JPH064858B2 - Self-sintering carbon raw material powder deterioration prevention method over time - Google Patents

Self-sintering carbon raw material powder deterioration prevention method over time

Info

Publication number
JPH064858B2
JPH064858B2 JP63074549A JP7454988A JPH064858B2 JP H064858 B2 JPH064858 B2 JP H064858B2 JP 63074549 A JP63074549 A JP 63074549A JP 7454988 A JP7454988 A JP 7454988A JP H064858 B2 JPH064858 B2 JP H064858B2
Authority
JP
Japan
Prior art keywords
self
raw material
sintering
material powder
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63074549A
Other languages
Japanese (ja)
Other versions
JPH01247486A (en
Inventor
信 本間
典良 福田
泰行 村西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63074549A priority Critical patent/JPH064858B2/en
Publication of JPH01247486A publication Critical patent/JPH01247486A/en
Publication of JPH064858B2 publication Critical patent/JPH064858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は自己焼結性を有するメソフェーズ小球体等を主
成分とする炭素材原料粉から等方性の高密度,高強度炭
素材料を製造する際の、炭素材原料粉の保存中の経時劣
化を防止する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention produces an isotropic high-density, high-strength carbon material from a carbon material raw material powder mainly composed of self-sintering mesophase spheres. The present invention relates to a method of preventing deterioration of the carbon material raw material powder with time during storage.

<従来の技術> 等方性の高密度,高強度炭素材料用の自己焼結性を有す
る原料粉として、石灰系あるいは石油系のメソフェーズ
小球体や摩砕生コークス等が知られている。
<Prior Art> As a raw material powder having a self-sintering property for an isotropic high-density and high-strength carbon material, lime-based or petroleum-based mesophase spherules and ground coke are known.

例えば、コールタールピッチを加熱するとその炭素初期
過程としてメソフェーズの小球体が発生する。この小球
体を溶剤抽出によりピッチ中から取出したものが高級炭
素材料の原料となる。これを原料として得られる炭素材
料は等方性,高密度,高強度であり放電加工用電極,メ
カニカルシール,軸受等の機械用カーボン,半導体製造
治具,原子力用カーボン等に使用され優れた性能を発揮
する。
For example, when coal tar pitch is heated, small spheres of mesophase are generated as the initial process of carbon. The small spheres taken out from the pitch by solvent extraction are the raw materials for the higher carbon material. The carbon material obtained from this is an isotropic, high-density, and high-strength material, and is used for electrical discharge machining electrodes, mechanical seals, mechanical carbon such as bearings, semiconductor manufacturing jigs, nuclear carbon, etc. with excellent performance. Exert.

このメソフェーズ小球体はそれ自身で焼結性を有してお
りバインダーを使用する必要がなく、そのまま圧縮成
形,焼成,黒鉛化することにより高密度炭素材料を得る
ことができ、従来のコークス,バインダーピッチ2元系
の製造方法に比較し製造工程を簡略化できる。
This mesophase spherule has sinterability by itself, and it is not necessary to use a binder. It is possible to obtain a high density carbon material by compression molding, firing and graphitization as it is. The manufacturing process can be simplified as compared to the pitch binary system manufacturing method.

特に抽出時に溶剤の種類を選択してピッチ中の重質分を
メソフェーズ小球体表面に少量残して製造された炭素材
原料は自己焼結力が極めて強くカサ密度1.9以上,曲げ
強度1000kg/cm2以上の炭素材料が容易に得られる。
In particular, the carbon material raw material produced by selecting the type of solvent at the time of extraction and leaving a small amount of heavy components in the pitch on the surface of the mesophase spherules has an extremely strong self-sintering force, a bulk density of 1.9 or more, and a bending strength of 1000 kg / cm 2 The above carbon materials can be easily obtained.

この様に炭素材原料の使用に際しては、自己焼結性を有
する充分な自己焼結力を有するように原料製造工程の条
件を決めることが重要である。
As described above, when using the carbon material raw material, it is important to determine the conditions of the raw material manufacturing process so that the carbon material raw material has a sufficient self-sintering power having self-sintering property.

<発明が解決しようとする課題> しかるに本発明者らは製造初期には充分な自己焼結性を
有し、高密度,高強度が得られる炭素材原料粉が時間の
経過に供い、徐々に焼結力が低下し成形,焼成,黒鉛化
して得られる炭素材ブロックのカサ密度,強度が低下し
て行く欠点があるのを確認した。
<Problems to be Solved by the Invention> However, the present inventors have found that a carbon material raw material powder having sufficient self-sinterability in the early stage of production and capable of obtaining high density and high strength is gradually supplied with time. It was confirmed that there is a drawback that the sintering power decreases and the bulk density and strength of the carbon material block obtained by molding, firing, and graphitizing decrease.

この様な焼結力の経時的変化は炭素材ブロック特性の安
定化の妨げになるものであり炭素材原料粉の取扱い、保
存を行う上で解決しなければならない課題であった。
Such a change with time of the sintering force hinders the stabilization of the carbon material block characteristics, and has been a problem to be solved in handling and storing the carbon material raw material powder.

本発明は自己焼結性を有する炭素材原料粉のこれら保存
中の経時劣化を防止することを目的とするものである。
An object of the present invention is to prevent the deterioration of the carbon material raw material powder having self-sintering property during storage.

<課題を解決するための手段> 本発明者らは自己焼結性を有するメソフェーズ小球体等
を主成分とする炭素材原料の自己焼結性の低下を防止す
るための保存方法について種々の実験を行った結果、酸
素を遮断する方法を取ることにより焼結力の低下速度を
著しく減少させることができるのを見出し本発明に達し
た。
<Means for Solving the Problems> The inventors have conducted various experiments on a storage method for preventing a decrease in the self-sintering property of a carbon material raw material having a self-sintering property such as mesophase spheres. As a result, the inventors have found that the rate of reduction of the sintering force can be remarkably reduced by adopting a method of blocking oxygen, and the present invention has been accomplished.

即ち本発明は、自己焼結性を有する炭素粉を非酸化性雰
囲気下で保存することを特徴とする自己焼結性炭素材原
料粉の経時劣化防止法であり、より具体的にはコールタ
ールピッチ派生の自己焼結性を有するメソフェーズ小球
体をガス不透過性の袋ないし容器中に保存することであ
る。
That is, the present invention is a method for preventing deterioration of a self-sintering carbon material raw material powder over time, which is characterized by storing carbon powder having self-sintering property in a non-oxidizing atmosphere, and more specifically, coal tar. Storage of mesophase spherules having pitch-derived self-sintering properties in gas-impermeable bags or containers.

<作 用> コールタールピッチ派生のメソフェーズ小球体を例にと
って説明する。
<Operation> An example of mesophase spheres derived from coal tar pitch will be described.

コールタールピッチの加熱処理で生成したメソフェーズ
小球体を溶剤抽出で取出す際に溶剤種を選択することで
メソフェーズ小球体表面にピッチ中の重質分を小量残存
させて製造した炭素材原料は、通常冷間静水圧プレスに
よって成形され、次いでカーボン焼成炉で焼成されさら
に黒鉛化処理を行って製品となる。この過程に於いて製
品炭素材の物理的特性に最も影響を与えるのは焼成時の
メソフェーズ小球体粒子間の焼結挙動である。メソフェ
ーズ小球体表面に残存するピッチの重質分は、通常のバ
インダーピッチとは異なりその軟化点は極めて高いと推
定されるが、焼成時の炭化反応が進行する温度領域に於
いては溶融状態になっていると考えられ、液相炭化ある
いはそれに近い状態で反応が進行している。このことが
粒子間の結合を強固にし、さらに粒子間の空隙を埋め空
孔容積を減少させる働きをして高密度,高強度な炭素材
を与える要件となる。従ってメソフェーズ小球体表面の
重質ピッチ分の溶融性を維持することが高特性の炭素材
ブロックを得るために重要な課題となる。本発明者らは
この様な炭素材原料を通常の空気雰囲気で保存した場合
にその原料から得られる炭素材ブロックのカス密度,強
度が徐々に低下するのを認め、その防止策として、酸素
を遮断する方法を取ること即ち非酸化性雰囲気下で保存
することが有効であることを見出した。重質ピッチ類な
どの表面が酸化された場合にはその溶融性を失うことは
一般に知られているが、メソフェーズ小球体を主成分と
する炭素材原料の場合にも大気中では表面が徐々に酸化
された焼結力の重要な因子である軟化溶融性が失われて
いくものと考えられる。
The carbon material raw material produced by leaving a small amount of heavy components in the pitch on the surface of the mesophase spheres by selecting the solvent type when extracting the mesophase spheres generated by the heat treatment of coal tar pitch by solvent extraction is Usually, it is molded by cold isostatic pressing, then fired in a carbon firing furnace and further graphitized to obtain a product. In this process, it is the sintering behavior between the mesophase microsphere particles during firing that has the greatest effect on the physical properties of the product carbon material. The heavy content of the pitch remaining on the surface of the mesophase spherules is estimated to have an extremely high softening point unlike ordinary binder pitch, but in the temperature range where the carbonization reaction during firing progresses, it becomes molten. It is thought that the reaction is progressing in the liquid phase carbonization or in a state close to it. This strengthens the bond between the particles and further fills the voids between the particles to reduce the void volume, which is a requirement for providing a high density and high strength carbon material. Therefore, maintaining the meltability of the heavy pitch on the surface of the mesophase spheres is an important issue for obtaining a carbon material block with high characteristics. The present inventors have found that when such a carbon material raw material is stored in a normal air atmosphere, the carbon material block obtained from the raw material gradually decreases in the density and strength of the carbon material. It has been found that it is effective to take a shut-off method, that is, to store in a non-oxidizing atmosphere. It is generally known that when the surface of heavy pitches etc. is oxidized, it loses its meltability, but even in the case of carbonaceous material containing mesophase microspheres as the main component, the surface gradually disappears in the atmosphere. It is considered that the softening and melting property, which is an important factor of the oxidized sintering force, is lost.

酸化防止のため通常用いられる方法として真空パックや
窒素ガス封入法があるが、炭素材原料粉の酸化防止対策
としてもこの両方法は有効な手段である。但し真空パッ
クは大気側との圧力差による圧縮で粉体が凝集し易いた
め好ましくない。この様な完全に酸素を除去してしまう
方法の外に通常の袋詰においてもアルミ箔折込み袋に代
表されるようなガス不透過性の袋を使用することも大き
な効果がある。この方法は特別な設備を必要とせず経済
的にも有効な方法である。さらには袋詰め後に水中に保
存する方法、あるいはガスシール性の優れたハード容器
の使用など、目的に合わせこれらの方法を単独、または
複合して使用し酸化を防止することにより炭素材原料の
焼結力低下を防止することができる。
Vacuum packing and nitrogen gas filling methods are commonly used for preventing oxidation, but these two methods are also effective means for preventing oxidation of carbonaceous material powder. However, the vacuum pack is not preferable because the powder easily aggregates due to the compression due to the pressure difference from the atmospheric side. In addition to such a method of completely removing oxygen, the use of a gas-impermeable bag as represented by an aluminum foil folding bag also has a great effect in normal bagging. This method does not require special equipment and is economically effective. Furthermore, the method of storing in water after bagging, or the use of hard containers with excellent gas sealability, etc., can be used as a single or a combination of these methods depending on the purpose. It is possible to prevent a decrease in binding strength.

なおこうした保存法は自己焼結性を有するコールタール
派生のメソフェーズ小球体に限らず石油系のメソフェー
ズ小球体、あるいは摩砕生コークス等他の自己焼結性炭
素質粉末にも同様に適用可能である。
This preservation method is applicable not only to coal tar-derived mesophase spherules having self-sinterability but also to petroleum-based mesophase spherules or other self-sintering carbonaceous powders such as ground coke. is there.

<実施例> 実施例1 コールタールピーチを加熱処理し生成したメソフェーズ
小球体をタール中油で抽出して取出しこれを仮焼して製
造した炭素材原料粉をナイロンをラミネートしたポリエ
チレン袋に入れ1mmHg以下に真空排気した後窒素ガスを
封入し密封した。これを一定期間保存した後冷間静水圧
プレスで成形し1000℃まで焼成しさらに2500℃で黒鉛化
し、カサ密度,曲げ強度を測定した。この実験を原料粉
の保存期間を変えて行った。結果を第1表,第2表に示
す。
<Example> Example 1 Mesophase spherules produced by heat-treating coal tar peach were extracted with oil in tar and taken out, and the carbon material powder produced by calcining this was put in a polyethylene bag laminated with nylon and less than 1 mmHg. After vacuum evacuation, nitrogen gas was sealed and sealed. After this was stored for a certain period of time, it was molded with a cold isostatic press, fired up to 1000 ° C., graphitized at 2500 ° C., and the bulk density and bending strength were measured. This experiment was conducted by changing the storage period of the raw material powder. The results are shown in Tables 1 and 2.

実施例2 実施例1と同様に製造した炭素材原料をポリエチレンフ
ィルム,アルミ箔,クラフト紙の3重層からなるガス不
透過性の袋に入れ密封保存し実施例1と同様の実験を行
った。結果を第1表,第2表に合わせて示す。
Example 2 A carbon material raw material produced in the same manner as in Example 1 was placed in a gas-impermeable bag made of a triple layer of polyethylene film, aluminum foil and kraft paper, sealed and stored, and the same experiment as in Example 1 was conducted. The results are shown together in Tables 1 and 2.

実施例3 石油系ピッチを原料として実施例1と同様の方法で製造
した炭素材原料粉を使用して実施例1と同じ条件で実験
した。結果を第1表,第2表に合わせて示す。
Example 3 An experiment was conducted under the same conditions as in Example 1 using a carbonaceous material powder produced by the same method as in Example 1 using petroleum pitch as a raw material. The results are shown together in Tables 1 and 2.

実施例4 500℃で生成した半成コークスを振動ボールミルで粉砕
し、さらにらいかい機を使用して粉砕した摩砕生コーク
スを原料として実施例1と同様の条件で実験した。結果
を第1表,第2表に合わせて示す。
Example 4 Semi-coke produced at 500 ° C. was pulverized by a vibrating ball mill, and ground coke pulverized by using a ladle machine was used as a raw material under the same conditions as in Example 1. The results are shown together in Tables 1 and 2.

比較例 実施例1と同様の方法で製造した炭素材原料粉をポリエ
チレンフィルム,クラフト紙からなるガス透過性のある
袋に入れ密封保存した。これについて実施例1と同様の
条件で実験を行った。結果を第1表,第2表に合わせて
示す。
Comparative Example A carbon material raw material powder produced by the same method as in Example 1 was put in a gas-permeable bag made of polyethylene film and kraft paper and sealed and stored. An experiment was conducted for this under the same conditions as in Example 1. The results are shown together in Tables 1 and 2.

<発明の効果> 本発明の方法により炭素材原料を保存することでその焼
結力の低下を防止することができ高性能炭素材料を安定
して製造することができる。
<Effects of the Invention> By preserving the carbon material raw material by the method of the present invention, it is possible to prevent the decrease of the sintering power and to stably manufacture the high-performance carbon material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】自己焼結性を有する炭素粉を非酸化性雰囲
気下で保存することを特徴とする自己焼結性炭素材原料
粉の経時劣化防止法。
1. A method for preventing deterioration of a self-sintering carbon material raw material powder with time, which comprises storing carbon powder having self-sinterability in a non-oxidizing atmosphere.
【請求項2】コールタールピッチ派生の自己焼結性を有
するメソフェーズ小球体をガス不透過性の袋ないし容器
中で保存することを特徴とする自己焼結性炭素材原料粉
の経時劣化防止法。
2. A method for preventing deterioration of self-sintering carbonaceous material powder with time, characterized in that mesophase spheres having self-sintering property derived from coal tar pitch are stored in a gas-impermeable bag or container. .
JP63074549A 1988-03-30 1988-03-30 Self-sintering carbon raw material powder deterioration prevention method over time Expired - Fee Related JPH064858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63074549A JPH064858B2 (en) 1988-03-30 1988-03-30 Self-sintering carbon raw material powder deterioration prevention method over time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63074549A JPH064858B2 (en) 1988-03-30 1988-03-30 Self-sintering carbon raw material powder deterioration prevention method over time

Publications (2)

Publication Number Publication Date
JPH01247486A JPH01247486A (en) 1989-10-03
JPH064858B2 true JPH064858B2 (en) 1994-01-19

Family

ID=13550442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63074549A Expired - Fee Related JPH064858B2 (en) 1988-03-30 1988-03-30 Self-sintering carbon raw material powder deterioration prevention method over time

Country Status (1)

Country Link
JP (1) JPH064858B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531174B2 (en) * 1999-11-26 2010-08-25 Jfeケミカル株式会社 Method for producing carbon material for negative electrode of lithium ion secondary battery
JP5688226B2 (en) * 2010-02-22 2015-03-25 東洋炭素株式会社 Fullerene in a container, method for producing the same, and method for preserving fullerene

Also Published As

Publication number Publication date
JPH01247486A (en) 1989-10-03

Similar Documents

Publication Publication Date Title
TWI360532B (en) Sintered bodies based on niobium suboxide
KR101439177B1 (en) Preparing method of isotropic bulk graphite using graphite scrap and the isotropic bulk graphite thereby
US3517092A (en) Process for preparing high-density isotropic graphite structures
Ragan et al. Science and technology of graphite manufacture
JPH064858B2 (en) Self-sintering carbon raw material powder deterioration prevention method over time
CN109133926B (en) Sealing graphite and preparation method thereof
EP2703523B1 (en) Improved carbon electrode manufacturing
JPH0348154B2 (en)
RU2314275C2 (en) Method of manufacturing antifriction parts from silicon carbide
US5137665A (en) Process for densification of titanium diboride
JPS62182107A (en) Production of high-density carbon material
JP3038489B2 (en) Method for producing metal composite carbon material
JPS61122110A (en) Production of high-density carbon material
JP3297977B2 (en) Manufacturing method of carbon material
CN108794011A (en) A kind of preparation method from sintering carbon graphite sealing material
JPH04321560A (en) Production of isotropic graphite material having high strength
JPS60191012A (en) Method and apparatus for manufacturing high-density carbonaceous material
JPH034514B2 (en)
JPS5815462B2 (en) Manufacturing method of high-density carbon material
JPH0158125B2 (en)
JP3060450B2 (en) Raw material powder for high density carbon material and method for producing carbon material
CN117794855A (en) Method for producing carbon graphite product
JP3004807B2 (en) Method for producing high-density ITO sintered body
JPH0380722B2 (en)
JPH06172032A (en) Production of boron carbide/carbon composite-based neutron shielding material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees