JPS6035796B2 - How to connect superconducting wires - Google Patents

How to connect superconducting wires

Info

Publication number
JPS6035796B2
JPS6035796B2 JP51040601A JP4060176A JPS6035796B2 JP S6035796 B2 JPS6035796 B2 JP S6035796B2 JP 51040601 A JP51040601 A JP 51040601A JP 4060176 A JP4060176 A JP 4060176A JP S6035796 B2 JPS6035796 B2 JP S6035796B2
Authority
JP
Japan
Prior art keywords
superconducting
superconductor
compound
superconductors
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51040601A
Other languages
Japanese (ja)
Other versions
JPS52124184A (en
Inventor
靖三 田中
義雄 古戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP51040601A priority Critical patent/JPS6035796B2/en
Priority to FR7636363A priority patent/FR2334182A1/en
Priority to CH1526576A priority patent/CH616775A5/de
Priority to GB50463/76A priority patent/GB1573506A/en
Priority to DE2654924A priority patent/DE2654924C2/en
Publication of JPS52124184A publication Critical patent/JPS52124184A/en
Priority to US06/008,263 priority patent/US4329539A/en
Priority to US06/308,558 priority patent/US4611390A/en
Publication of JPS6035796B2 publication Critical patent/JPS6035796B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Description

【発明の詳細な説明】 本発明は化合物超電導線を接続する方法の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in methods for connecting compound superconducting wires.

従来超電導線をコイルに形成せしめる場合には所定の長
さの超電導線を接続して所望の長さのものとなし、これ
をコイル状として使用しているものである。
Conventionally, when forming a superconducting wire into a coil, superconducting wires of a predetermined length are connected to obtain a desired length, and this is used as a coil.

然しながら一般に超電導線を接続するに際しては、次の
如き条件を満足することが必要とされている。【1}
電気抵抗が低いこと 超電導線間の接触抵抗からの発熱によるも超電導線が常
電導に遷移しないことが必要であるが、超電導マグネッ
トを永久電流状態において使用する場合には電流の減衰
に直接的に関係するため、低い抵抗値にすることが必要
となる。
However, when connecting superconducting wires, it is generally necessary to satisfy the following conditions. [1}
Low electrical resistance It is necessary that the superconducting wire does not transition to normal conductivity due to heat generation from contact resistance between the superconducting wires, but when using a superconducting magnet in a persistent current state, it is necessary that the superconducting wire does not transition to normal conductivity due to heat generation from contact resistance between the superconducting wires. Therefore, it is necessary to have a low resistance value.

■ 安定であること電流或は磁界の変動または機械的な
振動をうけた場合においても超電導状態が十分に確保さ
れていることが必要である。
■ Stability It is necessary that the superconducting state is sufficiently maintained even when subjected to fluctuations in current or magnetic field or mechanical vibrations.

{3’コンパクトであること 超電導装置を構成するに際し、極低温容器或は高価な液
体ヘリウムを使用しなければならない。
{3' Compactness When constructing a superconducting device, a cryogenic container or expensive liquid helium must be used.

従って接続部分をコンパクトにすることによりこれらの
費用を低減せしめることが出来る。【4} 容易な作業
性と高度の信頼性のあること以上の要件にもとづき従来
種々の超電導線の接続方法が提案されているが、これら
を大別すると次の如き方法である。
Therefore, by making the connecting portion compact, these costs can be reduced. [4] Various methods for connecting superconducting wires have been proposed in the past based on the requirements of easy workability and high reliability, and these methods can be roughly classified as follows.

即ち、凶 冷間圧着方法 第1図に示す如く超電導体2,2′の外側に銅などの安
定化材3,3′被覆した超電導線1,1′の端部を重ね
合せ、その外側に銅線などの結束線4を巻付け且インジ
ウムなどのハンダ5にて固着しているものである。
That is, as shown in Fig. 1, the ends of superconducting wires 1, 1' coated with stabilizing materials 3, 3' such as copper are overlapped on the outside of superconductors 2, 2', and A binding wire 4 such as a copper wire is wound around the wire and fixed with solder 5 made of indium or the like.

然しながらこの方法により超電導線を接続すると、超電
導線を構成する銅或はハンダのために電気抵抗が高くな
り、永久電流装置には適用し難いものである。【Bー
プラズマスプレー方法 2本の超電導線面に、該線材を構成する超電導体のプラ
ズマをスプレーする方法であるが、その接続部分は熱的
、機械的衝撃を大きく受け易いため超電導体は変質或は
損傷するおそれがある。
However, when superconducting wires are connected using this method, the electrical resistance increases due to the copper or solder that constitutes the superconducting wires, making it difficult to apply to persistent current devices. [B-
Plasma spray method This is a method of spraying the plasma of the superconductor that makes up the wires onto the surfaces of two superconducting wires, but since the connecting parts are susceptible to large thermal and mechanical shocks, the superconductors may deteriorate or be damaged. There is a risk of

又プラズマスプレーされる部分は超電導体の表面のみで
あり、線材内部には及ばないため、接続部分の有効断面
積が極めて小さい。更に超電導線の接合部は金相学的に
好ましい結晶方位関係或は結晶型のものを得ることが難
しく、一般的には超電導体の接触界面に非超電導物質或
は多数の空隙部を生じ均一な接合部を得ることが出来な
い。‘C’拡散反応方法 2本のテープ状単芯超電導線の接続部分の超電導体を露
出せしめ該部に超電導体を構成しうる金属粉末を圧着し
、拡散反応により超電導体を接続させるものであるが、
極細多芯複合超電導線においては、細い超電導体の間隙
部に金属粉末を庄入することは技術的に困難である。
Furthermore, since the part to be plasma sprayed is only the surface of the superconductor and does not extend into the inside of the wire, the effective cross-sectional area of the connection part is extremely small. Furthermore, it is difficult to obtain metallurgically favorable crystal orientation relationships or crystal types for the joints of superconducting wires, and in general, non-superconducting material or many voids occur at the contact interface of the superconductors, resulting in a uniform joint. I can't get the part. 'C' Diffusion reaction method The superconductor at the connecting part of two tape-shaped single-core superconducting wires is exposed, metal powder that can constitute a superconductor is pressed onto the part, and the superconductors are connected by a diffusion reaction. but,
In ultrafine multicore composite superconducting wires, it is technically difficult to insert metal powder into the gaps between thin superconductors.

また金属粉末を圧入するためには接合部の間隙を広くし
なければならず、このようにすると該部を超電体にて充
満するための拡散熱処理に長時間を要する。又該接合部
の間隙を狭くした場合には、金属粉末の圧入に多大な圧
力が加わるため超電導体に損傷を与える。肋 熱融着法 2本の超電導線の複合基材を無差別に加熱費虫着して接
続する方法であるが、この方法は超電導体は熱影響を大
きくうけるばかりでなく、熱分解する。
Furthermore, in order to press-fit the metal powder, it is necessary to widen the gap at the joint, which requires a long time for diffusion heat treatment to fill the part with the superelectric material. Furthermore, if the gap between the joints is narrowed, a great deal of pressure will be applied to the press-fitting of the metal powder, which will damage the superconductor. Heat fusion method This is a method of connecting two composite substrates of superconducting wires by indiscriminate heating and bonding, but with this method, the superconductor is not only greatly affected by heat, but also thermally decomposes.

又複合基材が完全に融合して合金を形成し、その接続部
分は超電導体とはならない場合さえあるなど、その作業
条件の決定も極めて困難である。‘E’ 選択的熱融着
法 2本の超電導線の超電導体及びマトリックス金属は夫々
固有の融点又は分解温度をもち、しかも一般には超電導
体がマトリックス金属より融点又は分解温度が高いこと
を利用した方法であり、次の如き4工程からなるもので
ある。
Furthermore, it is extremely difficult to determine the working conditions, as there are cases where the composite base materials are completely fused to form an alloy, and the connected portions do not even become superconductors. 'E' Selective thermal fusion method The superconductor and matrix metal of the two superconducting wires each have a unique melting point or decomposition temperature, and this method takes advantage of the fact that the superconductor generally has a higher melting point or decomposition temperature than the matrix metal. This method consists of the following four steps.

即ち2本の超電導線の接合部分を集合する第1工程と、
集合部分を任意の雰囲気中において加熱し、超電導体を
溶融又は分解させることなく低融点のマトリクス金属の
少くとも1種を選択的に溶融させる第2工程と接続部分
を冷却し溶融マトリックス金属を凝固させる第3工程及
び凝固した接続部分を室温まで冷却する第4工程とから
なるものである。然しながらこの方法は同種の超電導体
同志の接続に限定される以外に接続の成否は複合基材の
内最も融点の低い物質に支配される欠点がある。
That is, a first step of assembling the joint parts of two superconducting wires,
A second step in which the assembled portion is heated in an arbitrary atmosphere to selectively melt at least one type of matrix metal with a low melting point without melting or decomposing the superconductor, and the connecting portion is cooled to solidify the molten matrix metal. and a fourth step of cooling the solidified connection portion to room temperature. However, this method has the disadvantage that in addition to being limited to connecting superconductors of the same type, the success or failure of the connection is determined by the material with the lowest melting point of the composite base material.

更に超電導体の形成成長に必要な元素か他のマトリック
ス金属の内に希釈されるため接続作業が長時間を要する
ばかりでなく、目的の方向に結晶が成長するという保証
がない、従って2本の超電導線の接合断面積が不十分で
あり且つ長手方向に不均一であるため、接合部の信頼度
が薄いものである。 .本発明は
かかる欠点を改善せんとして鋭意研究を行った結果、簡
単な工程により超電導線の性能を何等阻害せしめること
なく接続する方法を見出したものである。
Furthermore, since the elements necessary for the formation and growth of the superconductor are diluted in other matrix metals, not only does the connection process take a long time, but there is no guarantee that the crystal will grow in the desired direction. Since the bonding cross-sectional area of the superconducting wire is insufficient and non-uniform in the longitudinal direction, the reliability of the bonded portion is low. .. The present invention has been made as a result of extensive research aimed at improving these drawbacks, and as a result has discovered a method for connecting superconducting wires through a simple process without impairing the performance of the superconducting wires.

即ち本発明は接続せんとする化合物超電導線の接合部分
に挿通孔を設け、該孔に超電導細棒状体を挿着した後、
該棒状体の固溶又は溶融しうる温度以上に加熱し該棒状
体の界面に異種の超電導体結晶粒を形成せしめた後、こ
れを凝固冷却又は冷却せしめることを特徴とするもので
ある。本発明方法を同図にもとづき詳細に説明する。
That is, in the present invention, an insertion hole is provided at the joint portion of the compound superconducting wires to be connected, and after inserting a superconducting thin rod-like body into the hole,
The method is characterized in that superconductor crystal grains of different types are formed at the interface of the rod-shaped body by heating to a temperature higher than that at which the rod-shaped body can be dissolved or melted, and then this is solidified or cooled. The method of the present invention will be explained in detail based on the same figure.

即ち第2図−aに示す如く同種の化合物超電導体2,2
′(AxBy)の端部を重ね合せ、該重ね合せ部に挿通
孔を設け、該孔に細い超電導棒状体6(CUDv)を挿
着して物理的に接触せしめた後、該超電導棒状体6及び
超電導体2,2′が固溶し合う(拡散)温度領域に保持
することにより、第2図一bに示す如く超電導体2,2
′と超電導棒状体6とは結晶量的な結合が行われ、固溶
相7(AXBy十CUDv)を形成するこの固溶相7は
超電導体棒状体6と超電導体2,2′が擬二元系反応を
起して形成されたものであり、超電導性は多少変化する
が、依然として超電導性を示すものである。なお擬二元
系反応を起す代表な系としては、V3Si−V3Ga,
V3Ge−V3N,V3Ga−V3刈などのバナジウム
基化合物又はNb3Sn−N広AI,Nは−Sn−NQ
蛇,N広AI−Nb3Geなどである。又、第2図−c
に示す如く接合されるべき化合物超電導線が異種のもの
である場合には、一方の化合物超電導体2(舷By)と
他方の化合物超電導体2′(CuDv)の端部を重ね合
せ、該重ね部に挿通孔を設け該孔に上記化合物超電導体
の何れか一方と同質の化合物超電導棒状体(A燈y)6
を挿着し物理的に接触せしめた後該超電導棒状体6及び
超電導体2,2′が固塔し合う温度領域に保持すること
により第2図−dに示す如く超電導体2,2′と超電導
棒状体6とは結晶学的な結合が行われ、固溶相7(舷B
y+CUDv)を形成する。又、第2図−a或は第2図
一cの如く超電導体と超電導体棒状体とが夫々融点以上
の温度領域に保持された場合にはその接合部分は第2図
−eに示す如く超電導体の共晶7と新に形成された超電
導体8により構成される。又、化合物超電導体が数種の
基村の複合体を接合する場合には、第3図一aに示す如
く金属マトリックス9,9′とこれに埋込まれた化合物
超電導体2,2′とで構成された複合超電導線1,1′
の端部を重ね合せ該部に挿通孔を設け上記と同様の材質
からなる複合超電導棒状体6を挿着し、上記と同様に加
熱することにより、第3図−bに示す如く金属マトリッ
クスと超電導体が相互に反応または固落し、新規なる超
電導相8が形成されて接合する又、極細超電導線を接合
せんとする場合には、第4図に示す如く一方の超電導線
1の端部を右方向に轡曲せしめて小円孔部を作成し他方
の超電導線1′の端部を左方向に轡曲せしめて4・円孔
部を作成し、該両円孔を重ね合せて、その内に超電導棒
状体6を挿着して上記の如く加熱して接合するものであ
る。又超電導体と接合せしめるべく超電導棒状体6の形
態は上記に示すものに限らず、例えば第5図或は第6図
の如く変形したものを使用して超電導体1,1′を接続
せしめてもよい。本発明は上記の如く化合物超電導線と
化合物又は合金の超電導棒状体とを、まず物理的に接触
せしめるものであるが、この物理的接触とは、これら両
者がその接触部において凹凸状に絡み合っていることを
意味するものであり、この絡み合せ方法は原理的に重力
を利用した積み重ねでもよいがピン、リベット、ボルト
の如き締具により圧縮応力を加えることが望ましい。
That is, as shown in FIG. 2-a, the same kind of compound superconductors 2, 2
'(AxBy) are overlapped, an insertion hole is provided in the overlapped part, and a thin superconducting rod-like body 6 (CUDv) is inserted into the hole to make physical contact. By holding the superconductors 2, 2' in a temperature range where they dissolve (diffusion) into each other, the superconductors 2, 2' form a solid solution as shown in FIG.
' and the superconducting rod-like body 6 are combined in a crystalline manner to form a solid solution phase 7 (AXBy + CUDv). It is formed through an element-based reaction, and although its superconductivity changes somewhat, it still exhibits superconductivity. Typical systems that cause pseudo-binary reactions include V3Si-V3Ga,
Vanadium-based compounds such as V3Ge-V3N, V3Ga-V3Kari or Nb3Sn-N wide AI, N is -Sn-NQ
Snake, Nguro AI-Nb3Ge, etc. Also, Figure 2-c
When the compound superconducting wires to be joined are of different types as shown in FIG. An insertion hole is provided in the hole, and a compound superconducting rod (A light) 6 of the same quality as one of the above compound superconductors is inserted into the hole.
After the superconducting rods 6 and the superconductors 2, 2' are placed in physical contact with each other, the superconducting rods 6 and the superconductors 2, 2' are held in a temperature range where they solidify, thereby forming the superconductors 2, 2' as shown in FIG. 2-d. A crystallographic bond is formed with the superconducting rod-shaped body 6, and a solid solution phase 7 (board B
y+CUDv). In addition, when the superconductor and the superconductor rod are held in a temperature range above the melting point, as shown in FIG. 2-a or FIG. 2-1c, the bonded portion will be as shown in FIG. It is composed of a superconductor eutectic 7 and a newly formed superconductor 8. In addition, when a compound superconductor joins several kinds of Motomura composites, as shown in FIG. Composite superconducting wire 1, 1' composed of
By overlapping the ends of the two and making an insertion hole in the part, inserting the composite superconducting rod-shaped body 6 made of the same material as above, and heating in the same manner as above, a metal matrix is formed as shown in Fig. 3-b. The superconductors react or solidify with each other, forming a new superconducting phase 8 and joining them.Also, when joining ultrafine superconducting wires, as shown in FIG. 4, the end of one superconducting wire 1 is The end of the other superconducting wire 1' is bent to the right to create a small circular hole, and the end of the other superconducting wire 1' is bent to the left to create a circular hole. The superconducting rod-shaped body 6 is inserted therein and bonded by heating as described above. In addition, the shape of the superconducting bar 6 to be connected to the superconductor is not limited to the one shown above, but for example, a modified one as shown in FIG. 5 or 6 may be used to connect the superconductors 1 and 1'. Good too. As described above, the present invention first brings a compound superconducting wire and a compound or alloy superconducting rod into physical contact, but this physical contact does not mean that the two are intertwined in an uneven manner at the contact portion. In principle, this intertwining method may be stacked using gravity, but it is preferable to apply compressive stress using fasteners such as pins, rivets, and bolts.

又結晶学的な結合とは単結晶或は多結晶化合物超電導体
の接触界面において該化合物超電導体又はその構成元素
或は該化合物超電導体の構成元素との間に新たに化合物
超電導体を形成しうる元素がかなりの領域にわたって相
互拡散をおこし、もとの接触界面が消失し、接合されて
、領域は結晶学的に連結された状態を意味するものであ
る。
Crystallographic bonding refers to the formation of a new compound superconductor between the compound superconductor, its constituent elements, or the constituent elements of the compound superconductor at the contact interface of a single crystal or polycrystalline compound superconductor. This means that the elements interdiffused over a considerable area, the original contact interface disappearing and being joined, and the areas become crystallographically connected.

又本発明における化合物超電導体としてはN広Sn,V
3Ga,N広AIの如き8一W(A−15)型化合物超
電導体、NbN,ZrNの如きNaC1(B−1)型化
合物超電導体、VZr,V2Hfの如きいves(C−
15)型化合物超電導体などがあげられる。
In addition, the compound superconductors in the present invention include N wide Sn, V
81W (A-15) type compound superconductors such as 3Ga, N wide AI, NaC1 (B-1) type compound superconductors such as NbN, ZrN, ves (C-
Examples include 15) type compound superconductors.

なお、超電導体力にu N,Ag,ln,Ga,戊,S
nなどの金属或はCu‐Sn,Cu−Ga,Zr−世な
どの合金にて被覆したもの、或は埋込まれたものでもよ
い。又化合物超電導体と接触する超電導棒状体としては
Nb・Tiの如き合金、前記に示した化合物、Nb,V
,Sn,Ga,AIなどの単体超電導体の何れでもよい
。しかし化合物超電導体と化合物超電導棒状体との界面
には実用的な使用条件(4.弧〇、la加、数KG)で
超電導特性を示すか或は接続工程において化合物超電導
体を形成することが必要である。又超電導体は単芯、多
芯の何れでもよく、その形状はテープ、丸線、平角線、
撚線、編組線、成形機線、転位線など何れでもよい。又
化合物超電導片の形状については円柱、テーパーピン、
ボルナットなどのものが使用される。而して本発明方法
によれば次の如き効果を有する。
In addition, the superconducting force is u N, Ag, ln, Ga, 戊, S
It may be coated with a metal such as n or an alloy such as Cu-Sn, Cu-Ga, or Zr, or it may be embedded. Further, as the superconducting rod-shaped body in contact with the compound superconductor, alloys such as Nb/Ti, the compounds shown above, Nb, V
, Sn, Ga, AI, or other simple superconductors. However, the interface between the compound superconductor and the compound superconducting rod exhibits superconducting properties under practical usage conditions (4. arc〇, la plus, several kilograms), or the compound superconductor cannot be formed in the connection process. is necessary. The superconductor may be either single-core or multi-core, and its shape may be tape, round wire, rectangular wire,
Any of twisted wires, braided wires, molding machine wires, transposed wires, etc. may be used. The shape of the compound superconducting piece is cylindrical, tapered pin,
Materials such as bolt nuts are used. The method of the present invention has the following effects.

01 接続部分における超電導体は結晶学的に接合され
ているために、接触抵抗は極めて小さく、超電導状態に
おいては原理的に電気抵抗は0になり、接続部分での電
流の減衰が著しく改善される。
01 Because the superconductors at the connection part are crystallographically bonded, the contact resistance is extremely small, and in principle the electrical resistance becomes 0 in the superconducting state, which significantly improves the attenuation of current at the connection part. .

‘2) 接続部分を冷却する際の保温或は再加熱は化合
物超電導相及び接続部分の内外部に発生する熱歪や新た
な超電導体の形成を助成するのみでなく、化合物超電導
体の結晶をより化学量論的物質に変える助けとなり、臨
界電流密度や臨界温度を向上する。
'2) Insulating or reheating when cooling the connection part not only helps the compound superconducting phase and the thermal strain generated inside and outside the connection part and the formation of new superconductors, but also helps the crystals of the compound superconductor. It helps to make the material more stoichiometric and improves the critical current density and critical temperature.

‘3} 接続部分はコンパクト(10仇舷)であると共
に金相学的に化学組成(雰囲気も含む)、温度、時間、
圧力を設定すれば接続作業条件を一義的に決定すること
ができるため、接続の度合において信頼性の高いものを
える。
'3} The connecting part is compact (10 yards), and metallographically, it is well suited for chemical composition (including atmosphere), temperature, time,
By setting the pressure, the connection work conditions can be uniquely determined, resulting in a highly reliable connection.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例 1 Cu−Sn合金中に3.025芯のN広Sn化合物超電
導体を埋込んだ2柳×5側の超電導線の端部(30側)
を重ね合せ、この部分に1.5肌?の挿通孔を設けた、
一方1.3肋?のバナジウム棒を約300qoの溶融ガ
リウム浴中に浸潰し、浴中から敬出した後900℃にお
いて5分間加熱して、該バナジウム榛の外周面に約10
仏のV30a層に形成し、更にその外周面に厚さ50〃
のガリウムをメッキした。
Example 1 End part (30 side) of a 2 willow x 5 side superconducting wire in which a 3.025 core N wide Sn compound superconductor was embedded in a Cu-Sn alloy
1.5 skin on this part? With an insertion hole of
On the other hand, 1.3 ribs? of vanadium rod was immersed in a molten gallium bath of about 300 qo, and after being taken out from the bath, it was heated at 900°C for 5 minutes to give about 10
It is formed on the V30a layer of the Buddha, and further has a thickness of 50 mm on its outer peripheral surface.
gallium plated.

而して前記挿通孔内に該バナジウム棒を挿着して得た集
合部分を約800qoの不活性雰囲気中において20分
間加熱した後500/minの速度で室温まで冷却して
超電導線を接続した。かくして得た接続部を4.ヅKに
冷却し、0.泌の電流を流して電気抵抗を測定したとこ
ろ、比抵抗に換算して10‐150伽以下であった。ま
たこの接続部の断面をX線にて分析したところ化合物超
電導体としてNbぶnとV30aの他にNb3SnにG
aを因落したN広Sno8Gao.2相当の物質が検出
された。又これらの物質の界面は結晶粒界で連結されて
おり、空隙部、ピンホール、酸化物などは殆んど観察さ
れなかった。実施例 2中5肋、厚さ0.2側の単芯V
30aテープと中5帆、厚さ0.15柳の単芯V3Si
テープとの端部(20肋)を重ね合せて、この部分に2
側ぐの挿通孔を設けた。
The assembled part obtained by inserting the vanadium rod into the insertion hole was heated in an inert atmosphere of about 800 qo for 20 minutes, and then cooled to room temperature at a rate of 500 qmin to connect the superconducting wire. . The connection thus obtained is 4. Cool to 0.5K. When we measured the electrical resistance by passing a current through it, it was found to be less than 10-150 in terms of specific resistance. In addition, X-ray analysis of the cross section of this connection revealed that it was a compound superconductor in addition to Nb3Sn and V30a.
N Hiro Sno8 Gao. A substance equivalent to 2 was detected. Furthermore, the interfaces of these substances were connected by grain boundaries, and almost no voids, pinholes, oxides, etc. were observed. Example 5 ribs in 2, single core V on the thickness 0.2 side
30a tape and medium 5 sail, 0.15 thick willow single core V3Si
Overlap the ends (20 ribs) with the tape and add 2 pieces to this part.
A side gag insertion hole was provided.

一方1.劫仰ぐのニオブ棒に約20仏のSnを溶融メッ
キし、上記テープの挿通孔に挿着し固定した、この接合
部分を電子ビームによって且念に溶融し、凝固せしめて
超電導線を接続せしめた。而してこの接続部を4.20
Kに冷却し、0.班の電流を通したが電気抵抗は観察さ
れなかった。またXMAによる成分分析の結果はV3G
a,V3Siの化合物の他にN&SnとわずかにNAG
aが検出された。以上詳述した如く本発明方法によれば
、超電導特性を何等低下せしめることなく、しかもその
接続部はコンパクトである等超電導線業界において極め
て有用なものである。
On the other hand 1. Approximately 20 F of Sn was hot-dip plated on a niobium rod, which was then inserted into the insertion hole of the tape and fixed. This joint was carefully melted with an electron beam and solidified to connect the superconducting wire. . Then this connection part is 4.20
Cool to 0. No electrical resistance was observed when current was passed through the panel. In addition, the results of component analysis by XMA are V3G
a, In addition to V3Si compounds, N&Sn and a slight NAG
a was detected. As described in detail above, the method of the present invention does not deteriorate the superconducting properties in any way, and the connecting portion is compact, making it extremely useful in the superconducting wire industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来における超電導線の接続方法の1例を示す
説明図、第2図乃至第6図は本発明による超電導線の接
続方法の1例を示す説明図である。 1,1′・・・・・・化合物超電導線、2,2′・・・
・・・化合物超電導体、3,3′・・・・・・安定化材
、4・・…・結束線、6・・・・・・ハンダ、6・・・
・・・超電導棒状体、7・…・・固溶相、8・・・・・
・異種な超電導体、9,9′・・・…金属マトリックス
。 第1図 第4図 第2図 第3図 第5図 第6図
FIG. 1 is an explanatory view showing an example of a conventional method for connecting superconducting wires, and FIGS. 2 to 6 are explanatory views showing an example of a method for connecting superconducting wires according to the present invention. 1,1'...Compound superconducting wire, 2,2'...
...Compound superconductor, 3,3'...Stabilizing material, 4...Binding wire, 6...Solder, 6...
...Superconducting rod-shaped body, 7...Solid solution phase, 8...
・Different superconductors, 9,9'...metal matrix. Figure 1 Figure 4 Figure 2 Figure 3 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1 接続せんとする化合物超電導線の接合部分に挿通孔
を設け該孔に超電導細棒状体を挿着した後、該棒状体お
よび該化合物超電導線との固溶又は溶融しうる温度以上
に加熱し、該棒状体の界面に異種の超電導体を形成せし
めた後、これを凝固冷却又は冷却せしめることを特徴と
する超電導線の接続方法。
1. After providing an insertion hole in the joint part of the compound superconducting wires to be connected and inserting a thin superconducting rod into the hole, heating the rod to a temperature higher than that at which the rod and the compound superconducting wire can form a solid solution or melt. . A method for connecting superconducting wires, which comprises forming different types of superconductors at the interface of the rod-shaped body, and then solidifying or cooling the same.
JP51040601A 1975-12-03 1976-04-10 How to connect superconducting wires Expired JPS6035796B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP51040601A JPS6035796B2 (en) 1976-04-10 1976-04-10 How to connect superconducting wires
FR7636363A FR2334182A1 (en) 1975-12-03 1976-12-02 CABLE CONTAINING A SUPPRACONDUCTOR COMPOUND AND METHOD FOR MANUFACTURING SUCH A CABLE
CH1526576A CH616775A5 (en) 1975-12-03 1976-12-03
GB50463/76A GB1573506A (en) 1975-12-03 1976-12-03 Superconducting compound stranded cable and method of manufacturing the same
DE2654924A DE2654924C2 (en) 1975-12-03 1976-12-03 Superconducting composite cable and process for its manufacture
US06/008,263 US4329539A (en) 1975-12-03 1979-02-01 Superconducting compound stranded cable
US06/308,558 US4611390A (en) 1975-12-03 1981-10-05 Method of manufacturing superconducting compound stranded cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51040601A JPS6035796B2 (en) 1976-04-10 1976-04-10 How to connect superconducting wires

Publications (2)

Publication Number Publication Date
JPS52124184A JPS52124184A (en) 1977-10-18
JPS6035796B2 true JPS6035796B2 (en) 1985-08-16

Family

ID=12585023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51040601A Expired JPS6035796B2 (en) 1975-12-03 1976-04-10 How to connect superconducting wires

Country Status (1)

Country Link
JP (1) JPS6035796B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148311A (en) * 1987-12-04 1989-06-09 Kajima Corp Treated water discharge device for waste water treatment vessel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6419732B2 (en) * 2014-02-04 2018-11-07 国立研究開発法人理化学研究所 Low resistance connector and connection method of high temperature superconducting wire
JP2018142409A (en) * 2017-02-27 2018-09-13 古河電気工業株式会社 Connection structure of superconductive wire rods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148311A (en) * 1987-12-04 1989-06-09 Kajima Corp Treated water discharge device for waste water treatment vessel

Also Published As

Publication number Publication date
JPS52124184A (en) 1977-10-18

Similar Documents

Publication Publication Date Title
KR101242007B1 (en) Two-sided splice for high temperature superconductor laminated wires
US5134040A (en) Melt formed superconducting joint between superconducting tapes
EP1526586B1 (en) Manufacturing method for superconducting wire
JP2008251564A (en) High-temperature superconducting current lead and method for increasing critical current density
JP4391403B2 (en) Magnesium diboride superconducting wire connection structure and connection method thereof
JPS60177589A (en) Superconductive connector of superconductive wire and coil and method of producing same
US5321003A (en) Connection between high temperature superconductors and superconductor precursors
US3523361A (en) Method of splicing superconductive wires
US5082164A (en) Method of forming superconducting joint between superconducting tapes
JPS6121387B2 (en)
JP3836299B2 (en) Connecting method of oxide superconductor
CN105390830B (en) Realize the method and structure that superconduction connects between RE, Ba and Cu oxide high temperature super conductive conductor
US5109593A (en) Method of melt forming a superconducting joint between superconducting tapes
US3817746A (en) Ductile superconducting alloys
JP2606393B2 (en) How to connect compound superconducting wires
JPS6035796B2 (en) How to connect superconducting wires
CN111009798B (en) Multi-core iron-based superconducting joint and preparation method thereof
JPH05279140A (en) Method for joining oxide superconductor
JPH0376101A (en) Joint of superconductive conductor
KR101742097B1 (en) ceramic wire and splice connecting method of the same
JP2013140712A (en) Joint method of superconducting wire rod and external terminal, and external terminal junction structure of superconducting wire rod
JPS6355876A (en) Method of jointing superconducting wire
JPH03254078A (en) Joint structure for superconductive wire
JPS607325B2 (en) Method for manufacturing compound composite superconductor
Dosdat et al. Method of making superconductors