JPH0648604B2 - Superconducting conductor - Google Patents

Superconducting conductor

Info

Publication number
JPH0648604B2
JPH0648604B2 JP60168933A JP16893385A JPH0648604B2 JP H0648604 B2 JPH0648604 B2 JP H0648604B2 JP 60168933 A JP60168933 A JP 60168933A JP 16893385 A JP16893385 A JP 16893385A JP H0648604 B2 JPH0648604 B2 JP H0648604B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting conductor
purity aluminum
purity
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60168933A
Other languages
Japanese (ja)
Other versions
JPS6229014A (en
Inventor
操 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60168933A priority Critical patent/JPH0648604B2/en
Publication of JPS6229014A publication Critical patent/JPS6229014A/en
Publication of JPH0648604B2 publication Critical patent/JPH0648604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、超電導導体に係わり、特に大型・高磁界マグ
ネットに使用するのに好適な超電導導体に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a superconducting conductor, and more particularly to a superconducting conductor suitable for use in a large-sized high-field magnet.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、大型・高磁界マグネット用超電導導体としては、
高精度銅等からなる安定化部材中に超電導部材を高純度
アルミニウムと共に埋込んだものが用いられており、こ
の超電導導体は例えば第3図に示す如く構成されてい
る。即ち、Cu或いはCu−Sn合金等の常電導金属中
に、複数本のNb−Ti或いはNb−Sn等の極細超電
導素線を埋込んで超電導線を形成し、この超電導線1本
乃至は複数本から超電導部材32を形成する。そして、
この超電導部材32を、高純度銅からなり平角断面の溝
が形成された安定化部材31の該溝中に埋込む。さら
に、その上を高純度銅33で被覆した高純度アルミニウ
ム部材34で蓋をし、これらをPb−Sn半田等の低融
点金属35で接着して一体化していた。
Conventionally, as a superconducting conductor for large, high-field magnets,
A superconducting member embedded with high-purity aluminum in a stabilizing member made of high-precision copper or the like is used, and this superconducting conductor is configured as shown in FIG. 3, for example. That is, a superconducting wire is formed by embedding a plurality of ultrafine superconducting element wires such as Nb-Ti or Nb-Sn in a normal-conducting metal such as Cu or Cu-Sn alloy, and one or more superconducting wires. The superconducting member 32 is formed from a book. And
The superconducting member 32 is embedded in the stabilizing member 31 which is made of high-purity copper and has a rectangular cross section. Further, a high-purity aluminum member 34 coated with high-purity copper 33 was placed on the lid, and these were bonded and integrated with a low-melting point metal 35 such as Pb-Sn solder.

ところで、大型・高磁界マグネットとなると、その蓄積
エネルギーが非常に大きいものとなる。このため、マグ
ネット全体が常電導化すると、マグネットが焼損した
り、或いはマグネットを超電導状態に保持するために用
いられる液体ヘリウムの膨大な蒸発による圧力上昇でマ
グネットを収容している極低温容器が破壊する虞れがあ
る。
By the way, when it comes to a large-sized and high-field magnet, the stored energy becomes very large. For this reason, if the entire magnet becomes normal conductive, the magnet will be burned or the cryogenic container containing the magnet will be destroyed due to the pressure increase due to the huge evaporation of liquid helium used to hold the magnet in a superconducting state. There is a risk of

通常、このような大型・高磁界マグネットに使用する超
電導導体では、完全安定化と称して、何らかの原因で超
電導導体の一部が超電導状態が破れて常電導状態に転移
しても、そこでの発熱が液体ヘリウムによる冷却熱より
小さくなるように設計し、常電導状態に転移した部分を
拡がらせずに速やかに超電導状態に復帰させる方法を採
っている。即ち、超電導導体が液体ヘリウムによって極
低温(例えば4.2K)に冷却された超電導状態では、
通電電流は電気抵抗が零となる超電導特性を示す極細超
電導素線に流れるが、何らかの原因、例えば電磁力に伴
う超電導導体の動きによる摩擦熱等で極細超電導素線が
超電導状態から常電導状態に転移すると、超電導素線の
電気抵抗が非常に大きくなるため、このままでは極細超
電導素線が焼損する。そこで、通電電流を電気抵抗の低
い材料にバイパスさせ、そこでの発熱量を液体ヘリウム
による冷却熱量より小さくして、部分的に常電導状態に
転移した超電導素線の全体への熱の拡がりを抑え、且つ
速やかに超電導状態に冷却させる方法が採られている。
この通電電流をバイパスさせる役目が、前記第3図にお
ける高純度銅で形成された安定化部材31と高純度アル
ミニウム部材34である。従って、通電電流をバイパス
させる役目を担う部材には電気抵抗率が低い材料が望ま
しい。また、この通電電流をバイパスする部材での発熱
量が小さい程、一般にその超電導導体は安定性が高いこ
とになる。
Usually, in a superconducting conductor used for such a large and high magnetic field magnet, it is called perfect stabilization, and even if a part of the superconducting conductor breaks into a superconducting state due to some reason, the heat generated in that state changes. Is designed to be smaller than the heat of cooling by liquid helium, and a method of quickly returning to the superconducting state without expanding the part transformed to the normal conducting state is adopted. That is, in a superconducting state in which the superconducting conductor is cooled to a very low temperature (for example, 4.2K) by liquid helium,
The energizing current flows through the ultrafine superconducting element wire that exhibits superconducting characteristics with zero electrical resistance, but the ultrafine superconducting element wire changes from the superconducting state to the normal conducting state due to some cause, for example, frictional heat caused by movement of the superconducting conductor due to electromagnetic force. When the transition occurs, the electric resistance of the superconducting element wire becomes very large, so that the ultrafine superconducting element wire is burnt out if it is left as it is. Therefore, the energizing current is bypassed to a material with low electrical resistance, and the amount of heat generated there is made smaller than the amount of heat of cooling by liquid helium to suppress the spread of heat to the entire superconducting wire that has partially transitioned to the normal conducting state. In addition, a method of rapidly cooling to a superconducting state is adopted.
The role of bypassing this energizing current is the stabilizing member 31 and the high-purity aluminum member 34 made of high-purity copper in FIG. Therefore, a material having a low electric resistivity is desirable for the member that plays a role of bypassing the energizing current. In addition, the smaller the amount of heat generated by the member that bypasses this energizing current, the higher the stability of the superconducting conductor in general.

一方、極低温において電気抵抗率が最も低い材料として
は、高純度アルミニウムが知られている。従って、この
高純度アルミニウム中に超電導部材を埋込んだ超電導導
体もあるが、このような超電導導体の場合、強大な電磁
力が超電導導体に作用する大型・高磁界マグネット用超
電導導体としては、高純度アルミニウムの機械的強度が
低いために強度的に不向きである。このような理由か
ら、前記第3図に示す如く、機械的強度が高純度アルミ
ニウムより高く、且つ極低温において高純度アルミニウ
ムに次いで電気抵抗率の低い常電導金属の高純度銅と、
高純度アルミニウムとを組合わせた超電導導体が用いら
れていたのである。
On the other hand, high-purity aluminum is known as a material having the lowest electric resistivity at extremely low temperatures. Therefore, there is a superconducting conductor in which a superconducting member is embedded in this high-purity aluminum, but in the case of such a superconducting conductor, as a superconducting conductor for large-sized and high-field magnets in which a powerful electromagnetic force acts on the superconducting conductor, Since the mechanical strength of pure aluminum is low, it is not suitable for strength. For this reason, as shown in FIG. 3, high-purity copper, which is a normal-conducting metal whose mechanical strength is higher than that of high-purity aluminum and which has the second lowest electrical resistivity after high-purity aluminum at extremely low temperatures,
The superconducting conductor in combination with high-purity aluminum was used.

しかしながら、この種の構造にあっては次のような問題
があった。即ち、マグネット巻線時及び運転時に超電導
導体に印加される曲げ応力及び電磁力による引張り応力
によって、超電導特性(例えば臨界電流値)が劣化し易
いと云う欠点があった。特に、超電導部材を構成する極
細超電導素線として、NbSn,VGa等の機械的
応力に脆弱な化合物系材料を用い、例えば10T以上の
高磁界を発生させる大型・高磁界マグネット用超電導導
体を形成した場合、上記問題は顕著に現れた。
However, this type of structure has the following problems. That is, there is a drawback that the superconducting characteristics (for example, the critical current value) are easily deteriorated by the bending stress applied to the superconducting conductor during the magnet winding and the tensile stress due to the electromagnetic force during the operation. In particular, as a superfine superconducting element wire constituting a superconducting member, a compound-based material vulnerable to mechanical stress such as Nb 3 Sn, V 3 Ga is used, and for example, a superconducting magnet for a large-sized and high-field magnet that generates a high magnetic field of 10 T or more. When a conductor is formed, the above-mentioned problem becomes prominent.

〔発明の目的〕[Object of the Invention]

本発明は上記事情を考慮してなされたもので、その目的
とするところは、超電導素線として機械的脆弱な材料を
用いた場合にあっても、超電導特性の劣化を防止するこ
とができ、信頼性の高い大型・高磁界用の超電導導体を
提供することにある。
The present invention has been made in consideration of the above circumstances, and an object thereof is to prevent deterioration of superconducting characteristics even when a mechanically fragile material is used as a superconducting element wire. It is to provide a highly reliable large-sized superconducting conductor for high magnetic fields.

〔発明の概要〕[Outline of Invention]

上記目的を達成するために、本発明は、高純度銅で形成
された安定化部材の中に超導電線からなる超電導部材と
高純度アルミニウム部材とが埋設され、且つこれらが低
融点金属で接着され一体化された超電導導体において、
前記超電導部材が前記安定化部材の中心部に配置され、
前記高純度アルミニウム部材が上記超電導部材の中心軸
を通り巻線時における巻軸心線と平行する線上で、且つ
上記超電導部材の中心軸を境にして対称位置にそれぞれ
の中心軸を位置させて対をなす関係に配置されてなるこ
とを特徴としている。
In order to achieve the above object, the present invention is to embed a superconducting member made of a superconducting wire and a high-purity aluminum member in a stabilizing member made of high-purity copper, and bonding them with a low melting point metal. And integrated superconducting conductor,
The superconducting member is arranged at the center of the stabilizing member,
The high-purity aluminum member passes through the central axis of the superconducting member on a line parallel to the winding axis at the time of winding, and positions the respective central axes at symmetrical positions with respect to the central axis of the superconducting member. It is characterized by being arranged in a paired relationship.

〔発明の効果〕〔The invention's effect〕

本発明によれば、超電導部材に対する極度な応力集中を
なくすことができる。このため、超電導素線としてNb
SnやVGa等の脆弱な材料を用いたとしても、超
電導特性の劣化を未然に防止することができる。また、
超電導部材に限らず高純度アルミニウム部材も極端な応
力集中を受けると比抵抗が増加する。しかし、本発明で
は超電導部材と同様に高純度アルミニウム部材も極端な
応力集中を受け難い場所に配置しているので、比抵抗の
大幅な増加は起こらない。従って、材料選択の自由度及
び信頼性の高い大形・高磁界用の超電導導体を実現する
ことができる。
According to the present invention, extreme stress concentration on the superconducting member can be eliminated. Therefore, as a superconducting element wire, Nb
Even if a fragile material such as 3 Sn or V 3 Ga is used, it is possible to prevent deterioration of superconducting properties. Also,
Not only the superconducting member but also the high-purity aluminum member undergoes extreme stress concentration, and the specific resistance increases. However, in the present invention, the high-purity aluminum member is arranged in a place where it is unlikely to be subjected to extreme stress concentration, like the superconducting member, so that the specific resistance does not increase significantly. Therefore, it is possible to realize a large-sized superconducting conductor for a high magnetic field, which has a high degree of freedom in material selection and reliability.

〔発明の実施例〕Example of Invention

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be described with reference to illustrated embodiments.

第1図は本発明の一実施例に係わる超電導導体の概略構
造を示す断面図である。図中11,11′は高純度銅か
らなる安定化部材であり、これらの安定化部材11,1
1′は対向配置されている。安定化部材11,11′の
各対向面には、平角断面の溝及び半円断面の2つの溝が
設けられている。平角断面の溝には超電導部材12が埋
込まれ、半円断面の溝には高純度銅13(13a,13
b)で被覆された高純度アルミニウム部材14(14
a,14b)がそれぞれ埋込まれている。そして、これ
らは低融点金属15により接着されて一体化されるもの
となっている。
FIG. 1 is a sectional view showing a schematic structure of a superconducting conductor according to an embodiment of the present invention. In the figure, 11 and 11 'are stabilizing members made of high-purity copper.
1'is arranged facing each other. Two grooves having a rectangular cross section and two grooves having a semicircular cross section are provided on the respective facing surfaces of the stabilizing members 11 and 11 '. The superconducting member 12 is embedded in the groove having the rectangular cross section, and the high-purity copper 13 (13a, 13) is embedded in the groove having the semicircular cross section.
high-purity aluminum member 14 (14) coated with b)
a, 14b) are embedded respectively. And, these are adhered and integrated by the low melting point metal 15.

また、上記構造の超電導導体は次のようにして製造され
る。
Further, the superconducting conductor having the above structure is manufactured as follows.

まず、高純度銅の平角材の一面の中心に平角断面の溝を
形成し、その両側に半円断面の溝をそれぞれ形成した安
定化部材11,11′を作製する。次いで、これらの安
定化部材11,11′の溝が形成された表面に低融点金
属15としてのPb−Sn合金半田を薄くメッキする。
一方、安定化部材11,11′の溝面を合わせることに
よって形成される平角断面及び円断面の空穴よりも僅か
に寸法の小さい平角断面を有する超電導部材12及び円
断面を有する高純度銅13で被覆された高純度アルミニ
ウム部材14を製作し、同様にこれらの表面にも低融点
金属15としてのPb−Sn合金半田を薄くメッキす
る。
First, the stabilizing members 11 and 11 'in which a groove having a rectangular cross section is formed at the center of one surface of a flat member of high-purity copper and a groove having a semicircular cross section is formed on both sides thereof are manufactured. Then, Pb-Sn alloy solder as the low melting point metal 15 is thinly plated on the surfaces of the stabilizing members 11 and 11 'where the grooves are formed.
On the other hand, a superconducting member 12 having a rectangular cross section and a rectangular cross section slightly smaller than a hole having a rectangular cross section and a circular cross section formed by combining the groove surfaces of the stabilizing members 11 and 11 ', and a high purity copper 13 having a circular cross section. The high-purity aluminum member 14 coated with is manufactured, and similarly, Pb—Sn alloy solder as the low melting point metal 15 is thinly plated on the surface of these members.

次いで、半田メッキされた一方の安定化部材11の各溝
に半田メッキした超電導部材12及び高純度銅13で被
覆された高純度アルミニウム部材14をそれぞれ埋込
み、その上に他方の安定化部材11′を覆せる。その
後、これらを加熱して低融点金属15の半田を溶融させ
て接着することにより、安定化部材11,11′、超電
導部材12及び高純度アルミニウム部材14を一体構造
とする。このように構成された超電導導体でコイルを形
成するときには、通常、平角断面の長手辺、つまり図中
下面あるいは上面を巻枠側に向けて巻線される。したが
って、この超電導導体の形状を表現すると、超電導部材
12が安定化部材11,11′の中心部に配置され、高
純度アルミニウム部材14a,14bが超電導部材12
の中心軸を通り巻線時における巻軸心線と平行する線上
で、且つ超電導部材12の中心軸を境にして対称位置に
それぞれの中心軸を位置させて対をなす関係に配置され
ていることになる。
Next, the solder-plated superconducting member 12 and the high-purity aluminum member 14 coated with the high-purity copper 13 are embedded in the grooves of the one solder-plated stabilizing member 11, respectively, and the other stabilizing member 11 'is placed thereon. Can overturn. Thereafter, these are heated to melt and bond the solder of the low melting point metal 15 to make the stabilizing members 11 and 11 ', the superconducting member 12 and the high-purity aluminum member 14 into an integrated structure. When forming a coil with the superconducting conductor configured as described above, the coil is usually wound with the long side of the rectangular cross section, that is, the lower surface or the upper surface in the drawing toward the winding frame side. Therefore, when expressing the shape of the superconducting conductor, the superconducting member 12 is arranged at the center of the stabilizing members 11 and 11 ', and the high-purity aluminum members 14a and 14b are the superconducting members 12.
On the line passing through the center axis of the superconducting member 12 in parallel with the center axis of the winding axis at the time of winding, and arranging the center axes of the superconducting member 12 at symmetrical positions with respect to the center axis. It will be.

かくして製作された超電導導体にあっては、超電導部材
12に対して高純度アルミニウム部材14が対称な位置
に配置されているので、超電導部材12に対する極度な
応力集中をなくすことができる。また、高純度アルミニ
ウム部材14a,14bも超電導部材12の中心軸を通
り巻線時における巻軸心線と平行する線上で、且つ超電
導部材12の中心軸を境にして対称位置にそれぞれの中
心軸を位置させて配置されているので、巻線時に極度な
応力集中を受けることがなく、したがって比抵抗が大幅
に増加するようなことはない。このため、超電導部材1
2を形成する超電導線(例えば極細超電導素線)とし
て、NbSnやVGa等の脆弱な材料を用いたとし
ても、超電導特性の劣化を未然に防止することができ、
材料選択の自由度及び信頼性の向上をはかり得る。
In the superconducting conductor thus manufactured, since the high-purity aluminum member 14 is arranged in a symmetrical position with respect to the superconducting member 12, extreme stress concentration on the superconducting member 12 can be eliminated. The high-purity aluminum members 14a and 14b also pass through the central axis of the superconducting member 12 on a line parallel to the winding axis line at the time of winding and symmetrically with respect to the central axis of the superconducting member 12 at their respective central axes. Is located so that it is not subjected to extreme stress concentration during winding, and therefore the specific resistance does not increase significantly. Therefore, the superconducting member 1
Even if a fragile material such as Nb 3 Sn or V 3 Ga is used as the superconducting wire (for example, an ultrafine superconducting element wire) that forms 2, it is possible to prevent deterioration of the superconducting characteristics.
The degree of freedom in material selection and reliability can be improved.

なお、本実施例において超電導部材12を形成する超電
導線として、NbSn極細超電導素線を用いたとこ
ろ、超電導導体に0.5[%]の曲げ歪みを印加しても
臨界電流値に低下は見られず、また15[kg/mm2]の
引張り応力を印加しても同様であった。また、2Tの磁
場において2700Aまで安定に通電できることが実験
によって確認された。これに対して、導体の断面寸法及
び高純度アルミニウムの占積率を同一とした従来の超電
導導体にあっては、安定に通電できる電流値は略同じ値
でも、曲げ歪み及び引張り応力に対する臨界電流値は、
実施例超電導導体に比べ約30〜40[%]低い値を示
し、本発明における超電導導体の優位性が確認されてい
る。
In addition, when Nb 3 Sn extra fine superconducting element wire was used as the superconducting wire forming the superconducting member 12 in this example, the critical current value was lowered even if a bending strain of 0.5 [%] was applied to the superconducting conductor. Was not observed, and it was the same when a tensile stress of 15 [kg / mm 2 ] was applied. It was also confirmed by experiments that a stable current can be applied up to 2700 A in a 2 T magnetic field. On the other hand, in a conventional superconducting conductor in which the cross-sectional dimensions of the conductor and the space factor of high-purity aluminum are the same, the critical current for bending strain and tensile stress is the same even if the current value that can be stably applied is almost the same. value is,
The value is about 30 to 40 [%] lower than that of the example superconducting conductor, which confirms the superiority of the superconducting conductor of the present invention.

第2図は本発明の他の実施例の概略構成を示す断面図で
ある。なお、第1図と同一部分には同一符号を付して、
その詳しい説明は省略する。
FIG. 2 is a sectional view showing a schematic configuration of another embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals,
The detailed description is omitted.

この実施例が先に説明した実施例と異なる点は、前記円
断面の高純度アルミニウム部材14a,14bに加え、
平角断面の高純度アルミニウム部材14c,14dを付
加したものである。即ち、安定化部材11,11′の対
向面と反対側の面には、平角断面の溝がそれぞれ設けら
れている。これらの溝に、高純度銅13c,13dで被
覆された高純度アルミニウム部材14c,14dがそれ
ぞれ埋込まれている。そして、これらの高純度アルミニ
ウム部材14c,14dも、先の実施例と同様に低融点
金属15により安定化部材11,11′と一体化される
ものとなっている。
The difference between this embodiment and the embodiment described above is that in addition to the high-purity aluminum members 14a and 14b having the circular cross section,
High-purity aluminum members 14c and 14d having a rectangular cross section are added. That is, grooves having a rectangular cross section are provided on the surfaces of the stabilizing members 11 and 11 'opposite to the facing surfaces. High-purity aluminum members 14c and 14d covered with high-purity copper 13c and 13d are embedded in these grooves, respectively. These high-purity aluminum members 14c and 14d are also integrated with the stabilizing members 11 and 11 'by the low melting point metal 15 as in the previous embodiment.

なお、本発明は上述した各実施例に限定されるものでは
ない。例えば、前記超電導部材を形成する超電導線は1
本に限らず複数本であってもよい。さらに、超電導線と
しては、Nb−Sn,NbSn,VGa等の超電導
素線が常電導金属中に埋設されたものが望ましいが、そ
れ以外のものを用いることも可能である。また、前記高
純度銅としては、その材質が半硬質或いは硬質であって
も何等差支えない。さらに、高純度銅からなる安定化部
材の表面は、ショットブラス,切削等により凹凸のある
粗面であってもよい。また、前記高純度アルミニウム部
材の形状は円断面,角断面に何等限定されるものではな
く、仕様に応じて適宜変更可能である。さらに、前記低
融点金属は、Pb−Sn合金半田に限定されないのは勿
論のことである。
The present invention is not limited to the above-mentioned embodiments. For example, the superconducting wire forming the superconducting member is 1
The book is not limited to a book and may be a plurality of books. Further, as the superconducting wire, but those Nb-Sn, Nb 3 Sn, the superconductor elements such as V 3 Ga being embedded in the normal-conducting metal is desired, it is also possible to use anything else. The high-purity copper may be semi-hard or hard in material. Furthermore, the surface of the stabilizing member made of high-purity copper may be a rough surface having irregularities due to shot brass, cutting or the like. Further, the shape of the high-purity aluminum member is not limited to a circular cross section or a square cross section, and can be appropriately changed according to the specifications. Further, it goes without saying that the low melting point metal is not limited to Pb-Sn alloy solder.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係わる超電導導体の概略構
造を示す断面図、第2図は他の実施例の概略構造を示す
断面図、第3図は従来の超電導導体の概略構造を示す断
面図である。 11,11′……安定化部材、12……超電導部材、1
3(13a,〜,13d)……高純度銅被覆層、14
(14a,〜,14d)……高純度アルミニウム部材、
15……低融点金属。
FIG. 1 is a sectional view showing a schematic structure of a superconducting conductor according to one embodiment of the present invention, FIG. 2 is a sectional view showing a schematic structure of another embodiment, and FIG. 3 is a schematic structure of a conventional superconducting conductor. It is sectional drawing shown. 11, 11 '... Stabilizing member, 12 ... Superconducting member, 1
3 (13a, ~, 13d) ... high-purity copper coating layer, 14
(14a, ~, 14d) ... high-purity aluminum member,
15 ... Low melting point metal.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭48−5393(JP,A) 特開 昭52−27397(JP,A) 特開 昭56−24712(JP,A) 特開 昭56−52807(JP,A) 特開 昭57−95006(JP,A) 特開 昭58−38404(JP,A) 特開 昭59−9809(JP,A) 特開 昭59−108203(JP,A) 特開 昭59−224009(JP,A) Advances in Cryoge nic Engineering Mat erials vol.32(1986) K. T.Hartwig,G.S.Yuan, P.Lehmann“STRAIN RE SISTIVITY AT 4.2K I N PURE ALUMINUM”P. 405−412 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-48-5393 (JP, A) JP-A-52-27397 (JP, A) JP-A-56-24712 (JP, A) JP-A-56- 52807 (JP, A) JP 57-95006 (JP, A) JP 58-38404 (JP, A) JP 59-9809 (JP, A) JP 59-108203 (JP, A) JP-A-59-224009 (JP, A) Advances in Cryogenic Engineering Materials vol. 32 (1986) KT. Hartwig, G .; S. Yuan, P. Lehmann "STRAIN RE SISTIVITY AT 4.2K IN PURE ALUMINUM" P. 405-412

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】高純度銅で形成された安定化部材の中に超
導電線からなる超電導部材と高純度アルミニウム部材と
が埋設され、且つこれらが低融点金属で接着され一体化
された超電導導体において、前記超電導部材は前記安定
化部材の中心部に配置され、前記高純度アルミニウム部
材は上記超電導部材の中心軸を通り巻線時における巻軸
心線と平行する線上で、且つ上記超電導部材の中心軸を
境にして対称位置にそれぞれの中心軸を位置させて対を
なす関係に配置されてなることを特徴とする超電導導
体。
1. A superconducting conductor in which a superconducting member made of a superconducting wire and a high-purity aluminum member are embedded in a stabilizing member made of high-purity copper, and these are bonded and integrated with a low melting point metal. In the above, the superconducting member is arranged in the central portion of the stabilizing member, the high-purity aluminum member passes through the central axis of the superconducting member on a line parallel to the winding axis line at the time of winding, and of the superconducting member. A superconducting conductor characterized by being arranged in a paired relationship with the respective central axes positioned symmetrically with respect to the central axis.
【請求項2】前記高純度アルミニウム部材は、高純度銅
で被覆されたものであることを特徴とする特許請求の範
囲第1項記載の超電導導体。
2. The superconducting conductor according to claim 1, wherein the high-purity aluminum member is covered with high-purity copper.
【請求項3】前記超電導線は、Nb−Ti合金線或いは
NbSn化合物線であることを特徴とする特許請求の
範囲第1項記載の超電導導体。
3. The superconducting conductor according to claim 1, wherein the superconducting wire is an Nb—Ti alloy wire or a Nb 3 Sn compound wire.
【請求項4】前記低融点金属は、Pb−Sn半田である
ことを特徴とする特許請求の範囲第1項記載の超電導導
体。
4. The superconducting conductor according to claim 1, wherein the low melting point metal is Pb—Sn solder.
JP60168933A 1985-07-31 1985-07-31 Superconducting conductor Expired - Fee Related JPH0648604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60168933A JPH0648604B2 (en) 1985-07-31 1985-07-31 Superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60168933A JPH0648604B2 (en) 1985-07-31 1985-07-31 Superconducting conductor

Publications (2)

Publication Number Publication Date
JPS6229014A JPS6229014A (en) 1987-02-07
JPH0648604B2 true JPH0648604B2 (en) 1994-06-22

Family

ID=15877235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60168933A Expired - Fee Related JPH0648604B2 (en) 1985-07-31 1985-07-31 Superconducting conductor

Country Status (1)

Country Link
JP (1) JPH0648604B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150806A (en) * 1989-11-08 1991-06-27 Toshiba Corp Superconductor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109374A (en) * 1975-08-28 1978-08-29 Aluminum Company Of America Superconductor composite and method of making the same
JPS5652807A (en) * 1979-10-05 1981-05-12 Furukawa Electric Co Ltd Compound superconductor
JPS5838404A (en) * 1981-08-31 1983-03-05 古河電気工業株式会社 Method of producing stabilized superconductor
JPS59224009A (en) * 1983-06-02 1984-12-15 日立電線株式会社 Compound superconductive conductor for magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AdvancesinCryogenicEngineeringMaterialsvol.32(1986)K.T.Hartwig,G.S.Yuan,P.Lehmann"STRAINRESISTIVITYAT4.2KINPUREALUMINUM"P.405−412

Also Published As

Publication number Publication date
JPS6229014A (en) 1987-02-07

Similar Documents

Publication Publication Date Title
US5134040A (en) Melt formed superconducting joint between superconducting tapes
JP6419596B2 (en) Thin-film wire connection structure, high-temperature superconducting wire using the connection structure, and high-temperature superconducting coil using the connection structure
US3309179A (en) Hard superconductor clad with metal coating
US4673774A (en) Superconductor
US3537827A (en) Flexible superconductive laminates
US4757161A (en) Composite superconducting conductor with several conductor strands and a method for manufacturing the same
US5109593A (en) Method of melt forming a superconducting joint between superconducting tapes
US4586012A (en) Soldered superconductive coils for a pulse magnet
JPH0648604B2 (en) Superconducting conductor
JPS6262001B2 (en)
US5747181A (en) Superconductive article and method of making
JP2768844B2 (en) Superconductor and superconducting coil
JP2699732B2 (en) Superconducting conductor and stabilizing material used therefor
JP3120626B2 (en) Oxide superconducting conductor
JPH03150806A (en) Superconductor
JP6484658B2 (en) Oxide superconducting wire and superconducting coil
JPS6231965A (en) Joint sleeve for superconductor
JPS59121707A (en) Compound superconductive wire
JPH0254809A (en) Superconducting conductor
JPS6035796B2 (en) How to connect superconducting wires
JPS5831685B2 (en) superconducting wire
JPS6025841B2 (en) compound superconductor
JP3352735B2 (en) Superconducting flexible cable
JPH06224037A (en) Superconducting coil
JPS5873909A (en) Superconductive conductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees