JPH0648884A - Pulling up device for silicon single crystal - Google Patents

Pulling up device for silicon single crystal

Info

Publication number
JPH0648884A
JPH0648884A JP20210192A JP20210192A JPH0648884A JP H0648884 A JPH0648884 A JP H0648884A JP 20210192 A JP20210192 A JP 20210192A JP 20210192 A JP20210192 A JP 20210192A JP H0648884 A JPH0648884 A JP H0648884A
Authority
JP
Japan
Prior art keywords
pulling
single crystal
crucible
melt
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20210192A
Other languages
Japanese (ja)
Inventor
Yasuyuki Seki
康之 関
Katsumi Nishizaki
克己 西崎
Kazuhiko Echizenya
一彦 越前谷
Hiroshi Kaneda
洋 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20210192A priority Critical patent/JPH0648884A/en
Publication of JPH0648884A publication Critical patent/JPH0648884A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To increase the temp. gradient in a pulling up direction by installing a top ring consisting of a horizontal disk-shaped torus and a pendent cylinder provided on the inner periphery of this torus above a heater of the pulling up device. CONSTITUTION:The top ring 10 consisting of the horizontal disk-shaped torus 11 and the pendent cylinder 12 provided like eaves on the inner periphery of this torus 11 is provided above the heater of the pulling up device by a Czochralski method to shield the heat radiation from the heater to the single crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコン単結晶を、原
料融液から引上成長させる引上装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulling apparatus for pulling and growing a silicon single crystal from a raw material melt.

【0002】[0002]

【従来の技術】一般にチョクラルスキー法によるシリコ
ン単結晶の製造は、例えばチャンバ内に配したるつぼ内
に単結晶用引上原料を投入し、これをヒータにて加熱溶
融せしめた後、この融液中に種結晶を浸し、これを回転
させつつ上方に引き上げて種結晶下端に単結晶を成長さ
せることによって行われている。
2. Description of the Related Art Generally, for manufacturing a silicon single crystal by the Czochralski method, for example, a pulling raw material for a single crystal is put into a crucible arranged in a chamber, heated by a heater, and then melted. It is carried out by immersing a seed crystal in a liquid and pulling it upward while rotating it to grow a single crystal at the lower end of the seed crystal.

【0003】単結晶の引上を行う場合、その引上速度
は、引上方向における単結晶の温度勾配と密接な関係が
あり、効率的な単結晶の引上を行うには単結晶を所定以
上の温度勾配に設定する必要がある。チョクラルスキー
引上装置では、引き上げられた単結晶は、融液表面、ト
ップリング(ヒータ上方に設置する断熱板)、融液表面
より上のるつぼ側面等からの熱輻射を受け保温される。
よって、結晶引上方向の温度勾配が小さくなり、単結晶
の引上効率が悪いという欠点がある。さらに結晶が60
0〜1000℃の高温状態に長く存在することとなり、
成長方向でのOSF(積層欠陥)、酸素析出等により品
質が低下する。
When pulling a single crystal, the pulling speed has a close relationship with the temperature gradient of the single crystal in the pulling direction, and a predetermined single crystal is required for efficient pulling of the single crystal. It is necessary to set the above temperature gradient. In the Czochralski pulling device, the pulled single crystal is kept warm by receiving heat radiation from the melt surface, the top ring (a heat insulating plate installed above the heater), the side surface of the crucible above the melt surface, and the like.
Therefore, the temperature gradient in the crystal pulling direction becomes small, and the pulling efficiency of the single crystal is poor. 60 more crystals
It will exist in a high temperature state of 0 to 1000 ° C for a long time,
Quality deteriorates due to OSF (stacking fault) in the growth direction, oxygen precipitation, and the like.

【0004】この対策として、結晶引上速度を高速化す
るために、熱輻射を遮蔽する遮蔽板を用いる技術(特公
昭57−40119号公報)や、水冷の冷却円筒を用い
る技術(特開昭63−256593号公報)が知られて
いる。
As a countermeasure against this, in order to increase the crystal pulling speed, a technique of using a shielding plate for shielding heat radiation (Japanese Patent Publication No. 57-40119) and a technique of using a water-cooled cooling cylinder (Japanese Patent Laid-Open Publication No. Sho. 63-256593) is known.

【0005】[0005]

【発明が解決しようとする課題】熱輻射遮蔽板を設ける
技術や、水冷の冷却円筒を用いる技術では、融液から蒸
発発生した一酸化珪素(SiO)の凝縮が起こり、固体
化した粒子が融液表面に落下して単結晶化を阻害すると
いう問題点がある。また、るつぼの内周壁部付近の融液
表面が環状構造物により覆われているから、外部から結
晶の成長状況が観察できないという問題点があり、水冷
の場合、構造が複雑な上に、高温部(融液表面)に近い
ため、水蒸気爆発の危険があるという問題点がある。さ
らに、断熱材や遮蔽材又は冷却円筒は壊れやすい、性質
変化し易いなど寿命も短いうえに高価であるという問題
点がある。
In the technique of providing a heat radiation shield plate and the technique of using a water-cooled cooling cylinder, silicon monoxide (SiO) evaporated and generated from the melt condenses, and solidified particles are melted. There is a problem that it falls on the liquid surface and inhibits single crystallization. Further, since the melt surface in the vicinity of the inner peripheral wall of the crucible is covered with an annular structure, there is a problem that the crystal growth state cannot be observed from the outside.In the case of water cooling, the structure is complicated and high temperature Since it is close to the surface (melt surface), there is a problem that there is a danger of steam explosion. Further, there is a problem that the heat insulating material, the shielding material, or the cooling cylinder has a short life because it is easily broken, its properties are easily changed, and it is expensive.

【0006】本発明は、前記問題点を解決した、引上方
向に温度勾配の大きいシリコン単結晶の引上装置を提供
することを目的とする。
It is an object of the present invention to provide a silicon single crystal pulling apparatus having a large temperature gradient in the pulling direction, which solves the above problems.

【0007】[0007]

【課題を解決するための手段】本発明は、前記問題点を
解決するために、チョクラルスキー法によって例えば石
英るつぼ内のシリコン融液からシリコン単結晶を引き上
げる際に、るつぼの充填する原料融液をるつぼ上端の極
く近くまで充填できるように、トップリングを設置し、
融液表面より上方のるつぼ壁側面から結晶へ向けての熱
輻射を少なくし、結晶の引上方向の温度勾配を大きくす
るものである。この場合、ヒータから直接輻射によって
単結晶が加熱されるのを防止するため、トップリングは
チョクラルスキー法による引上装置のヒータ上方に、水
平円盤状の円環と、該円環の内周に設けた垂下円筒とか
らなるトップリングを設置したことを特徴とするシリコ
ン単結晶の引上装置である。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a raw material melt to be filled in a crucible when pulling a silicon single crystal from a silicon melt in a quartz crucible by the Czochralski method. Install a top ring so that the liquid can be filled very close to the top of the crucible,
The heat radiation from the side of the crucible wall above the surface of the melt toward the crystal is reduced, and the temperature gradient in the crystal pulling direction is increased. In this case, in order to prevent the single crystal from being heated by direct radiation from the heater, the top ring is located above the heater of the pulling device by the Czochralski method and has a horizontal disk-shaped ring and an inner circumference of the ring. The apparatus for pulling up a silicon single crystal is characterized in that a top ring composed of a hanging cylinder provided in the above is installed.

【0008】[0008]

【作用】チョクラルスキー法により製造される単結晶
は、融液表面、トップリング、融液表面より上方のるつ
ぼ側面等からの熱輻射を受け保温される。よって、結晶
引上方向の温度勾配が小さくなる。これを解決するため
に、本発明ではるつぼに充填する原料融液をるつぼ上端
の極く近くまで充填できるようにトップリングを設置し
た。
The single crystal produced by the Czochralski method is kept warm by heat radiation from the melt surface, the top ring, the side surface of the crucible above the melt surface, and the like. Therefore, the temperature gradient in the crystal pulling direction becomes small. In order to solve this, in the present invention, a top ring is installed so that the raw material melt to be filled in the crucible can be filled up to a position very close to the upper end of the crucible.

【0009】本発明によれば、るつぼ上端の極く近くま
で融液を充填するため、結晶への熱輻射の熱源として、
るつぼ壁、融液表面、トップリングの他に、ヒータを考
慮する必要が出てくる。そのため、トップリング(ヒー
タ上方に設置する断熱板)により、結晶からヒータを見
えなくする必要がある。そこで、本発明では、図2に示
すように、水平円盤状の円環11とこの円環11の円周
にひさし状に設けた垂下円筒12とからなるトップリン
グ10を設け、ヒータから単結晶への熱輻射を遮蔽し
た。
According to the present invention, since the melt is filled very close to the upper end of the crucible, the heat source for heat radiation to the crystal is
In addition to the crucible wall, melt surface, and top ring, it becomes necessary to consider a heater. Therefore, it is necessary to hide the heater from the crystal by the top ring (a heat insulating plate installed above the heater). Therefore, in the present invention, as shown in FIG. 2, a top ring 10 composed of a horizontal disk-shaped ring 11 and a hanging cylinder 12 provided in the shape of a canopy around the circumference of the ring 11 is provided, and a single crystal is formed from a heater. The heat radiation to is shielded.

【0010】また、トップリング10の材質も、通常の
断熱材だけではなく、断熱材と熱輻射の小さい金属の組
み合わせとした。本発明の装置では、融液をるつぼ上端
の極く近くまで充填することができ、融液表面より上方
のるつぼ壁側面の面積を減少させることができ、るつぼ
側壁面から単結晶への熱輻射を減らすことができる。さ
らに、融液表面上方に構造物がないため、一酸化珪素の
凝縮が起こらず、結晶成長部の観察が容易であり、水蒸
気爆発の危険等の問題点が一切ない。原料融液の充填量
を示す指標として、るつぼ直径(457mm)に対する
るつぼ上端から融液表面までの距離の比をRとすると、
Rは、20%より小さい方が好ましく、より好ましくは
15%以下である。Rが20%以上では、るつぼ壁側面
から結晶への熱輻射を減少させる効果が少なく、引上速
度の高速化への効果がない。
Further, the material of the top ring 10 is not limited to a normal heat insulating material, but a combination of a heat insulating material and a metal having a small heat radiation. In the apparatus of the present invention, the melt can be filled very close to the upper end of the crucible, the area of the crucible wall side surface above the melt surface can be reduced, and the heat radiation from the crucible side wall surface to the single crystal can be reduced. Can be reduced. Furthermore, since there is no structure above the surface of the melt, condensation of silicon monoxide does not occur, the crystal growth portion can be easily observed, and there are no problems such as the danger of steam explosion. As an index showing the filling amount of the raw material melt, when the ratio of the distance from the crucible upper end to the melt surface to the crucible diameter (457 mm) is R,
R is preferably less than 20%, more preferably 15% or less. When R is 20% or more, the effect of reducing the heat radiation from the side surface of the crucible wall to the crystal is small, and the effect of increasing the pulling speed is low.

【0011】原料融液の充填方法であるが、例えばシリ
コン単結晶成長の場合、シリコンの密度は、液体で2.
53g/cm3 、固体で2.33g/cm2 である。更
に固体原料(例えばポリシリコン)を充填する際、隙間
なく充填することは不可能である。そのため、単にるつ
ぼに予め充填した固体原料を溶かす方法では、融液をる
つぼ上端の極く近くまで充填することは不可能である。
よって、本発明における融液の充填方法として、例え
ば、通常の方法で単にるつぼ内に予め充填した固体原料
(ポリシリコン)を溶かした後、塊状シリコンを結晶引
上軸例えばワイヤに吊して溶かし込むリチャージ法を採
用するとよい。また、粒状ポリシリコンを別途原料供給
管から供給する方法を採用してもよい。
This is a method of filling the raw material melt. For example, in the case of silicon single crystal growth, the density of silicon is 2.
It is 53 g / cm 3 and 2.33 g / cm 2 as a solid. Furthermore, when filling a solid material (for example, polysilicon), it is impossible to fill without gaps. Therefore, it is impossible to fill the melt to a position very close to the upper end of the crucible only by a method of melting the solid raw material that is previously filled in the crucible.
Therefore, as a method of filling the melt in the present invention, for example, after melting the solid raw material (polysilicon) that is simply filled in advance in the crucible by a normal method, the bulk silicon is melted by suspending it on a crystal pulling shaft such as a wire. It is advisable to adopt the recharge method that incorporates. Alternatively, a method of separately supplying the granular polysilicon from the raw material supply pipe may be adopted.

【0012】本発明によって、単結晶の引上方向におけ
る温度勾配を大きくして、結晶引上速度を高く維持でき
る。また、成長方向でのOSFの発生や、酸素析出等を
防止し、品質向上を図ることができる。
According to the present invention, the temperature gradient in the pulling direction of the single crystal can be increased and the crystal pulling rate can be kept high. Further, it is possible to prevent the generation of OSF in the growth direction, the precipitation of oxygen, etc., and improve the quality.

【0013】[0013]

【実施例】以下、本発明を図面に基づき具体的に説明す
る。図3は通常のチョクラルスキー法単結晶引上を示す
図である。図1、図2は本発明を表わすものである。実
施例では、るつぼ直径18インチ(457mm)に対し
て、融液表面をるつぼ上端から20mm(約4%相当)
の位置に保って結晶成長を行った。トップリング10内
側の垂下円筒12の下端とヒータ1の上端の隙間を5m
mとした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. FIG. 3 is a diagram showing a normal Czochralski method single crystal pulling. 1 and 2 show the present invention. In the example, with respect to the diameter of the crucible of 18 inches (457 mm), the melt surface was 20 mm from the upper end of the crucible (equivalent to about 4%).
Crystal growth was carried out while maintaining the position. The gap between the lower end of the hanging cylinder 12 inside the top ring 10 and the upper end of the heater 1 is 5 m.
m.

【0014】図4は融液表面のるつぼ上端からの距離と
その条件における引上速度を比較したものである。図5
はるつぼ直径に対する融液表面のるつぼ上端からの距離
の比率R%とその条件での平均結晶引上速度を比較した
ものである。また、本発明による方法と従来の通常引上
による方法、従来の結晶高速引上技術である水冷円筒管
を用いた方法とをその引上速度で比較したのが図6であ
る。さらに、表1に引上の単結晶引上成功回数を比較し
たものを示した。本発明によれば引上速度は水冷円筒管
を用いる方法には若干及ばないものの、通常法に比較す
るとかなり高速化することができる。さらに、単結晶引
上成功率では、炉内構造の単純なことから、水冷円筒管
を使用した方法に比較して、非常によい結果が得られ、
安価に安定して高速引き上げでの結晶成長が可能とな
る。
FIG. 4 compares the distance of the melt surface from the upper end of the crucible with the pulling speed under the conditions. Figure 5
It is a comparison of the ratio R% of the distance of the melt surface from the upper end of the crucible to the diameter of the crucible and the average crystal pulling rate under the conditions. Further, FIG. 6 compares the method according to the present invention with the conventional normal pulling method and the method using a water-cooled cylindrical tube which is a conventional high-speed crystal pulling technique at the pulling speed. Further, Table 1 shows a comparison of the number of successful pulling of single crystals. According to the present invention, the pulling speed is slightly lower than that of the method using the water-cooled cylindrical tube, but can be considerably increased as compared with the normal method. In addition, the single crystal pulling success rate is very good compared to the method using a water-cooled cylindrical tube, because of the simple internal structure of the furnace,
It is possible to stably and inexpensively grow crystals by pulling at high speed.

【0015】[0015]

【表1】 ──────────────────────────────────── 単結晶成功回数 実験回数 通常法 9 10 水冷法 4 10 本発明 9 10 ──────────────────────────────────── 本実施例では、原料融液の充填方法は結晶引上軸に塊状
ポリシリコンを吊して溶かし込むリチャージ方法で行っ
たが、融液表面とるつぼ上端の距離を小さく保ったま
ま、粒状ポリシリコンを供給できる原料供給管を用い
て、原料を供給しながら結晶を引き上げる(原料の連続
供給法)方法も採用することができ、原料融液が減少し
ないため、常に融液より上のるつぼ壁側面積が少なく、
るつぼ壁からの熱輻射が少なくなり、結晶の引上方向の
温度勾配が大きいまま温度勾配一定で、結晶成長するこ
とが可能となる。
[Table 1] ──────────────────────────────────── Number of successful single crystals Number of experiments Normal method 9 10 Water cooling method 4 10 The present invention 9 10 ───────────────────────────────────── The melt filling method was the recharging method in which massive polysilicon was hung on the crystal pulling shaft and melted, but a raw material supply pipe that can supply granular polysilicon while keeping the distance between the melt surface and the top of the crucible small. It is also possible to adopt a method of pulling the crystal while supplying the raw material (a continuous supply method of the raw material), and since the raw material melt does not decrease, the crucible wall side area above the melt is always small,
The heat radiation from the crucible wall is reduced, and it is possible to grow the crystal with a constant temperature gradient while the temperature gradient in the crystal pulling direction is large.

【0016】また、実施例では一度原料を溶かした後、
融液表面を上昇させるために、更に固体原料を溶かし込
んだが、単に通常より丈の短いるつぼを用いても本発明
の効果は得られる。
In the embodiment, once the raw materials are melted,
The solid raw material was further melted in order to raise the melt surface, but the effect of the present invention can be obtained by simply using a crucible having a shorter length than usual.

【0017】[0017]

【発明の効果】本発明によれば、チョクラルスキー法に
よる単結晶引上における単結晶の軸方向の温度勾配を大
きくして、結晶引上速度を高く維持することができる。
また、成長方向でのOSFの発生防止、酸素析出の防止
等の品質向上ができるという効果もある。
According to the present invention, it is possible to maintain a high crystal pulling rate by increasing the temperature gradient in the axial direction of the single crystal upon pulling the single crystal by the Czochralski method.
Further, there is an effect that quality can be improved by preventing the generation of OSF in the growth direction and preventing oxygen precipitation.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の単結晶引上げ装置の断面図である。FIG. 1 is a sectional view of a single crystal pulling apparatus of an embodiment.

【図2】実施例のトップリングの斜視図である。FIG. 2 is a perspective view of a top ring according to an embodiment.

【図3】通常のチョクラルスキー法単結晶引上げ装置の
断面図である。
FIG. 3 is a sectional view of a conventional Czochralski method single crystal pulling apparatus.

【図4】るつぼ上端から融液表面までの距離とその条件
での引上中結晶引上速度を示すグラフである。
FIG. 4 is a graph showing the distance from the upper end of the crucible to the surface of the melt and the crystal pulling speed during pulling under that condition.

【図5】るつぼ上端から融液表面までの距離と平均結晶
引上速度との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the distance from the upper end of the crucible to the surface of the melt and the average crystal pulling rate.

【図6】通常法、従来の高速引上法(水冷法)、本発明
の高速引上法の結晶引上速度の比較を示すグラフであ
る。
FIG. 6 is a graph showing a comparison of crystal pulling speeds between a normal method, a conventional high speed pulling method (water cooling method) and the high speed pulling method of the present invention.

【符号の説明】[Explanation of symbols]

1 ヒータ 2 るつ
ぼ 3 トップリング 4 原料
融液 5 単結晶 6 結晶
引上軸 10 トップリング 11 円環 12 垂下円筒
DESCRIPTION OF SYMBOLS 1 heater 2 crucible 3 top ring 4 raw material melt 5 single crystal 6 crystal pulling shaft 10 top ring 11 ring 12 hanging cylinder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 越前谷 一彦 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 金田 洋 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiko Echizenya 1 Kawasaki-cho, Chuo-ku, Chiba City Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Hiroshi Kaneda 1 Kawasaki-cho, Chuo-ku, Chiba City Kawasaki Steel Co., Ltd. Research headquarters

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法による引上装置のヒ
ータ上方に、水平円盤状の円環と、該円環の内周に設け
た垂下円筒とからなるトップリングを設置したことを特
徴とするシリコン単結晶の引上装置。
1. A top ring composed of a horizontal disk-shaped ring and a hanging cylinder provided on the inner circumference of the ring is installed above the heater of a Czochralski pulling device. Silicon single crystal pulling equipment.
JP20210192A 1992-07-29 1992-07-29 Pulling up device for silicon single crystal Withdrawn JPH0648884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20210192A JPH0648884A (en) 1992-07-29 1992-07-29 Pulling up device for silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20210192A JPH0648884A (en) 1992-07-29 1992-07-29 Pulling up device for silicon single crystal

Publications (1)

Publication Number Publication Date
JPH0648884A true JPH0648884A (en) 1994-02-22

Family

ID=16451984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20210192A Withdrawn JPH0648884A (en) 1992-07-29 1992-07-29 Pulling up device for silicon single crystal

Country Status (1)

Country Link
JP (1) JPH0648884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021853A1 (en) * 1995-12-08 1997-06-19 Shin-Etsu Handotai Co., Ltd. Single crystal production apparatus and process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021853A1 (en) * 1995-12-08 1997-06-19 Shin-Etsu Handotai Co., Ltd. Single crystal production apparatus and process
US5972106A (en) * 1995-12-08 1999-10-26 Shin-Etsu Handotai Co., Ltd. Device and method for producing single crystal

Similar Documents

Publication Publication Date Title
JP3944879B2 (en) Single crystal ingot production equipment
CA1261715A (en) Apparatus and process for growing monocrystals of semiconductor materials from shallow crucibles by czochralski technique
EP0591525A1 (en) Device for pulling up single crystal
US5690733A (en) Method for recharging of silicon granules in a Czochralski single crystal growing operation
KR101105950B1 (en) Manufacturing device for crystal ingot
JP2010013300A (en) Single crystal manufacturing apparatus and method
JPS63315589A (en) Single crystal production apparatus
JPH06227891A (en) Crucible for pulling silicon single crystal
JPH0648884A (en) Pulling up device for silicon single crystal
JP2000007496A (en) Single crystal pulling-up equipment and single crystal pulling-up method using the same
JPH05294783A (en) Silicon single crystal producing device
JP2000007488A (en) Single crystal silicon pulling-up equipment and single crystal pulling-up method using the same
JPH09309787A (en) Eater-cooling tower for single crystal-pulling up apparatus
EP0221051A1 (en) Method and apparatus for growing single crystal bodies
JPH0315550Y2 (en)
JP3151327B2 (en) Single crystal production equipment
JP2825938B2 (en) Single crystal pulling device
JP2547352B2 (en) Silicon single crystal manufacturing equipment
JP2504875B2 (en) Single crystal manufacturing equipment
US5363795A (en) Czochralski crystal pulling process and an apparatus for carrying out the same
JPH06298589A (en) Production of silicon single crystal and cooling cylinder used therefor
JPH0741384A (en) Method and device for producing low-oxygen silicon single crystal
EP0530397A1 (en) Czochralski crystal pulling process and an apparatus for carrying out the same
JPH05294779A (en) Single crystal pulling up device
JPS63319288A (en) Flanged quartz crucible

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005