JPH0280653A - Production of thermo-formable composite material - Google Patents

Production of thermo-formable composite material

Info

Publication number
JPH0280653A
JPH0280653A JP63229636A JP22963688A JPH0280653A JP H0280653 A JPH0280653 A JP H0280653A JP 63229636 A JP63229636 A JP 63229636A JP 22963688 A JP22963688 A JP 22963688A JP H0280653 A JPH0280653 A JP H0280653A
Authority
JP
Japan
Prior art keywords
sheet
mat
thickness
melting point
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63229636A
Other languages
Japanese (ja)
Other versions
JPH0791758B2 (en
Inventor
Masanori Nakamura
雅則 中村
Katsuhiko Yamaji
克彦 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP63229636A priority Critical patent/JPH0791758B2/en
Publication of JPH0280653A publication Critical patent/JPH0280653A/en
Publication of JPH0791758B2 publication Critical patent/JPH0791758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/02Internal Trim mouldings ; Internal Ledges; Wall liners for passenger compartments; Roof liners

Abstract

PURPOSE:To obtain the subject material having light weight and excellent heat-formability, sound absorption, etc., by laminating a specific sheet on at least one surface of a mat composed mainly of an inorganic fiber, pressing the laminate under heating and releasing the compressive force. CONSTITUTION:At least one surface of a mat composed mainly of an inorganic fiber is laminated with a thermoplastic resin sheet and then with a 2nd sheet made of a thermoplastic resin having higher melting point than the former resin. The laminate is heated for about 1-10min at a temperature higher than higher than the melting point of the 2nd sheet, preferably higher than the melting point by 10-50 deg.C and the compressive force is released to recover the thickness.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、軽量であり、また優れた吸音特性を有し、た
とえば自動車用天井材の芯材として好適に使用される熱
成形性複合材料の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to a thermoformable composite material that is lightweight and has excellent sound absorption properties, and is suitable for use as a core material for automobile ceiling materials, for example. Relating to a manufacturing method.

(従来の技術) たとえば自動車用天井材の芯材に使用される熱成形性複
合材料には、軽量で、4剛性、耐熱性、吸音性、熱賦形
性などの性能に優れていることが要求される。この種の
材料として、たとえば特開昭60−83832号公報に
は、ガラス繊維などの無機繊維層の両面にポリエチレン
などの合成樹脂層を積層して基材を形成し、この基材の
樹脂層の表面に発泡体層を介して表皮材を積層して成る
熟成、形性複合材料が開示されている。
(Prior art) For example, thermoformable composite materials used as core materials for automotive ceiling materials are known to be lightweight and have excellent properties such as four rigidities, heat resistance, sound absorption, and heat formability. required. As this kind of material, for example, Japanese Patent Application Laid-Open No. 60-83832 discloses that a base material is formed by laminating synthetic resin layers such as polyethylene on both sides of an inorganic fiber layer such as glass fiber, and the resin layer of this base material is A maturing, shaping composite material is disclosed in which a skin material is laminated on the surface of a foam layer via a foam layer.

(発明が解決しようとする課題) ところが、このような熱成形性複合材料は、特に吸音性
が低く、また曲げ強度も充分でなく、たとえば、自動車
用天井材の芯材として使用するには不十分である。
(Problems to be Solved by the Invention) However, such thermoformable composite materials have particularly low sound absorption properties and do not have sufficient bending strength, making them unsuitable for use as core materials in automobile ceiling materials, for example. It is enough.

本発明は上記欠点を解決するものであり、その目的とす
るところは、軽量で、剛性、耐熱性、熱賦形性、及び吸
音性と曲げ強度に優れ、特に自動車用天井材に適した熱
成形性複合材料の製造方法を提供することにある。
The present invention is intended to solve the above-mentioned drawbacks, and its purpose is to provide a heat-resistant material that is lightweight, has excellent rigidity, heat resistance, heat formability, sound absorption, and bending strength, and is particularly suitable for automotive ceiling materials. An object of the present invention is to provide a method for manufacturing a moldable composite material.

(課題を解決するための手段) 本発明の熱成形性複合材料の製造方法は、無機繊維を主
な材料として形成されるマット状物の少なくとも片側表
面に、熱可塑性樹脂からなる第1のシート状物を介して
該第1のシート状物より高融点の熱可塑性樹脂からなる
第2のシート状物を積層し、次いでこの積層体を第2の
シート状物の融点以上の温度で加熱して第1及び第2の
シート・状物をそれぞれ熔融させると共に、積層体を圧
縮して該第1シート状物及び第2シート状物の溶融樹脂
をマット状物に含浸させ、次に該圧縮力を解除して厚み
を回復させることを特徴としており、そのことにより上
記目的が達成される。
(Means for Solving the Problems) The method for producing a thermoformable composite material of the present invention provides a first sheet made of a thermoplastic resin on at least one surface of a mat-like material formed mainly of inorganic fibers. A second sheet-like material made of a thermoplastic resin having a higher melting point than the first sheet-like material is laminated via a shaped material, and then this laminate is heated at a temperature equal to or higher than the melting point of the second sheet-like material. The first and second sheet-like materials are respectively melted, and the laminate is compressed to impregnate the mat-like material with the molten resin of the first sheet-like material and the second sheet-like material, and then the compressed material is melted. It is characterized by releasing the force and restoring the thickness, thereby achieving the above object.

本発明で使用されるマット状物は、無機繊維を主な材料
として形成されたものである。無機繊維としては、たと
えばガラス繊維、ロックウール繊維等があげられ、その
長さはマット状物の形成の容易さの点から5〜200 
mmが好ましく、50IIII1以上の繊維が70重景
%含まれているのがより好ましい。
The mat-like material used in the present invention is formed mainly of inorganic fibers. Examples of inorganic fibers include glass fibers, rock wool fibers, etc., and the length thereof is 5 to 200 mm from the viewpoint of ease of forming a mat-like material.
mm is preferable, and it is more preferable that 70 weight percent of fibers of 50III1 or more are contained.

また、無機繊維の直径は3〜30μmが好まし、く、よ
り好ましくは5〜20μmである。無機繊維の直径が小
さくなり過ぎると、機械的強度が低下し、無機繊維の直
径が大きくなり過ぎると、得られるマット状物が重くな
って嵩密度が大きくなる。
Moreover, the diameter of the inorganic fiber is preferably 3 to 30 μm, more preferably 5 to 20 μm. If the diameter of the inorganic fibers becomes too small, the mechanical strength will decrease, and if the diameter of the inorganic fibers becomes too large, the resulting mat-like material will become heavy and its bulk density will increase.

上記マント状物の製造方法は、任意の方法が採用されて
よく、たとえば無機繊維をカードマシンに供給し、解繊
してマット状物を製造する方法があげられる。また、マ
ット状物の機械的強度を向上させるためにニードルパン
チを施してもよい。
Any method may be used to produce the cloak-like article, such as a method of supplying inorganic fibers to a card machine and defibrating them to produce a mat-like article. Further, needle punching may be performed to improve the mechanical strength of the mat-like material.

ニードルパンチは1 cM当たり、1〜100箇所行わ
れるのが好ましく、より好ましくは10へ・50箇所で
ある。マット状物の密度は大きくなると重くなり、小さ
くなると機械的強度が低下するので、0.01〜0.2
g/cm’が好ましく、より好ましくは0.03〜0.
10g/cm”である。
Needle punching is preferably performed at 1 to 100 locations, more preferably between 10 and 50 locations, per 1 cM. The higher the density of the mat-like material, the heavier it becomes, and the lower the density of the mat-like material, the lower the mechanical strength, so it is 0.01 to 0.2
g/cm' is preferable, more preferably 0.03 to 0.
10g/cm".

マット状物には、多数の無機繊維相互の結合力を上げる
ために、ポリエチレン、ポリエチレン、飽和ポリエステ
ル、ポリアミド、ポリスチレン、ポリビニルブチラール
等の熱可塑性樹脂よりなる有機繊維や、有機粉末が添加
されてもよい。有機繊維の長さ及び直径は上記無機繊維
と混繊して容易にマット状物を形成できる程度が好まし
く、有機繊維の長さは5〜200mが好ましく、より好
ましくは20〜100 mであり、有機繊維の直径は3
〜50μmが好ましく、より好ましくは10〜40μm
である。
Organic fibers made of thermoplastic resins such as polyethylene, polyethylene, saturated polyester, polyamide, polystyrene, polyvinyl butyral, etc., or organic powders may be added to the mat-like material in order to increase the bonding strength between many inorganic fibers. good. The length and diameter of the organic fibers are preferably such that they can be mixed with the above-mentioned inorganic fibers to easily form a mat-like material, and the length of the organic fibers is preferably 5 to 200 m, more preferably 20 to 100 m. The diameter of organic fiber is 3
~50μm is preferred, more preferably 10~40μm
It is.

有機繊維の添加はマット状物を製造する際に添加するの
が好ましいが、有機粉末はマット状物を製造した後に散
布し、でもよい。有機粉末は乾燥粉末として使用しても
よく、あるいは粉末の分散液やエマルジョンの状態で使
用してもよい。有機粉末の粒径は、粉末状態で添加され
る場合には、50〜100メツシユが好ましく、貧溶媒
に分散された状態もしくはエマルジョンにして添加され
る場合にはそれより小さくてもよい。
It is preferable to add the organic fibers when producing the mat-like product, but the organic powder may be sprinkled after producing the mat-like product. The organic powder may be used as a dry powder, or in the form of a powder dispersion or emulsion. The particle size of the organic powder is preferably 50 to 100 mesh when added in a powdered state, and may be smaller when added in a state dispersed in a poor solvent or in the form of an emulsion.

このようにマット状物は無機繊維を主材料とするもので
あり、有機繊維及び有機粉末の添加量は無機繊維の添加
量以下とするのがよい。無機繊維の添加量が少なくなる
と耐熱性が低下し、多くなると無機繊維相互の結合力が
低下して機械的強度が低下するので、無機繊維と有機繊
維との重量比は、5:1〜l:5の範囲に設定するのが
好ましい。
As described above, the mat-like material is mainly composed of inorganic fibers, and the amount of organic fibers and organic powder added is preferably equal to or less than the amount of inorganic fibers added. If the amount of inorganic fibers added decreases, the heat resistance will decrease, and if it increases, the bonding force between the inorganic fibers will decrease and the mechanical strength will decrease, so the weight ratio of inorganic fibers and organic fibers should be 5:1 to 1. : It is preferable to set it in the range of 5.

本発明においては、上記マット状物の片面又は両面に熱
可塑性樹脂からなる第1のシート状物と、該第1のシー
ト状物より融点の高い熱可塑性樹脂からなる第2のシー
ト状物とを、第2のシート状物が外側に位置するように
積層する。第1及び第2のシート状物を積層する方法は
、任意の方法が採用されてよく、たとえばマット状物の
両面又は片面に第1及び第2のシート状物を載置する方
法、熱融着する方法、あるいは第1及び第2のシー[・
状物を金型より押し出す際にマット状物表面にラミネー
トする方法等があげられる。
In the present invention, a first sheet-like material made of a thermoplastic resin on one or both sides of the mat-like material, and a second sheet-like material made of a thermoplastic resin having a higher melting point than the first sheet-like material. are stacked so that the second sheet-like material is located on the outside. Any method may be used to laminate the first and second sheet-like materials, such as a method of placing the first and second sheet-like materials on both sides or one side of a mat-like material, a method of placing the first and second sheet-like materials on both sides or one side of a mat-like material, or the method of attaching the first and second seams [・
Examples include a method of laminating the surface of a mat-like material when extruding the material from a mold.

上記第1及び第2のシート状物としては、たとえばポリ
エチレン、ポリプロピレン、ポリスチレン、エチレン−
酢酸ビニル共重合体、飽和ポリエステル等の熱可塑性樹
脂のフィルムがあげられ、第1のシート状物と第2のシ
ート状物との組み合わせは、たとえばポリエチレンフィ
ルムとポリプロピレンフィルム、低密度ポリエチレンフ
ィルムと高密度ポリエチレンフィルム、ポリエチレンフ
ィルムとポリエステルフィルム、ポリプロピレンフィル
ムとポリエステルフィルム、ポリエチレンフィルムとナ
イロンフィルム、ポリプロピレンフィルムとナイロンフ
ィルム等の組み合わせがあげられる。第1及び第2のシ
ート状物の厚さはそれぞれ10〜300μmが好ましく
、より好ましくは30〜250μmである。第1及び第
2のシート状物の厚さが厚くなり過ぎると重くなり、薄
くなり過ぎると機械的強度が低下する傾向にある。また
、有機繊維や有機粉末を併用する場゛合には、その有機
繊維や粉末により無機繊維は相互に結着されるので、使
用する熱可塑性樹脂フィルムの厚さを薄くすることもで
きる。また、有機繊維もしくは粉末を併用する場合には
、その溶融温度と熱可塑性樹脂フィルムの溶温度が近い
ものを使用するのが好ましい。
Examples of the first and second sheet-like materials include polyethylene, polypropylene, polystyrene, ethylene-
Examples include films of thermoplastic resins such as vinyl acetate copolymer and saturated polyester, and combinations of the first sheet material and the second sheet material include, for example, polyethylene film and polypropylene film, low density polyethylene film and high density polyethylene film, etc. Examples include combinations of density polyethylene film, polyethylene film and polyester film, polypropylene film and polyester film, polyethylene film and nylon film, polypropylene film and nylon film, and the like. The thickness of the first and second sheet-like materials is preferably 10 to 300 μm, more preferably 30 to 250 μm. If the thickness of the first and second sheet-like materials becomes too thick, they become heavy, and if they become too thin, their mechanical strength tends to decrease. Furthermore, when organic fibers or organic powder are used in combination, the inorganic fibers are bound together by the organic fibers or powder, so the thickness of the thermoplastic resin film used can be reduced. Furthermore, when organic fibers or powders are used together, it is preferable to use organic fibers whose melting temperature is close to that of the thermoplastic resin film.

次に、上記マット状物と第1及び第2のシート状物とが
積層されてなる積層体を、第2のシート状物の融点以上
の温度で加熱する。上記加熱は第1及び第2のシート状
物をそれぞれ溶融することにより、第1及び第2の溶融
樹脂をマット状物に含浸させて上記無機繊維を相互に結
合するものである。上記加熱条件としては、第2のシー
ト状物の融点より5°C〜70℃高い温度で1〜10分
行うのが好ましく、さらに好ましい加熱温度は第2のシ
ート状物の融点より10’C〜50°C高い温度である
Next, a laminate formed by laminating the mat-like material and the first and second sheet-like materials is heated at a temperature equal to or higher than the melting point of the second sheet-like material. The heating is performed by melting the first and second sheet-like materials, respectively, thereby impregnating the mat-like material with the first and second molten resins and bonding the inorganic fibers to each other. The heating conditions are preferably 1 to 10 minutes at a temperature 5°C to 70°C higher than the melting point of the second sheet material, and a more preferable heating temperature is 10'C higher than the melting point of the second sheet material. ~50°C higher temperature.

また、加熱方法は、任意の方法が採用されてよく、たと
えばオーブン中で上記積層体の全体を加熱する方法、遠
赤外線ヒーター、赤外線ヒーター等による輻射加熱方法
等があげられる。また、マット状物に上記有機繊維や有
機粉末が添加されている場合には、この加熱によってこ
れらも溶融し、これらの熱可塑性樹脂によって無機繊維
は相互に結合されることになる。
Further, any heating method may be employed, such as a method of heating the entire laminate in an oven, a method of radiant heating using a far-infrared heater, an infrared heater, or the like. Further, if the above-mentioned organic fibers or organic powders are added to the mat-like material, these will also be melted by this heating, and the inorganic fibers will be mutually bonded by these thermoplastic resins.

第1及び第2のシート状物の溶融樹脂をマット状物に効
果的に含浸させ、無機繊維相互の結合力を上げるために
、溶融樹脂のマット状物への含浸時に圧縮される。圧縮
方法は任意の方法が採用されてよく、たとえばプレス圧
縮、ロール圧縮方法等があげられる。プレスで圧縮する
際の条件は、0.1〜50kg/c1aが好ましく、よ
り好ましくは0.1〜5kg/cdであり、ロールで圧
縮する際の一対のロール間距離はマット状物の厚みの1
15〜1/20が好ましく、より好ましくは1/8〜1
/15である。圧縮時間は1〜30秒が好ましい、また
、圧縮する際に熱可塑性樹脂が冷却されて固化するとマ
ット状物の厚みが回復しなくなり空隙率が低下するので
、プレス金型及びロールも所定温度に加熱されているの
が好ましい。
In order to effectively impregnate the mat-like material with the molten resin of the first and second sheet-like materials and increase the bonding strength between the inorganic fibers, the mat-like material is compressed when the molten resin is impregnated into the mat-like material. Any compression method may be employed, including press compression, roll compression, and the like. The conditions when compressing with a press are preferably 0.1 to 50 kg/c1a, more preferably 0.1 to 5 kg/cd, and the distance between a pair of rolls when compressing with a roll is based on the thickness of the mat-like material. 1
15 to 1/20 is preferable, more preferably 1/8 to 1
/15. The compression time is preferably 1 to 30 seconds. Also, when the thermoplastic resin is cooled and solidified during compression, the thickness of the mat-like material will not recover and the porosity will decrease, so the press mold and rolls should also be kept at a specified temperature. Preferably, it is heated.

次いで、このようにして圧縮された樹脂含浸マット状物
は、空隙率を上げるために圧縮が解除されてその厚みが
回復される。マット状物の厚みを増大するには、任意の
方法が採用されてよく、たとえば樹脂含浸マット状物を
樹脂の融点以上の温度条件下でほぼ無加圧化状態で所定
時間保持することにより、主に無機繊維の弾性復元力に
よってマット状物の厚みを元の状態へ回復させる。この
厚みの回復量は、通常マット状物の嵩密度として0.0
5〜0.2g/ crA程度まで回復させるのが望まし
い。
The resin-impregnated mat thus compressed is then decompressed to restore its thickness in order to increase the porosity. Any method may be used to increase the thickness of the mat-like material, for example, by holding the resin-impregnated mat-like material in a substantially non-pressurized state for a predetermined period of time at a temperature higher than the melting point of the resin. The thickness of the mat-like material is restored to its original state mainly by the elastic restoring force of the inorganic fibers. The amount of thickness recovered is usually 0.0 as the bulk density of the mat-like material.
It is desirable to recover to about 5 to 0.2 g/crA.

マット状物の厚みの回復量が不足する場合は、次の方法
によってマy)状物の厚みを増大してもよい。すなわち
、樹脂含浸マット状物を樹脂の融点以上の温度で加熱す
ると共に、樹脂含浸マット状物の両側に厚み拡張部材を
配設し、溶融樹脂と該厚み拡張部材とを接着させた状態
でマット状物の厚み方向外方へ厚み拡張部材を移動させ
ることにより、強制的に樹脂含浸マット状物の厚みを増
大させる方法である。
If the amount of recovery of the thickness of the mat-like material is insufficient, the thickness of the mat-like material may be increased by the following method. That is, a resin-impregnated mat is heated to a temperature equal to or higher than the melting point of the resin, thickness-expanding members are provided on both sides of the resin-impregnated mat, and the molten resin and the thickness-expanding members are bonded together to form a mat. This method forcibly increases the thickness of a resin-impregnated mat by moving a thickness expanding member outward in the thickness direction of the mat.

上記厚み拡張部材としては、溶融した樹脂には接着する
が、冷却した樹脂には接着しないものがよく、たとえば
テフロンシート、テフロン被覆鉄板、ポリエステルフィ
ルム、アルミ板等を使用することができる。この厚み拡
張部材をマット状物の厚み方向外方へ移動させるには、
たとえば真空吸着装置を厚み拡張部材に吸着させて真空
吸着装置を外方へ移動させることにより、行うことがで
きる。上記樹脂含浸マット状物の加熱に要する時間は、
マット状物の厚みがほぼ元の厚みに回復するまで行うの
がよく、一般には1秒〜5分行うのが好ましく、より好
ましくは2秒〜30秒である。
The thickness expanding member is preferably one that adheres to the molten resin but not to the cooled resin; for example, a Teflon sheet, a Teflon-coated iron plate, a polyester film, an aluminum plate, etc. can be used. To move this thickness expanding member outward in the thickness direction of the mat-like object,
For example, this can be done by adsorbing the vacuum suction device to the thickness expanding member and moving the vacuum suction device outward. The time required to heat the resin-impregnated mat is as follows:
It is preferable to carry out the process until the thickness of the mat-like material is almost restored to the original thickness, and generally it is preferable to carry out the process for 1 second to 5 minutes, more preferably 2 seconds to 30 seconds.

厚みが回復された樹脂含浸マット状物は、次に常温にま
で冷却されて熱成形性複合材料が得られる。冷却は常温
に放置、あるいは冷風を吹付けることによって行うこと
ができる。
The resin-impregnated mat whose thickness has been restored is then cooled to room temperature to obtain a thermoformable composite material. Cooling can be performed by leaving it at room temperature or by blowing cold air on it.

上記の各工程を経て得られた熱成形性複合材料は、熱可
塑性樹脂を結着材として、無数の無機繊維が相互に部分
的に結合され、全体にわたって無数の空隙を有するマッ
ト状の成形体である。この熱成形性複合材料の嵩密度は
0.05〜0.2g/cm’が好ましい。
The thermoformable composite material obtained through each of the above steps is a mat-like molded product in which countless inorganic fibers are partially bonded to each other using a thermoplastic resin as a binder, and has countless voids throughout. It is. The bulk density of this thermoformable composite material is preferably 0.05 to 0.2 g/cm'.

上記のように、第2のシート状物の融点より高い温度で
積層体を加熱、圧縮することにより、第1のシート状物
の溶融樹脂の粘度が下がり、該溶融樹脂の流動性が非常
に増すのに対して、第2のシート状物の溶融樹脂の粘度
は第1のシート状物の溶融樹脂はど低下するものではな
い。従って、上記圧縮時に、第1のシート状物の溶融樹
脂はマット状物の内部までよく含浸することにまり、無
機繊維の結着材として働き、無機繊維を強固に結合する
ことができる。また、第2のシート状物の溶融樹脂は、
マット状物の内部へ含浸し難いために主にマット状物の
表面部に溜まり、マット状物の表面には比較的樹脂の割
合の多い表面層が形成される。従って、熱可塑性樹脂が
密に存在する表面層が形成された熱成形性複合材料は、
熱可塑性樹脂が均一に分布している複合材料に比べて、
特にその曲げ強度が向上されると共に、吸音特性にも優
れている。
As mentioned above, by heating and compressing the laminate at a temperature higher than the melting point of the second sheet material, the viscosity of the molten resin of the first sheet material decreases, and the fluidity of the molten resin becomes extremely low. In contrast, the viscosity of the molten resin in the second sheet-like material does not decrease as much as the viscosity of the molten resin in the first sheet-like material. Therefore, during the above-mentioned compression, the molten resin of the first sheet-like material satisfies the interior of the mat-like material, acts as a binder for the inorganic fibers, and can firmly bind the inorganic fibers. Moreover, the molten resin of the second sheet-like material is
Since it is difficult to impregnate the inside of the mat-like object, it mainly accumulates on the surface of the mat-like object, and a surface layer containing a relatively high proportion of resin is formed on the surface of the mat-like object. Therefore, a thermoformable composite material with a surface layer densely populated with thermoplastic resin is
Compared to composite materials where the thermoplastic resin is uniformly distributed,
In particular, its bending strength is improved and its sound absorption properties are also excellent.

また、一般に使用されるガラス繊維多孔質では、高周波
領域はどその吸音率が高くなり、低周波領域の吸音特性
が悪いことが欠点となっている。ところが、本発明で得
られた熱成形性複合材料では、表面層に分布する熱可塑
性樹脂によってマット状物に形成されている通気性を適
度に抑制することができ、熱成形性複合材料全体として
は、板状に振動する形態をとることが可能となり、その
結果共鳴現象によって低周波領域においても高い吸音特
性を示すのである。つまり、本発明によって得られる熟
成形性複合材料は、低周波領域から高周波領域まで広い
音域において高い吸音特性を有し、自動車用天井材の芯
材として好適に使用される。
In addition, commonly used porous glass fibers have a disadvantage in that the sound absorption coefficient is high in the high frequency range, and the sound absorption properties are poor in the low frequency range. However, in the thermoformable composite material obtained by the present invention, the air permeability formed in the mat-like material can be moderately suppressed by the thermoplastic resin distributed in the surface layer, and the thermoformable composite material as a whole It is possible to take the form of a plate-like vibration, and as a result, it exhibits high sound absorption characteristics even in the low frequency range due to the resonance phenomenon. In other words, the aged-formable composite material obtained by the present invention has high sound absorption properties in a wide sound range from low frequency regions to high frequency regions, and is suitably used as a core material for automobile ceiling materials.

本発明により得られた熱成形性複合材料は、そのままで
最終製品とすることができる。また、平板状の熱成形性
複合材料を作成し、これを再加熱して所定形状に賦形成
形することもできる。熱成形性複合材料を自動車用天井
材として使用するには、賦形成形の際に、熱成形性複合
材料の表面にポリエチレン発泡体、ポリプロピレン発泡
体、ポリ塩化ビニル発泡体、ポリウレタン発泡体などの
独立気泡又は連続気泡を有する発泡体を介して、あるい
は介せずに織布、不織布、塩化ビニルレザーなどの化粧
用表皮材を積層して一体的に賦形してもよい。このよう
に発泡体や化粧用表皮材を積層して一体的に賦形するに
は、マット状物に積層する第2のシート状物の外面に熱
溶融性の接着剤層を設けておくと、得られる熱成形性複
合材料の表面の熱接着性が向」ニし、発泡体や化粧用表
皮材に対する接着性が良好となる。
The thermoformable composite material obtained according to the present invention can be made into a final product as it is. It is also possible to create a thermoformable composite material in the form of a flat plate and reheat it to form it into a predetermined shape. In order to use a thermoformable composite material as an automotive ceiling material, the surface of the thermoformable composite material must be coated with polyethylene foam, polypropylene foam, polyvinyl chloride foam, polyurethane foam, etc. during shaping. Cosmetic skin materials such as woven fabric, non-woven fabric, and vinyl chloride leather may be laminated and integrally shaped with or without foam having closed cells or open cells. In order to laminate and integrally shape foams and cosmetic skin materials in this way, it is necessary to provide a heat-melting adhesive layer on the outer surface of the second sheet-like material to be laminated to the mat-like material. The thermal adhesion of the surface of the resulting thermoformable composite material is improved, and the adhesion to foams and cosmetic skin materials is improved.

(実施例) 以下に本発明を実施例に基づいて詳細に説明する。(Example) The present invention will be explained in detail below based on examples.

ス】l引上 長さ50mm〜200ffI111直径10μmのガラ
ス繊維と、長さ40〜200 trm、直径30μmの
ポリエチレン繊維とを、重量比で65 : 35の割合
でカードマシンに供給し、解繊及び混繊して綿状物を得
た。次に、この綿状物にニードルパンチを30箇所/d
の割合で打って、厚さ10mm、重さ約500g/l”
のマット状物を得た。次に、マット状物の両面に、厚さ
約100μ潰の高密度ポリエチレンフィルム(融点13
5°C)と、厚さ約50μ鵠のポリプロピレンフィルム
(融点165’C)とを、ポリプロピレンフィルムが外
側に位置するように積層して厚さ約10 mm 、重さ
約800g/がの積層体を得た。
Glass fibers with a pulling length of 50 mm to 200 ff and a diameter of 10 μm and polyethylene fibers with a length of 40 to 200 trm and a diameter of 30 μm were supplied to a card machine at a weight ratio of 65:35, and defibrated and The fibers were mixed to obtain a cotton-like material. Next, needle punch 30 places/d on this cotton-like material.
Hit at the rate of 10mm thick and weighs about 500g/l"
A mat-like material was obtained. Next, a high-density polyethylene film (melting point 13
5°C) and a polypropylene film (melting point 165'C) with a thickness of about 50μ are laminated with the polypropylene film located on the outside to create a laminate with a thickness of about 10 mm and a weight of about 800 g. I got it.

得られた積層体を熱風加熱炉に供給し、190 ’Cで
3分間加熱した後、ロール間1鵬の一対のロールに通し
て圧縮し、次いで再度加熱炉に供給し、190°Cで3
分間保持して厚さ1tmまで厚みを回復させた後、冷却
して嵩密度0.15g/c+m’の熱成形性複合材料を
得た。
The resulting laminate was fed into a hot air heating furnace and heated at 190°C for 3 minutes, then compressed by passing through a pair of rolls with 1 hole between the rolls, then fed again into a heating furnace and heated at 190°C for 3 minutes.
After holding for a minute to recover the thickness to 1 tm, it was cooled to obtain a thermoformable composite material with a bulk density of 0.15 g/c+m'.

得られた熱成形性複合材料を切断して、厚さ6閣、50
m+X150 mの長方形状の試料片を作成し、この試
料片の曲げ強度をJIS K7221に準じて測定した
。また、得られた熱成形性複合材料を切断して、厚さ6
m、500 ll1lX500 ramの試料片を作成
し、この試料片の吸音率を垂直入射法(JIS Al2
O2背面距j!110tan )によって測定した。そ
の結果を表1に示した。なお、試験数(n)は4とし、
その平均値で示した。
The resulting thermoformable composite material was cut to a thickness of 6 mm and 50 mm.
A rectangular sample piece measuring m+150 m was prepared, and the bending strength of this sample piece was measured according to JIS K7221. In addition, the obtained thermoformable composite material was cut to a thickness of 6
A sample piece of 500 mm, 500 ll1 l x 500 ram was prepared, and the sound absorption coefficient of this sample piece was measured using the normal incidence method (JIS Al2
O2 back distance j! 110tan). The results are shown in Table 1. In addition, the number of tests (n) is 4,
The average value is shown.

裏施囲l マット状物の一方の面に、厚さ約100μmの高密度ポ
リエチレンフィルム(融点135°C)と、厚さ約50
uwlのポリプロピレンフィルム(融点165℃)とを
、ポリプロピレンフィルムが外側に位置するように積層
し、マット状物の他方の面に、厚さ約100μ鰯の高密
度ポリエチレンフィルム(融点135℃)のみを重ねた
以外は、実施例1と同様の方法で熱成形性複合材料を得
、この熱成形性複合材料から実施例1と同様の方法で各
試料片を作成して、曲げ強度と吸音率を測定した。
Backing l: On one side of the mat-like material, a high-density polyethylene film (melting point 135°C) with a thickness of about 100 μm and a film with a thickness of about 50 μm
Uwl polypropylene film (melting point 165°C) is laminated with the polypropylene film on the outside, and on the other side of the mat, only a sardine high density polyethylene film (melting point 135°C) with a thickness of about 100μ is layered. A thermoformable composite material was obtained in the same manner as in Example 1 except for stacking, and each sample piece was made from this thermoformable composite material in the same manner as in Example 1, and the bending strength and sound absorption coefficient were determined. It was measured.

ただし、曲げ試験においては、ポリプロピレンフィルム
を積層した側から荷重を加えた。また、垂直入射法によ
る吸音率測定試験においては、ポリプロピレンフィルム
を積層した側から音波を入射して試験した。その結果を
表1に示した。
However, in the bending test, the load was applied from the side on which the polypropylene film was laminated. In addition, in the sound absorption coefficient measurement test using the normal incidence method, the test was conducted by injecting sound waves from the side where the polypropylene film was laminated. The results are shown in Table 1.

止較■上 マット状物の両面に、厚さ約150μ閘の高密度ポリエ
チレンフィルム(融点135°C)を積層した以外は、
実施例1と同様の方法で熱成形性複合材料を得、この熱
成形性複合材料から実施例1と同様の方法で各試料片を
作成して、曲げ強度と吸音率を測定した。その結果を表
1に示した。
Comparison ■Except that high-density polyethylene film (melting point 135°C) with a thickness of about 150 μm was laminated on both sides of the upper mat-like material,
A thermoformable composite material was obtained in the same manner as in Example 1, and each sample piece was made from this thermoformable composite material in the same manner as in Example 1, and the bending strength and sound absorption coefficient were measured. The results are shown in Table 1.

(以下余白) (発明の効果) このように、本発明は上記のような構成であるので、軽
量であり、かつ剛性、耐熱性、熱賦形性に優れている上
に、゛吸音性と曲げ強度に優れた熱成形性複合材料を得
ることができ、この熱成形性複合材料は特に自動車用天
井材の芯材に好適に使用される。
(The following is a blank space) (Effects of the invention) As described above, the present invention has the above-described structure, so it is lightweight, has excellent rigidity, heat resistance, and heat formability, and also has “sound absorption”. A thermoformable composite material with excellent bending strength can be obtained, and this thermoformable composite material is particularly suitable for use as a core material for automotive ceiling materials.

Claims (1)

【特許請求の範囲】[Claims] 1.無機繊維を主な材料として形成されるマット状物の
少なくとも片側表面に、熱可塑性樹脂からなる第1のシ
ート状物を介して該第1のシート状物より高融点の熱可
塑性樹脂からなる第2のシート状物を積層し、次いでこ
の積層体を第2のシート状物の融点以上の温度で加熱し
て第1及び第2のシート状物をそれぞれ溶融させると共
に、積層体を圧縮して該第1シート状物及び第2シート
状物の溶融樹脂をマット状物に含浸させ、次に該圧縮力
を解除して厚みを回復させることを特徴とする熱成形性
複合材料の製造方法。
1. A first sheet material made of a thermoplastic resin having a higher melting point than the first sheet material is applied to at least one surface of the mat material mainly made of inorganic fibers through a first sheet material made of a thermoplastic resin. The second sheet-like material is laminated, and then this laminate is heated at a temperature higher than the melting point of the second sheet-like material to melt the first and second sheet-like materials, respectively, and the laminate is compressed. A method for producing a thermoformable composite material, comprising impregnating a mat-like material with the molten resin of the first sheet-like material and the second sheet-like material, and then releasing the compressive force to restore the thickness.
JP63229636A 1988-09-13 1988-09-13 Method for producing thermoformable composite material Expired - Fee Related JPH0791758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63229636A JPH0791758B2 (en) 1988-09-13 1988-09-13 Method for producing thermoformable composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63229636A JPH0791758B2 (en) 1988-09-13 1988-09-13 Method for producing thermoformable composite material

Publications (2)

Publication Number Publication Date
JPH0280653A true JPH0280653A (en) 1990-03-20
JPH0791758B2 JPH0791758B2 (en) 1995-10-04

Family

ID=16895301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63229636A Expired - Fee Related JPH0791758B2 (en) 1988-09-13 1988-09-13 Method for producing thermoformable composite material

Country Status (1)

Country Link
JP (1) JPH0791758B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226740A (en) * 1993-02-03 1994-08-16 Sekisui Chem Co Ltd Production of fiber composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226740A (en) * 1993-02-03 1994-08-16 Sekisui Chem Co Ltd Production of fiber composite

Also Published As

Publication number Publication date
JPH0791758B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
US5055341A (en) Composite molded articles and process for producing same
EP1844927B2 (en) Lightweight thermoplastic sheets including reinforcing skins
JPH0257333A (en) Sound absorption material
JPH01207458A (en) Fiber molded article for heat molding and production thereof
JP2831673B2 (en) Method for producing fiber molded body
JP2582858B2 (en) Method for producing fiber molded article for thermoforming
JPH0280653A (en) Production of thermo-formable composite material
JPH0276725A (en) Manufacture of composition material
JP2776615B2 (en) Method for producing porous composite material
JPH01166946A (en) Manufacture of fibrous molding for thermoforming
JPH03161335A (en) Preparation of lightweight composite material
JP2536908B2 (en) Method for producing thermoformable composite material
JPH0462053A (en) Manufacture of porous composite material
JPH02219612A (en) Method for pressing thermally moldable composite material
JPH0253948A (en) Thermo-formable composite material
JPH0261151A (en) Thermally formable composite material and production thereof
JP2872896B2 (en) Thermoformable core material, production method thereof and interior material
JPH0261150A (en) Thermally formable composite material and production thereof
JPH01165431A (en) Manufacture of fiber molding to be thermally molded
JPH06395B2 (en) Laminate
JPH07864B2 (en) Method for producing composite material for thermoforming
JP3095503B2 (en) Thermoformable core material and method for producing the same
JPH01156562A (en) Fiber molded body
JPH0261152A (en) Production of thermally formable composite material
JPH05311556A (en) Production of fiber composite product

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees