) Fiber composite
JPH0785916B2 (en) Lightweight composite material
JPH0611936B2 (en) Method for producing composite material for thermoforming
JPH05311556A (en) Production of fiber composite product
JPH0776021A (en) Manufacture of porous molded body
JPH06312483A (en) Laminate and manufacture thereof
JPH01292158A (en) Production of fibrous form
JPH0280653A (en) Production of thermo-formable composite material
JPH0814065B2 (en) Method for producing fiber molding for thermoforming
JPH04243984A (en) Composite material of fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees