JPH0649129B2 - Dehumidifier - Google Patents

Dehumidifier

Info

Publication number
JPH0649129B2
JPH0649129B2 JP62304972A JP30497287A JPH0649129B2 JP H0649129 B2 JPH0649129 B2 JP H0649129B2 JP 62304972 A JP62304972 A JP 62304972A JP 30497287 A JP30497287 A JP 30497287A JP H0649129 B2 JPH0649129 B2 JP H0649129B2
Authority
JP
Japan
Prior art keywords
electrode
cation exchange
electrochemical cell
exchange membrane
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62304972A
Other languages
Japanese (ja)
Other versions
JPH01148327A (en
Inventor
淳一 河村
寿士 工藤
山地  正矩
雄耕 藤田
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP62304972A priority Critical patent/JPH0649129B2/en
Publication of JPH01148327A publication Critical patent/JPH01148327A/en
Publication of JPH0649129B2 publication Critical patent/JPH0649129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気化学的な手法を用いた除湿器に関するもの
である。
TECHNICAL FIELD The present invention relates to a dehumidifier using an electrochemical method.

従来の技術 従来の除湿方法を大別すると、露点以下に温度を下げて
空気などの気体中の水蒸気を凝縮させてから加熱して元
の温度に戻す凝縮法と、シリカゲルや塩化カルシウムな
どの乾燥剤に水蒸気を吸着させる吸着法とに分類でき
る。
Conventional technology The conventional dehumidification methods are roughly divided into the condensation method of lowering the temperature below the dew point to condense the water vapor in a gas such as air and then heating it to the original temperature, and the drying method of silica gel, calcium chloride, etc. It can be classified into an adsorption method in which water vapor is adsorbed to the agent.

発明が解決しようとする問題点 凝縮法では冷却と加熱の両操作を行なうための熱交換器
が必要であり、小型化は困難で、室内用等、大形の除湿
器になってしまう。さらに、熱媒体を気化・凝縮する目
的で使用されるコンプレッサー等から発生する騒音も大
きい。また、配電盤・制御盤・その他の電気機器内部に
おける比較的小容量の除湿用としてはペルチェ効果を応
用した冷却加熱素子を用いる方法も知られているが、吸
放熱フィン(ヒ−トシンク)が必要なため、除湿量の少
ないものでも相対的に大きな体積・重量になってしま
う。
Problems to be Solved by the Invention In the condensation method, a heat exchanger for performing both cooling and heating operations is required, and it is difficult to reduce the size, resulting in a large dehumidifier for indoor use. Furthermore, noise generated from a compressor or the like used for vaporizing and condensing the heat medium is large. In addition, a method of using a cooling and heating element that applies the Peltier effect is also known for dehumidifying a relatively small amount of electricity inside a switchboard, control panel, or other electric equipment, but a heat sink / radiator fin (heat sink) is required. Therefore, even if the dehumidification amount is small, the volume and weight are relatively large.

一方、吸着法は乾燥剤の再生処理の時間が必要なうえ、
除湿空気に乾燥剤の微粉末が混入する可能性が高いた
め、居住空間や、半導体をはじめとする各種電気部品の
製造現場などの除湿には向いていない。
On the other hand, the adsorption method requires time for regenerating the desiccant, and
Since there is a high possibility that a fine powder of a desiccant is mixed in the dehumidified air, it is not suitable for dehumidifying the living space or the manufacturing site of various electric parts such as semiconductors.

問題点を解決するための手段 本発明は陽イオン交換膜の片面に酸素発生極としての陽
極を、他面に水素発生極としての陰極をそれぞれ一体に
接合した陽イオン交換膜−電極接合体から成る第一の電
気化学セルの陽陰両極間に直流電圧を印加し、前記陽極
に除湿の対象となる空気を供給し、陽イオン交換膜に吸
収させる空気中の水分を電解して陽極で酸素を、陰極で
水素を発生せしめ、前記とは別の陽イオン交換膜の片面
に空気中酸素の電解還元反応を起させる正極と、 他面に水素の電解酸化反応を起させる負極をそれぞれ一
体に接合した陽イオン交換膜−電極接合体から成る第二
の電気化学セル、すなわち、水素−空気燃料電池の負極
に前記第一の電気化学セルの陰極で発生した水素を供給
接触せしめると共に、該セルの正極に空気を供給し、正
極と負極間を短絡することによって、正極側で水を生成
せしめることにより、空気中の水蒸気を液状の水として
捕集または系外に排出する除湿器を提供するものであ
り、従来の除湿器における諸問題を一挙に解決するもの
である。
Means for Solving the Problems The present invention comprises a cation exchange membrane-electrode assembly in which an anode as an oxygen generating electrode is integrally bonded to one surface of a cation exchange membrane and a cathode as a hydrogen generating electrode is integrally bonded to the other surface. A direct current voltage is applied between the positive and negative electrodes of the first electrochemical cell, and the air to be dehumidified is supplied to the anode, and water in the air to be absorbed by the cation exchange membrane is electrolyzed to generate oxygen at the anode. , The cathode is used to generate hydrogen, and the positive electrode that causes the electrolytic reduction reaction of oxygen in the air on one side of the cation exchange membrane and the negative electrode that causes the electrolytic oxidation reaction of hydrogen on the other side are integrated. A second electrochemical cell comprising a bonded cation exchange membrane-electrode assembly, i.e., the negative electrode of a hydrogen-air fuel cell, is supplied with hydrogen produced at the cathode of the first electrochemical cell and is in contact therewith. Supply air to the positive electrode of , It provides a dehumidifier that collects water vapor in the air as liquid water or discharges it out of the system by generating water on the positive electrode side by short-circuiting between the positive electrode and the negative electrode. It solves various problems in the container at once.

作用 陽イオン交換膜の両表面に酸素と水素の発生に有効な触
媒電極からなる陽,陰極をそれぞれ一体に接合した3層
の接合体の陽極に、除湿しようとする空気を接触させる
と、空気中の水蒸気が陽イオン交換膜に吸収される。陽
イオン交換膜に水分が吸収されると、この膜は固体電解
質として機能し、電気化学セルとなる。このセルの陽極
と陰極との間に直流電圧を印加すると、ある一定の電圧
以上では、陽極で 2HO→O+4H+4e (1) なる反応によって酸素が生成し、陰極で 4H+4e→2H (2) なる反応によって水素が生成する。この反応は空気中の
水蒸気の水電解反応であり、定電圧を印加した場合には
相対湿度に比例した電解電流が流れ、湿度が高いほど、
除湿はすみやかに行なわれる。
Action When the air to be dehumidified is brought into contact with the anode of a three-layer assembly in which the positive and negative electrodes, which consist of catalytic electrodes effective for generating oxygen and hydrogen, are integrally bonded to both surfaces of the cation exchange membrane, The water vapor inside is absorbed by the cation exchange membrane. When water is absorbed by the cation exchange membrane, this membrane functions as a solid electrolyte and becomes an electrochemical cell. When a DC voltage is applied between the anode and the cathode of this cell, at a certain voltage or higher, oxygen is generated by the reaction of 2H 2 O → O 2 + 4H + + 4e (1) at the anode and 4H + at the cathode. Hydrogen is generated by the reaction + 4e → 2H 2 (2). This reaction is a water electrolysis reaction of water vapor in the air, and when a constant voltage is applied, an electrolysis current proportional to the relative humidity flows, and the higher the humidity,
Dehumidification is promptly performed.

しかし、除湿効果はあっても、両極で酸素と水素が発生
するので、除湿しようとする一定空間中にそのまま放出
すると腐蝕性、安全性の面では好ましくない。
However, even if it has a dehumidifying effect, since oxygen and hydrogen are generated at both electrodes, it is not preferable in terms of corrosivity and safety if it is released as it is into a certain space to be dehumidified.

そこで、生成した水素を触媒充填カラムなどに通過させ
て酸化する方法も考えられるが、水素を完全に除去する
には複雑な構造が必要となり、装置全体も大きくなる。
Therefore, a method of oxidizing the generated hydrogen by passing it through a catalyst packed column or the like is conceivable, but a complicated structure is required to completely remove the hydrogen, and the entire apparatus becomes large.

本発明はこの水素を酸化して水を生成させるための新規
な装置に関するものである。即ち、前述の陽イオン交換
膜の陰極で生成した水素を、これとは別の陽イオン交換
膜−電極接合体の片面に供給し、他面に酸素源としての
空気を供給する。この接合体の構成は、陽イオン交換膜
の両面に水素および酸素の吸収に有効な触媒電極をそれ
ぞれ一体に接合した3層構造にする。両電極を短絡して
おくと、陽イオン交換膜が固体電解質として機能し、水
素供給側を負極とし、酸素供給側を正極とした、いわゆ
る燃料電池が構成される。すなわち、負極で 2H→4H+4e (3) なる反応によって水素が消費され、正極では O+4H+4e→2HO (4) なる反応によって水が生成する。正極で生成する水は水
蒸気の形ではなく、液体の形で正極の背面に水滴となっ
て漏出してくる。かくして、気体の水を液体の水として
捕集することが可能となる。
The present invention relates to a novel apparatus for oxidizing this hydrogen to produce water. That is, the hydrogen generated at the cathode of the cation exchange membrane is supplied to one surface of a cation exchange membrane-electrode assembly that is different from the hydrogen, and the other surface is supplied with air as an oxygen source. The structure of this bonded structure is a three-layer structure in which catalyst electrodes effective for absorbing hydrogen and oxygen are bonded to both surfaces of a cation exchange membrane, respectively. When both electrodes are short-circuited, the cation exchange membrane functions as a solid electrolyte, and a so-called fuel cell in which the hydrogen supply side serves as a negative electrode and the oxygen supply side serves as a positive electrode is constructed. That is, hydrogen is consumed by the reaction of 2H 2 → 4H + + 4e (3) at the negative electrode, and water is generated by the reaction of O 2 + 4H + + 4e → 2H 2 O (4) at the positive electrode. The water generated at the positive electrode leaks in the form of liquid, not as water vapor, on the back surface of the positive electrode as water droplets. Thus, it becomes possible to collect gaseous water as liquid water.

以上述べた如く、本発明による除湿器は第一段階で空気
中の水蒸気から酸素と水素を生成させ、第二段階で生成
した水素を酸素で酸化し、水として捕集もしくは系外に
排出することによって除湿を行なうものである。本発明
の除湿器においては、第一段階で酸素が生成するが、第
2段階ではこれと等量の酸素が消費されるので、系全体
の酸素の収支は零である。
As described above, the dehumidifier according to the present invention generates oxygen and hydrogen from water vapor in the air in the first step, oxidizes the hydrogen generated in the second step with oxygen, and collects it as water or discharges it out of the system. By doing so, dehumidification is performed. In the dehumidifier of the present invention, oxygen is produced in the first stage, but the same amount of oxygen is consumed in the second stage, so the oxygen balance of the entire system is zero.

空気中の水蒸気の電解反応(1),(2)式に有効な陽
極と陰極とは同じ触媒電極でよい。陽イオン交換膜への
触媒電極の接合方法としては、例えば、陽イオン交換膜
の両面に白金族金属を無電解メッキ法によって析出一体
化させる方法や、白金族金属粉末とフッ素樹脂結着剤と
の混合物をホットプレスすることによって加圧一体化さ
せる方法がある。
The same catalytic electrode may be used for the anode and cathode effective in the electrolytic reactions (1) and (2) of water vapor in air. As a method of joining the catalyst electrode to the cation exchange membrane, for example, a method of depositing and integrating a platinum group metal on both sides of the cation exchange membrane by electroless plating, or a platinum group metal powder and a fluororesin binder There is a method of press-integrating the mixture by hot pressing.

また、水の生成反応(3),(4)式に有効な負極と正
極とは同じ触媒電極でよいが、前記の水電解用の電極と
はやや異なり、一般にガス拡散電極と呼ばれるものが有
効である。例えば、白金族金属もしくは白金族金属を担
持したカーボンとフッ素樹脂結着剤との混合物、もしく
は、これらの混合物に陽イオン交換樹脂を混合したもの
を陽イオン交換膜にホットプレスした多孔性のものがよ
い。
Further, the negative electrode and the positive electrode which are effective in the water generation reactions (3) and (4) may be the same catalyst electrode, but unlike the above-mentioned electrode for water electrolysis, what is generally called a gas diffusion electrode is effective. Is. For example, a mixture of a platinum group metal or a carbon carrying a platinum group metal and a fluororesin binder, or a mixture of a mixture of these and a cation exchange resin is hot-pressed onto a cation exchange membrane to obtain a porous material. Is good.

実施例 第1図は本発明の一実施例にかかる除湿器の該略図であ
る。
Embodiment FIG. 1 is a schematic view of a dehumidifier according to an embodiment of the present invention.

パーフルオロカーボンスルフォン酸樹脂からなる陽イオ
ン交換膜1,1′の両面に酸素と水素の発生に有効な電
極2,2′と、吸収に有効な電極3,3′がそれぞれ一
体に接合されている。陽極2と陰極2′は白金からな
り、陽イオン交換膜1に無電解メッキ法によって接合さ
れている。正極3と負極3′は白金触媒を担持したカー
ボン粉末とポリ4フッ化エチレンの水懸濁液、ならびに
低級脂肪族アルコールを溶媒としたパーフルオロカーボ
ンスルフォン酸樹脂溶液を混合したものを、陽イオン交
換膜1′の両面にホットプレス法によって接合すること
により構成されている。
Electrodes 2,2 'effective for generating oxygen and hydrogen and electrodes 3,3' effective for absorption are integrally bonded to both sides of a cation exchange membrane 1,1 'made of perfluorocarbon sulfonic acid resin. . The anode 2 and the cathode 2'are made of platinum and are joined to the cation exchange membrane 1 by electroless plating. For the positive electrode 3 and the negative electrode 3 ', a mixture of a carbon powder carrying a platinum catalyst and an aqueous suspension of polytetrafluoroethylene, and a perfluorocarbon sulfonic acid resin solution using a lower aliphatic alcohol as a solvent was subjected to cation exchange. It is constructed by bonding both surfaces of the film 1'by a hot pressing method.

陽・陰極2,2′の背面には白金メッキを施したエキス
パンデッドチタンからなる陽極集電体4と陰極集電体5
がそれぞれ配設され、これら集電体は陽極端子6と陰極
端子7を通じて直流電源(図示せず)に接続される。正
極3の背面にも同じく白金メッキを施したエキスパンデ
ッドチタンからなる正極集電体8が配設されているが、
負極3′の背面には前述の陰極集電体5が配設されてい
るから、負極集電体と呼ばれるものは不要である。この
陰極集電体5は陰極端子7と正極端子9を介して正極集
電体8と結線(短絡)されている。陰極2′と負極3′
の間には前記陰極集電体5が配設されているが、陰極
2′で生成した水素が逸散しないように、一定の密閉空
間を形成している。
Anode collector 4 and cathode collector 5 made of expanded titanium plated with platinum on the back surfaces of the positive and negative electrodes 2 and 2 '.
Are respectively arranged, and these current collectors are connected to a DC power source (not shown) through the anode terminal 6 and the cathode terminal 7. On the back surface of the positive electrode 3, a positive electrode current collector 8 made of expanded titanium similarly plated with platinum is arranged.
Since the above-mentioned cathode current collector 5 is arranged on the back surface of the negative electrode 3 ', what is called a negative electrode current collector is unnecessary. The cathode current collector 5 is connected (short-circuited) to the positive electrode current collector 8 via the cathode terminal 7 and the positive electrode terminal 9. Cathode 2'and negative electrode 3 '
The cathode current collector 5 is disposed between them, but a certain closed space is formed so that hydrogen generated at the cathode 2'will not escape.

このように構成された電気化学セル群はケース10の中
に収納されている。該ケース10は空気の取入口11
と、除湿されて生成する水滴の排水口12を備え、除湿
後の空気は除湿空気放出口13よりブロアー14によっ
て目的とする空間に放出される。この除湿器内の空気の
流れは、先ず、水素を酸化して水を生成,捕集した後、
空気を除湿する順になっているが、本実施例とは逆の配
置や、除湿部と水生成部とが分離した構造、または多セ
ル構造にすることもできる。
The electrochemical cell group thus configured is housed in the case 10. The case 10 has an air intake 11
And a drainage port 12 for water droplets generated by dehumidification. The dehumidified air is discharged from a dehumidified air discharge port 13 to a target space by a blower 14. The flow of air in this dehumidifier first oxidizes hydrogen to generate and collect water, and then
Although the order of dehumidifying air is set, the arrangement may be reversed from that of the present embodiment, or the dehumidifying section and the water generating section may be separated or a multi-cell structure may be adopted.

本発明の除湿器において、陽・陰極2,2′および正極
3の電極面積を100cm2とし、陽・陰極端子6,7間に、
3Vの直流定電圧を印加し、容積200(30℃)の水蒸
気飽和空気を除湿したところ、第2図に示す如く相対湿
度30%まで除湿できた。なお、結露を防止するだけの目
的であるなら、相対湿度が90%前後になる程度まで除湿
すればよいので、電極面積は本実施例の1/5程度で充
分であり、寸法等は更に低減できる。
In the dehumidifier of the present invention, the electrode areas of the positive and negative electrodes 2 and 2'and the positive electrode 3 are set to 100 cm 2, and between the positive and negative terminals 6 and 7,
When a DC constant voltage of 3 V was applied to dehumidify the water vapor saturated air having a volume of 200 (30 ° C.), the relative humidity could be dehumidified to 30% as shown in FIG. For the purpose of only preventing dew condensation, dehumidification may be performed until the relative humidity reaches about 90%. Therefore, the electrode area is sufficient to be about 1/5 of the present embodiment, and the size and the like are further reduced. it can.

発明の効果 本発明は常温のままで空気中の水蒸気を凝縮することが
でき、騒音もなく、対象とする除湿空間が小さい場合で
も、それに適した寸法で構成が可能であり、しかも再生
処理を全く必要とせず、清浄な除湿空気が得られ、電気
化学的な除湿方法によって自動制御化も容易で、その工
業的価値は極めて大きい。
EFFECTS OF THE INVENTION The present invention is capable of condensing water vapor in the air at room temperature, has no noise, and can be configured with a suitable size even when the target dehumidifying space is small. It is not necessary at all, clean dehumidified air can be obtained, and it is easy to control automatically by an electrochemical dehumidification method, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の除湿器の一実施例を示す概略断面図、
第2図は本発明の除湿器による相対湿度変化を示す図で
ある。 1,1′……陽イオン交換膜 2……陽極、2′……陰極 3……正極、3′……負極 11……空気取入口、12……排水口 13……除湿空気放出口
FIG. 1 is a schematic sectional view showing an embodiment of the dehumidifier of the present invention,
FIG. 2 is a diagram showing changes in relative humidity by the dehumidifier of the present invention. 1, 1 '... Cation exchange membrane 2 ... Anode, 2' ... Cathode 3 ... Positive electrode, 3 '... Negative electrode 11 ... Air intake port, 12 ... Drainage port 13 ... Dehumidified air discharge port

フロントページの続き 審査官 小川 慶子 (56)参考文献 特開 昭61−216714(JP,A) 特開 昭60−114325(JP,A)Front page continued Examiner Keiko Ogawa (56) References JP 61-216714 (JP, A) JP 60-114325 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】空気取入口と除湿空気放出口および排水口
を備えたケース内に、陽イオン交換膜の片面に酸素発生
極としての陽極を,他面に水素発生極としての陰極をそ
れぞれ一体に接合した陽イオン交換膜−電極接合体から
成る第一の電気化学セルと、陽イオン交換膜の片面に空
気中酸素の電解還元反応を起させる正極を,他面に水素
の電解酸化反応を起させる負極をそれぞれ一体に接合し
た陽イオン交換膜−電極接合体から成る第二の電気化学
セルを配置し、前記第一の電気化学セルの陰極と第二の
電気化学セルの負極とを密閉した共通空間を介して連絡
させ、前記第二の電気化学セルの正極と負極とを短絡さ
せると共に第一の電気化学セルの陽・陰極間に直流電圧
を印加するように構成したことを特徴とする除湿器。
1. A case having an air intake port, a dehumidified air discharge port, and a drain port integrally includes an anode as an oxygen generation electrode on one side of a cation exchange membrane and a cathode as a hydrogen generation electrode on the other side. The first electrochemical cell consisting of the cation exchange membrane-electrode assembly bonded to the positive electrode, the positive electrode that causes the electrolytic reduction reaction of oxygen in the air on one side of the cation exchange membrane, and the electrolytic oxidation reaction of hydrogen on the other side. A second electrochemical cell comprising a cation exchange membrane-electrode assembly in which the negative electrodes to be raised are integrally bonded is arranged, and the cathode of the first electrochemical cell and the negative electrode of the second electrochemical cell are sealed. The second electrochemical cell is connected via the common space, the positive electrode and the negative electrode of the second electrochemical cell are short-circuited, and a direct current voltage is applied between the positive electrode and the negative electrode of the first electrochemical cell. Dehumidifier.
JP62304972A 1987-12-02 1987-12-02 Dehumidifier Expired - Lifetime JPH0649129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304972A JPH0649129B2 (en) 1987-12-02 1987-12-02 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304972A JPH0649129B2 (en) 1987-12-02 1987-12-02 Dehumidifier

Publications (2)

Publication Number Publication Date
JPH01148327A JPH01148327A (en) 1989-06-09
JPH0649129B2 true JPH0649129B2 (en) 1994-06-29

Family

ID=17939526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304972A Expired - Lifetime JPH0649129B2 (en) 1987-12-02 1987-12-02 Dehumidifier

Country Status (1)

Country Link
JP (1) JPH0649129B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863047B2 (en) 2011-03-24 2018-01-09 Toshiba Lifestyle Products & Services Corporation Electrolysis device and refrigerator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3298431B2 (en) * 1996-10-21 2002-07-02 三菱電機株式会社 Ozone / hydrogen peroxide generator
JPH10270055A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Electrochemical catalyst, and electrochemical reactor, electrochemical element, phosphoric fuel cell, and methanol-direct fuel cell using it
JP2001297779A (en) * 2000-04-13 2001-10-26 Matsushita Electric Ind Co Ltd Fuel cell system
CN112928308B (en) * 2021-03-31 2022-06-14 华中科技大学 Fuel cell bipolar plate for dehumidification and fuel cell stack thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863047B2 (en) 2011-03-24 2018-01-09 Toshiba Lifestyle Products & Services Corporation Electrolysis device and refrigerator

Also Published As

Publication number Publication date
JPH01148327A (en) 1989-06-09

Similar Documents

Publication Publication Date Title
JP3219610B2 (en) Electrochemical element
JP2001283875A (en) Fuel cell and fuel cell system
JPH09245819A (en) Fuel cell and electrolytic cell and cooling and dehumidifying method therefor
US6605378B2 (en) Functional integration of multiple components for a fuel cell power plant
JPH06338338A (en) Humidification of high polymer ion exchange film of fuel cell
JPH09180743A (en) Solid polymeric fuel cell
JPH06325780A (en) Fuel cell system
JPH04229960A (en) Gas-recycle battery for electoro- chemical system
JPH0649129B2 (en) Dehumidifier
JPH0761414B2 (en) Air conditioning method
JPS61216714A (en) Dehumidification
JP2007323813A (en) Solid polymer electrolyte fuel cell system
JP4377184B2 (en) Electrochemical air purification device
JPH06231788A (en) Solid high polymer type fuel cell
JPH02311302A (en) Purification apparatus for hydrogen gas to be supplied to fuel cell
JP2516750Y2 (en) Assembly of solid polymer electrolyte membrane and electrode
JPH10208757A (en) Fuel cell generating set
WO2003032422A1 (en) Fuel cell system, and fuel cell power generating method
JP3240981B2 (en) Electrolytic ozone generator
JP4198529B2 (en) Dehumidifying element
JP2001333983A (en) Oxygen supply system
JPS60114325A (en) Dehumidifying method
JP3550383B2 (en) Ozone generator
JPH06231773A (en) Fuel cell
JP6973003B2 (en) Aging method for polymer electrolyte fuel cells