JPH0647163B2 - Method for manufacturing composite aluminum member - Google Patents

Method for manufacturing composite aluminum member

Info

Publication number
JPH0647163B2
JPH0647163B2 JP1529686A JP1529686A JPH0647163B2 JP H0647163 B2 JPH0647163 B2 JP H0647163B2 JP 1529686 A JP1529686 A JP 1529686A JP 1529686 A JP1529686 A JP 1529686A JP H0647163 B2 JPH0647163 B2 JP H0647163B2
Authority
JP
Japan
Prior art keywords
substrate
alf
csf
molten metal
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1529686A
Other languages
Japanese (ja)
Other versions
JPS62173065A (en
Inventor
房美 三浦
憲一 鈴木
弘昭 岩堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP1529686A priority Critical patent/JPH0647163B2/en
Publication of JPS62173065A publication Critical patent/JPS62173065A/en
Publication of JPH0647163B2 publication Critical patent/JPH0647163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,アルミニウム系材料よりなる基体にアルミニ
ウムまたはアルミニウム合金を一体形成する方法に関す
るものである。
TECHNICAL FIELD The present invention relates to a method for integrally forming aluminum or an aluminum alloy on a substrate made of an aluminum-based material.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

アルミニウム(Al)またはAl合金よりなるAl系材料は,
軽くて強度もあることから,航空機材料などとしてのほ
か,種々の部品,部材として広く利用されているが,用
途によっては更にAl系材料の全表面または一部分に特定
の機能をもたせたい場合がある。例えば,高強度を有す
るAl合金鋳物上に耐蝕性に優れたAl層を形成して,軽金
属材料としての重量上の利点を損うことなく,所期の耐
蝕性を得たいとか,また表層部に圧延Al板などの機械的
強度に優れたものを配したいなどの場合である。
Al-based material consisting of aluminum (Al) or Al alloy,
Since it is light and strong, it is widely used as various parts and members in addition to aircraft materials. Depending on the application, it may be desirable to have a specific function on the entire surface or part of the Al-based material. . For example, we would like to form an Al layer with excellent corrosion resistance on a high-strength Al alloy casting to obtain the desired corrosion resistance without sacrificing the weight advantage of a light metal material, This is the case when, for example, it is desired to place a rolled Al plate or the like having excellent mechanical strength.

たとえば,Al合金鋳物の全部または一部に特定の性能を
持たせる場合,あるいはある部分を予じめ特定の形状に
しておく必要がある場合,予じめ準備したAl系材料より
なる基体をAl系材料の溶湯により鋳ぐるみ固定する方法
が考えられる。このような方法は鉄系材料ではしばしば
利用されている。しかしながら,Al系材料の場合には,
表面に緻密な酸化膜が強固に形成されているため,溶湯
との接触界面は十分に溶着することができない。そのた
めAl系材料の溶湯によって形成されるAl層部分と基体と
は不十分な接合状態となる。溶湯の温度を上げたり,ま
た基体を十分予熱した場合などには溶着する現象が認め
られるが,その条件範囲はごく狭く,均一な接合もむず
かしいのが実情である。
For example, if all or part of an Al alloy casting has a specific performance, or if a certain portion needs to be preformed in a specific shape, a preliminarily prepared substrate made of an Al-based material should be used. A method in which the cast material is fixed by the molten metal of the system material can be considered. Such methods are often used in ferrous materials. However, in the case of Al-based materials,
Since a dense oxide film is firmly formed on the surface, the contact interface with the molten metal cannot be sufficiently welded. Therefore, the Al layer portion formed by the molten Al-based material and the substrate are in an insufficiently bonded state. Welding phenomenon is observed when the temperature of the molten metal is raised or when the substrate is preheated sufficiently, but the condition range is very narrow, and uniform bonding is difficult.

そのため,この鋳ぐるみ技術を利用する場合は,単に包
んで固定すれば十分な機能を発撥するものに対してだけ
であり,温度差や機械的応力が繰返し作用してガタが発
生する危険があるものや,気密性を必要とするものには
利用できない。
Therefore, when using this cast-molding technology, it is only for those that can wrap and fix and have sufficient function, and there is a risk of rattling due to repeated temperature differences and mechanical stress. It cannot be used for certain things or those requiring airtightness.

一方,本発明者らは上記欠点を解消する方法として,す
でに,鋳ぐるまれるAl系材料からなる基体の表面の必要
部分に,カリウム(K)イオンおよびフッ素(F)イオ
ンを含有する処理溶液を接触せしめることにより,フラ
ックス作用を示すペンタフルオロアルミニウム酸カリウ
ム(K2AlF5)からなる化成処理層を形成する化成処理工
程と,化成処理層を形成した基体をアルミニウムまたは
アルミニウム合金(単にAl系合金という)の溶湯と接触
せしめて一体化する複合工程とからなる方法発明(特願
昭59−156276)を出願した。
On the other hand, as a method of solving the above-mentioned drawbacks, the present inventors have already treated a treatment solution containing potassium (K) ions and fluorine (F) ions in a necessary portion of the surface of a substrate made of cast Al-based material. The chemical conversion treatment step of forming a chemical conversion treatment layer composed of potassium pentafluoroaluminate (K 2 AlF 5 ) that exhibits a flux action by bringing the chemical conversion treatment layer into contact with a substrate on which the chemical conversion treatment layer is formed. We applied for a method invention (Japanese Patent Application No. 59-156276) consisting of a composite process in which a molten metal (called an alloy) is brought into contact with and integrated.

しかしながら上記方法を適用した場合,時として基体と
Al系合金の溶湯とのぬれ性が充分でない現象がみられ
た。
However, when the above method is applied, the
The phenomenon that the wettability of the Al-based alloy with the molten metal was not sufficient was observed.

そこで,本発明者らは,この現象について鋭意研究を進
めた結果,溶湯がマグネシウム(Mg)を含んでいる場合
に,ぬれ性が不十分になり,溶湯凝固後の基体のAl系材
料との接合が時として不充分になること,さらに,セシ
ウム(Cs)を含有する複合フッ化物を基体に供給する
と,溶湯とのぬれ性が良好になることを見出した。本発
明は,これらの事項を基にして為されたものである。す
なわち,本発明は,上記従来技術の問題点を解決するた
めのもので,予め所定の形状に形成されたAl系材料より
なる基体の表面の必要部分に,実質的に遊離のフッ化セ
シウムを含まないフルオロアルミニウム酸セシウムから
成る複合フッ化物又は該複合フッ化物とフッ化アルミニ
ウムとから成る混合組成物を供給した後,該基体をアル
ミニウムまたはアルミニウム合金の溶湯と接触せしめる
ことによって、Mgを含むAl合金溶湯を用いた場合におい
ても溶湯の不均一な溶着と,鋳ぐるみ後腐食の問題等の
生じない複合アルミニウム部材の製造方法を提供しよう
とするものである。
Therefore, as a result of intensive studies on this phenomenon, the inventors of the present invention have found that when the molten metal contains magnesium (Mg), the wettability becomes insufficient, and the Al-based material of the substrate after solidification of the molten metal It has been found that the bonding sometimes becomes insufficient, and when the complex fluoride containing cesium (Cs) is supplied to the substrate, the wettability with the molten metal becomes good. The present invention has been made based on these matters. That is, the present invention is to solve the above-mentioned problems of the prior art, and substantially free cesium fluoride is provided on a necessary portion of the surface of a substrate made of an Al-based material formed in a predetermined shape in advance. After supplying a complex fluoride containing cesium fluoroaluminate or a mixed composition containing the complex fluoride and aluminum fluoride, the substrate is brought into contact with a molten metal of aluminum or an aluminum alloy to form Al containing Mg. It is an object of the present invention to provide a method for producing a composite aluminum member which does not cause uneven welding of the molten metal and the problem of corrosion after casting, even when the molten alloy is used.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は,予じめ所定の形状に形成されたAl系材料より
なる基体の表面の必要部分に,実質的に遊離のフッ化セ
シウムを含まないフルオロアルミニウム酸セシウムから
成る複合フッ化物又は該複合フッ化物とフッ化アルミニ
ウムとから成る混合組成物を供給した後,該基体をアル
ミニウムまたはアルミニウム合金の溶湯と接触せしめる
ことを特徴とする複合アルミニウム部材の製造方法であ
る。
The present invention provides a complex fluoride or a complex fluoride comprising cesium fluoroaluminate substantially free of free cesium fluoride in a necessary portion of the surface of a substrate made of an Al-based material formed in a predetermined shape in advance. A method for producing a composite aluminum member, comprising supplying a mixed composition of fluoride and aluminum fluoride and then bringing the substrate into contact with a molten aluminum or aluminum alloy.

本発明においてAl系材料とは,アルミニウムあるいはア
ルミニウム合金からなる材料を意味し,その組成につい
ては特に限定されることなく,通常のアルミニウム合金
に含まれる珪素(Si),銅(Cu),マンガン(Mn),亜
鉛(Zn),チタン(Ti),クロム(Cr),ジルコニウム
(Zr),マグネシウム(Mg)等の添加元素を1種または
2種以上含んでいてよく,その含有量についても特別限
定されない。
In the present invention, the Al-based material means a material made of aluminum or an aluminum alloy, and the composition thereof is not particularly limited, and silicon (Si), copper (Cu), manganese (or Mn), zinc (Zn), titanium (Ti), chromium (Cr), zirconium (Zr), magnesium (Mg), etc., may contain one or more additive elements, and their content is also limited. Not done.

Al系材料はまた,異なるAl系材料からなるクラッド材な
どの複合材であってもよく,例えば溶湯との溶着をより
確実にするために一方のAl系材料よりも融点が10〜100
℃低い合金,例えばSiを7〜12%(重量,以下同じ)含
有したAl−Si共晶合金を貼り合せまたは被覆したものを
用いてもよい。
The Al-based material may also be a composite material such as a clad material composed of different Al-based materials. For example, the melting point of one Al-based material is 10 to 100% to ensure more reliable welding with the molten metal.
An alloy having a low temperature of ℃, for example, an Al-Si eutectic alloy containing Si in an amount of 7 to 12% (weight, the same hereinafter) may be attached or coated.

本発明で用いるAl系材料よりなる基体は,鋳造品であっ
てもまた圧延・鍛造品であってもよく,その形状,大き
さは特に限定されることなく,目的に応じて選択使用さ
れる。
The substrate made of an Al-based material used in the present invention may be a cast product or a rolled / forged product, and its shape and size are not particularly limited and are selected and used according to the purpose. .

本発明で言う複合フッ化物であるフルオロアルミニウム
酸セシウムとは,Cs3AlF6,Cs2AlF5・H2O,CsAlF4等の
化学式で表わされる。AlF3−CsF系の一連の錯化合物単
体もしくはこれらの混合物を言う。該複合フッ化物は,
多種の構造を取りうるものである。
Cesium fluoroaluminate, which is a complex fluoride in the present invention, is represented by a chemical formula such as Cs 3 AlF 6 , Cs 2 AlF 5 .H 2 O, and CsAlF 4 . A series of complex compounds of AlF 3 -CsF system or a mixture thereof. The complex fluoride is
It can have various structures.

第5図には,CsF−AlF3系物質の相平衡状態図(Zeitsch
rift fuer Anorganische und Allgemeine Chemie
81,357(1913))を示すが,図からわかるように,A
lF3が25モル%以上の場合,平衡状態図ははっきりわか
っていない。すなわち,該錯化合物の構造は複雑なもの
である。
Figure 5 shows the phase equilibrium diagram of the CsF-AlF 3 system material (Zeitsch
rift fuer Anorganische und Allgemeine Chemie
81, 357 (1913)), but as you can see from the figure, A
The equilibrium diagram is not clear when lF 3 is 25 mol% or more. That is, the structure of the complex compound is complicated.

本発明にかかる上記複合フッ化物又は複合フッ化物とフ
ッ化アルミニウムの混合組成物(以下AlF3−CsF系複合
物質という)をAl系材料表面へ供給する方法は大別して
粉末法と化成処理法の2方法がある。またこれらを組み
合わせて,AlF3−CsF系複合物質粉末の懸濁液中で化成
処理を行なう方法で良い。以下各方法について詳細に述
べる。
The method of supplying the composite fluoride or the mixed composition of the composite fluoride and aluminum fluoride (hereinafter referred to as AlF 3 -CsF composite material) according to the present invention to the Al-based material surface is roughly classified into a powder method and a chemical conversion treatment method. There are two ways. Alternatively, a combination of these may be used to perform chemical conversion treatment in a suspension of AlF 3 —CsF-based composite material powder. Each method will be described in detail below.

まず粉末法を述べる。上記AlF3−CsF系複合物質粉末を
得るためには,水溶液中でCsイオンとAlイオンとFイオ
ンと反応させて得た沈澱を熟成し,ろ過するかあるいは
水分を蒸発乾固した後粉砕する方法がある。より具体的
には,たとえば,Csを含む化合物としての炭酸セシウム
(Cs2CO3),水酸化セシウム(CsOH),フッ化セシウム
(CsF),酸性フッ化セシウム(CsHF2)等を水に溶解
し,水溶液にしておく。さらにAlを含む物質としての属
アルミニウム,酸化アルミニウム,水酸化アルミニウム
等をフッ化水素酸に溶解した溶液を作り,該溶液に上記
Csを含む化合物の水溶液を加えれば良い。また上記Alを
含む物質をCsOHのアルカリ水溶液に溶解した後,フッ化
水素酸水溶液を加えて中和すること等によっても得るこ
とができる。しかし,上記化合物の反応の組み合わせに
限定されるものではない。
First, the powder method will be described. In order to obtain the above AlF 3 -CsF composite material powder, the precipitate obtained by reacting Cs ions, Al ions and F ions in an aqueous solution is aged and filtered, or water is evaporated to dryness and then pulverized. There is a way. More specifically, for example, cesium carbonate (Cs 2 CO 3 ) as a compound containing Cs, cesium hydroxide (CsOH), cesium fluoride (CsF), cesium acid fluoride (CsHF 2 ) and the like are dissolved in water. And prepare an aqueous solution. Further, a solution of Al-containing substances such as aluminum, aluminum oxide, and aluminum hydroxide dissolved in hydrofluoric acid is prepared, and the above solution is added to the solution.
An aqueous solution of a compound containing Cs may be added. It can also be obtained by dissolving the Al-containing substance in an alkaline aqueous solution of CsOH and then neutralizing it by adding an aqueous solution of hydrofluoric acid. However, it is not limited to the combination of reactions of the above compounds.

またCsFとAlF3を適量比に混合した後加熱して融解し,
該融解物を粉砕することによっても得られる。さらに簡
便な方法として,AlF3の含水塩とCsFとを水分の存在下
で混合した後,加熱乾燥する方法(特願昭60−215420
号)でもよい。
In addition, CsF and AlF 3 are mixed in an appropriate amount and then heated to melt,
It can also be obtained by grinding the melt. As a simpler method, a method in which a hydrous salt of AlF 3 and CsF are mixed in the presence of water and then dried by heating (Japanese Patent Application No. 60-215420).
No.)

上記いずれの方法においても,該粉末は実質的に遊離の
CsFを含まないことが,Al系材料からなる基体にフラッ
クスを供給したまま保管する場合や,複合アルミニウム
部材の耐食性を好ましいものにするために,必要であ
る。遊離のCsFが大量に存在すると,吸湿性が大きくな
り,そして基体あるいは複合Al部材を腐食させることが
ある。さらに,該物質がフラックスとして好ましい溶融
温度範囲と活性を持つためには,AlF3/CsFのモル比が6
7/33〜26/74の範囲内であることが好ましい。上記範
囲内では従来のAlF3−KF系複合物質からなるフラックス
より低い温度で融解もしくは溶融を開始するため,鋳ぐ
るみ用フラックスとしてより好ましいものとなる。モル
比が上記範囲から偏位した場合,たとえばCs3AlF6(す
なわち上記モル比が25/75)組成物の場合には,Al系材
料の鋳ぐるみ用フラックスとして融点が高すぎる。この
場合には,AlF3を適量混合して上記モル比の範囲内にな
る様にすれば良い。
In any of the above methods, the powder is substantially free.
It is necessary not to contain CsF in order to preserve the flux while supplying it to the substrate made of Al-based material and to make the corrosion resistance of the composite aluminum member favorable. The presence of large amounts of free CsF increases hygroscopicity and can corrode the substrate or composite Al components. Further, in order for the substance to have a preferable melting temperature range and activity as a flux, the molar ratio of AlF 3 / CsF is 6%.
It is preferably within the range of 7/33 to 26/74. Within the above range, since it starts melting or starts melting at a temperature lower than that of the conventional AlF 3 -KF composite material flux, it is more preferable as a cast-in flux. When the molar ratio deviates from the above range, for example, in the case of a composition of Cs 3 AlF 6 (that is, the above molar ratio is 25/75), the melting point is too high as a flux for cast metal of Al-based material. In this case, AlF 3 may be mixed in an appropriate amount so that the molar ratio falls within the above range.

上記粉末の粒度は細かい程よく,20〜30μm以下とする
ことが該粉末を基体の表面へ均一に供給付着させるのに
好ましい。
The finer the particle size of the powder is, the more preferable it is 20 to 30 μm or less in order to uniformly supply and adhere the powder to the surface of the substrate.

Al系材料からなる基体の表面の必要部分にフラックスと
してのAlF3−CsF系複合物質の粉末の具体的な供給方法
は,該物質粉末をスラリー状又はペースト状にして直接
必要部へ筆やへらで塗布すればよい。他の方法として
は,該物質粉末の懸濁水に上記基体を浸漬してのち,引
き上げ,必要部にAlF3−CsF系複合物質を集積させるか
又はスプレーで塗布する方法でもよい。上記懸濁水は,
前記の方法,あるいはその他の方法により得られるAlF3
−CsF系複合物質が沈澱生成したままの水溶液,あるい
は沈澱生成したAlF3−CsF系複合物質粒子を一旦,過
後乾燥して得られた粉末状のAlF3−CsF系複合物質を再
びイオン交換水に懸濁したもので,粘度の低い水状のも
のでも,スラリー状の比較的粘度の高いもので良い。
A specific method of supplying the powder of the AlF 3 -CsF composite material as a flux to a necessary portion of the surface of the substrate made of an Al-based material is to make the material powder into a slurry or paste and directly to the necessary portion with a brush or a spatula. It can be applied with. As another method, a method may be used in which the substrate is immersed in a water suspension of the substance powder, then pulled up, and the AlF 3 —CsF-based composite substance is accumulated in a required portion or sprayed. The suspension water is
AlF 3 obtained by the above method or other methods
-Csf based solution that remains composite material produced precipitate or precipitate generated AlF 3 -csf composite material particles once obtained by over-rear dry powdery AlF 3 -csf composite material again ion-exchanged water, It may be suspended in water and have a low viscosity such as water, or a slurry having a relatively high viscosity.

該AlF3−CsF系複合物質の懸濁量は水1に対して20〜2
00gが望ましい。この場合,AlF3−CsF系複合物質粉末
の分散性および基体への付着性を向上させるために,界
面活性剤を適量加えてもよい。また,少なくとも浸漬中
は,AlF3−CsF系複合物質の粉末を一様に分散させ,沈
澱しないようにスターラーあるいは循環ポンプ等により
適度の撹拌を行なうのがよい。
The suspension amount of the AlF 3 -CsF composite material is 20 to 2 with respect to 1 part of water.
00g is desirable. In this case, an appropriate amount of a surfactant may be added to improve the dispersibility of the AlF 3 -CsF composite powder and the adhesion to the substrate. Also, at least during the immersion, it is preferable to disperse the AlF 3 -CsF composite material powder uniformly and to perform appropriate agitation with a stirrer or a circulation pump so as to prevent precipitation.

本浸漬は,上記基体を,AlF3−CsF系複合物質の粉末の
懸濁水に所定時間浸漬したのち引き上げ,該基体の必要
部にAlF3−CsF系複合物質粉末を集積せしめるものであ
る。
In the main dipping, the above-mentioned substrate is soaked in a suspension of AlF 3 -CsF-based composite material powder for a predetermined time and then withdrawn, and the AlF 3 -CsF-based composite material powder is accumulated on the required portion of the substrate.

次に化成処理法により行う場合を説明する。化成処理に
使用する溶液はCsイオンとFイオンを含むことが必要で
ある。CsイオンとFイオンを含む処理溶液は,通常水溶
液で次のいくつかの方法によって調製することができ
る。
Next, a case of performing the chemical conversion treatment method will be described. The solution used for the chemical conversion treatment needs to contain Cs ions and F ions. The treatment solution containing Cs ions and F ions can be usually prepared as an aqueous solution by the following several methods.

まず,その一つは,フッ化水素セシウム(CsHF2)を水
に溶解する方法である。
First, one is the method of dissolving cesium hydrogen fluoride (CsHF 2 ) in water.

処理溶液の他の調製方法としては,CsFとフッ化水素(H
F)とを水に溶解して混合水溶液としてもよい。また,C
sOH又はCs2CO3とHFとを水に溶解したものでもよい。
As another method of preparing the treatment solution, CsF and hydrogen fluoride (H
F) and may be dissolved in water to form a mixed aqueous solution. Also, C
It may be a solution of sOH or Cs 2 CO 3 and HF dissolved in water.

これらの水溶液に含まれるCsイオンの濃度は0.01〜1.0
モル/であって,該水溶液のpHが2〜6の範囲である
のが良い。上記Csイオンの濃度が0.01モル/未満の場
合には,AlF3−CsF系複合物質からなる化成処理層の生
成速度が低く,所望の量のAlF3−CsF系複合物質を生成
するのに長時間を有する。一方1.0モル/を越える場
合でも,AlF3−CsF系複合物質は生成するが,基体に付
着して持ち出される処理溶液の量を考えると経済的でな
い。
The concentration of Cs ions contained in these aqueous solutions is 0.01 to 1.0.
It is preferable that the pH of the aqueous solution is in the range of 2 to 6 in mol / mol. When the concentration of the Cs ions is less than 0.01 mol / L, the formation rate of the chemical conversion treatment layer composed of the AlF 3 -CsF composite material is low, and it takes a long time to produce a desired amount of the AlF 3 -CsF composite material. Have time. On the other hand, when the amount exceeds 1.0 mol / AlF 3 -CsF-based composite material is formed, but it is not economical considering the amount of processing solution that adheres to the substrate and is taken out.

液のpHが2未満になると,Al系材料が強く腐食され,表
面状態が荒れるので好ましくない。またpHが6を越える
と,Al系材料に対するCsイオン,Fイオンとの反応速度
が低下しAlF3−CsF系複合物質からなる化成処理層を生
成せしめることが困難となる。なお,pHを調節するに
は,HFを加えるのがよく,この場合,フッ素の量も増加
するので該複合フッ化物原料の供給という観点からも望
ましい。
When the pH of the liquid is less than 2, the Al-based material is strongly corroded and the surface condition is roughened, which is not preferable. On the other hand, if the pH exceeds 6, the reaction rate of Cs ions and F ions with respect to the Al-based material decreases, making it difficult to form a chemical conversion treatment layer composed of the AlF 3 -CsF-based composite material. In order to adjust the pH, it is preferable to add HF. In this case, the amount of fluorine also increases, which is desirable from the viewpoint of supplying the composite fluoride raw material.

上記Al系材料からなる基体と処理溶液とを接触させる方
法には,前記のように基体を浸漬する方法の他に,基体
の少なくとも鋳ぐるみ所望部に塗布あるいは吹きつける
方法もある。このときには処理溶液中のCsイオンおよび
Fイオンが不足しないように比較的多量に供給する必要
がある。
As a method of bringing the substrate made of the Al-based material into contact with the treatment solution, there is a method of coating or spraying at least a desired portion of the cast wrap of the substrate in addition to the method of immersing the substrate as described above. At this time, it is necessary to supply a relatively large amount of Cs ions and F ions in the treatment solution so as not to be insufficient.

基体と処理溶液との接触時間は,処理溶液中のCsイオン
およびFイオンの濃度,処理溶液の温度によって一概に
は決まらないが,たとえば0.5分〜20分程度の範囲がよ
い。
The contact time between the substrate and the treatment solution is not unconditionally determined depending on the concentrations of Cs ions and F ions in the treatment solution and the temperature of the treatment solution, but is preferably in the range of about 0.5 to 20 minutes.

この接触によって,処理溶液はCsFとHFが混合した形態
の溶液であるから,基体であるAl系材料の表面に存在す
る酸化物被膜が破壊され,Al系材料中のAlと処理溶液中
のCsイオン,Fイオンが化学反応し,AlF3−CsF系複合
物質が生成する。AlF3−CsF系複合物質の生成は,処理
溶液の温度によっても変化する。当然常温でも充分に化
学反応が進行する。しかし,処理溶液の温度を40〜70℃
に上昇せしめると,特に酸化被膜の除去が完全に,しか
も急速に行なわれる。その結果,AlF3−CsF系複合物質
がAl系材料の表面に強固な化成処理層として生成してゆ
く。
Due to this contact, the treatment solution is a solution in which CsF and HF are mixed, so that the oxide film existing on the surface of the Al-based material that is the substrate is destroyed, and Al in the Al-based material and Cs in the treatment solution are destroyed. Ions and F ions chemically react with each other to form an AlF 3 —CsF-based composite material. AlF 3 generation of -CsF composite material, also vary according to the temperature of the treatment solution. Naturally, the chemical reaction proceeds sufficiently even at room temperature. However, the temperature of the treatment solution is 40-70 ℃.
When it is raised to 0, the oxide film is removed completely and rapidly. As a result, slide into generated as strong chemical conversion layer on the surface AlF 3 -csf based composite material of Al-based material.

これらの材料は,原材料のまま上記化成処理工程を施て
もよいし,また,所定の形状になるように加工を加えた
もの,あるいは組立てたのち化成処理工程を施してもよ
い。該Al系材料に化成処理工程を施す前に,該材料の表
面をトリクロルエチレン等の有機溶媒で脱脂を行なって
もよい。また,HF水等により酸化被膜をあらかじめ除去
してもよい。このように,該Al系材料の表面を清浄にし
てから化成処理工程を施してもよい。
These materials may be subjected to the chemical conversion treatment step as they are as raw materials, or may be processed to have a predetermined shape, or may be assembled and then subjected to the chemical conversion treatment step. Before subjecting the Al-based material to the chemical conversion treatment step, the surface of the material may be degreased with an organic solvent such as trichloroethylene. Alternatively, the oxide film may be removed beforehand with HF water or the like. As described above, the surface of the Al-based material may be cleaned before the chemical conversion treatment step.

また,本化成処理工程は,基体を陽極にして,上記処理
液中で通電しながら,該Al系材料の表面AlF3−CsF系複
合物質を生成してもよい。この場合,陰極材料として
は,陽極と同等の表面積を有する炭素等の,処理溶液中
へイオンとなって溶出しない材質のものが望ましい。
Further, in the present chemical conversion treatment step, the surface of the Al-based material may be an AlF 3 —CsF-based composite substance while the substrate is used as an anode and current is applied in the treatment liquid. In this case, the cathode material is preferably a material having a surface area equivalent to that of the anode, such as carbon, which does not elute as ions into the treatment solution.

さらに,交流電流を通じながらら化成処理を行なっても
よい。この場合は,二組の基体を用意し,両基体に電圧
を印加する。そうすると,電圧の高くなった方の基体Al
系材料にAlF3−CsF系複合物質が生成し,低くなったと
きはAlF3−CsF系複合物質は溶出しない。それ故,両Al
系材料には電圧が高くなったときのみAlF3−CsF系複合
物質が生成することになる。
Further, the chemical conversion treatment may be performed while passing an alternating current. In this case, two sets of substrates are prepared and a voltage is applied to both substrates. Then, the substrate with higher voltage Al
AlF 3 -csf composite material is produced in the system materials, AlF 3 -csf composite material when lowered is not eluted. Therefore, both Al
The AlF 3 —CsF composite material is generated in the system material only when the voltage becomes high.

直流電圧が印加した場合,交流電圧を印加した場合,い
ずれの場合においても,電圧を印加しない場合に比べて
AlF3−CsF系複合物質の生成速度が大いので,短時間の
うちに所望の量のAlF3−CsF系複合物質からなる化成処
理層を得ることができる。
In both cases of applying DC voltage and AC voltage, compared to the case of not applying voltage,
AlF 3 production rate of -csf composite material so have large, it is possible to obtain a chemical conversion layer made of AlF 3 -csf composite material the desired amount in a short time.

また,処理溶液のpHが6より大きい場合,すなわち,中
性〜弱アルカリ性の溶液で化成処理速度が小さい場合,
でも通電処理すれば短時間のうちに,化成処理層を形成
できるという利点もある。
Also, when the pH of the treatment solution is higher than 6, that is, when the chemical conversion treatment rate is low in a neutral to weakly alkaline solution,
However, there is also an advantage that the chemical conversion treatment layer can be formed in a short time if the electricity is applied.

以上のようにして,AlF3−CsF系複合物質が適量生じた
ところで基体と処理溶液との接触を断つのがよい。
As described above, the contact between the substrate and the processing solution should be cut off when an appropriate amount of AlF 3 —CsF composite material is generated.

このあと,上記化成処理工程を施した基体の表面には,
未反応のCsイオンおよびFイオンが残留しているので,
残留したCsイオンおよびFイオンを水洗してもよいが,
水洗しなくても後の工程には差支えない。
After that, on the surface of the substrate that has been subjected to the chemical conversion treatment step,
Since unreacted Cs and F ions remain,
The residual Cs ions and F ions may be washed with water,
Even if it is not washed with water, there is no problem in the subsequent steps.

さらに処理した基体に乾燥工程を施してもよい。乾燥工
程は,基体の表面に付着した水を散逸させる工程であ
る。化成処理後水洗を行なわない場合には,この工程に
より基体のAl系材料表面に残留したCsイオンおよびFイ
オンをAlと反応させて,さらにAlF3−CsF系複合物質を
生成することもできる。
The further treated substrate may be subjected to a drying step. The drying step is a step of dissipating water adhering to the surface of the substrate. If water washing is not carried out after the chemical conversion treatment, the Cs ions and F ions remaining on the surface of the Al-based material of the substrate can be reacted with Al in this step to further produce an AlF 3 -CsF-based composite material.

乾燥の具体的手段としては,比較的長時間を必要とする
が大気中に放置して乾燥してもよい。また,常温から10
0℃の温風を吹きつけて行なってもよい。また100〜200
℃の熱風を吹きつけてもよい。特に熱風を吹きつける
と,化成処理層の水分がなくなり,Al系材料の表面に化
成処理層が焼きつけられ,該層はより強固となる。さら
に,後のAl系合金溶湯との接触工程において水蒸気を発
生することがないので,溶湯を不必要に劣化させること
がなく,また有害なHFガスが発生しないという利点を有
する。
As a concrete means for drying, a relatively long time is required, but it may be dried by leaving it in the atmosphere. Also, from room temperature to 10
You may blow warm air of 0 degreeC. Again 100-200
You may blow hot air of ℃. In particular, when hot air is blown, moisture in the chemical conversion treatment layer disappears, the chemical conversion treatment layer is baked on the surface of the Al-based material, and the layer becomes stronger. Further, since steam is not generated in the subsequent contact step with the molten Al-based alloy, there is an advantage that the molten metal is not unnecessarily deteriorated and no harmful HF gas is generated.

以上のようにして得た化成処理層を有する基体は,Al系
材料の表面に,AlF3−CsF系複合物質が0.1〜10g/m2
度固着している状態が,次の溶湯との接触工程におい
て,AlF3−CsF系複合物質がフラックスとして作用する
のに望ましい。
The substrate having the chemical conversion treatment layer obtained as described above has a state in which the AlF 3 -CsF-based composite substance is fixed to the surface of the Al-based material at about 0.1 to 10 g / m 2 when it contacts the next molten metal. in step, AlF 3 -csf composite material is desirable to act as a flux.

形成された化成処理層は,Al系材料の表面に強固に結合
しているので,化成処理を施したのち該材料を所定の形
状に成形して基体としてもよい。勿論,Al系材料を所望
の形状に成形したのち,化成処理を施してもよい。化成
処理によるAlF3−CsF系複合物質の形成量は,特に0.1〜
3g/m2であると,かなり強加工を行っても剥れること
がないので有利である。形成量がが10g/m2以上になる
と,曲率を大きくして曲げると剥離することがあるの
で,注意して加工する必要がある。
Since the formed chemical conversion treatment layer is firmly bonded to the surface of the Al-based material, the chemical conversion treatment may be performed and then the material may be molded into a predetermined shape to form a substrate. Of course, the Al-based material may be formed into a desired shape and then subjected to chemical conversion treatment. The amount of AlF 3 —CsF composite material formed by the chemical conversion treatment is particularly 0.1-
An amount of 3 g / m 2 is advantageous because it does not peel off even when subjected to considerably strong working. If the amount of formation is 10 g / m 2 or more, it may be peeled off when bent with a large curvature, so it is necessary to process it with caution.

基体への部分的な化成処理を行う場合には,非処理部分
をワックス塗布するとかプラスチックフイルムで覆うな
どマスキングしたのち,処理溶液に浸漬するとか処理溶
液を噴射するなどの方法によるとよい。
In the case of performing partial chemical conversion treatment on the substrate, it is advisable to coat the non-treated portion with wax or mask it by covering it with a plastic film and then immerse it in the treatment solution or spray the treatment solution.

次に,上記の如く粉末法あるいは化成処理法によってAl
F3−CsF系複合物質を供給したAl系材料からなる基体をA
l系合金溶湯と接触させて,目的とする複合Al部材を得
る。この複合部材としては種々の形状のものが考えられ
るが,例えば基体として直管状または曲管状のAl管を用
い,鋳型内に従来の中子と同様に配置して一体的に鋳ぐ
るめば,従来法とは異なり中子を用いる必要がなく,内
部に通路を有するAl鋳物が得られる。特に曲ががった孔
を必要とするときには,従来法では中子を正しく配置す
るのがむづかしく,また鋳造後中子をこわして取り出す
必要があったが,本発明方法によるときはこのような問
題は全くないため,種々の形態のものが容易にできる。
Next, as described above, the Al method is applied by the powder method or chemical conversion treatment method.
A base made of Al-based material supplied with F 3 -CsF-based composite material is
The desired composite Al member is obtained by contacting it with the molten l-based alloy. Various shapes are conceivable for this composite member. For example, if a straight or curved Al tube is used as the substrate and it is placed in a mold in the same manner as a conventional core and integrally cast, Unlike the method, it is not necessary to use a core, and an Al casting with a passage inside can be obtained. Especially when a curved hole is required, it is difficult to properly dispose the core in the conventional method, and it is necessary to break the core out after casting. Since there is no such problem, various forms can be easily made.

本発明では基体を鋳ぐるむだけでなく,アルミナイズド
鋼を得るのと同様に,Al合金溶湯に,たとえばAl合金板
帯を連続的に浸漬することによって,表面に耐蝕性また
は耐摩耗性を有するAl層を被覆形成した複合Al板を得る
ことができる。
In the present invention, not only the substrate is cast, but the surface of the substrate is not corroded or corroded by continuously immersing, for example, an Al alloy strip in the molten Al alloy, similarly to obtaining the aluminized steel. It is possible to obtain a composite Al plate coated with the Al layer having the same.

本発明において使用するAl系合金溶湯は,AlないしはAl
合金が使用でき,基体としてのAl系材料と同じ材質のも
のも使用できる。
The Al-based alloy melt used in the present invention is Al or Al.
An alloy can be used, and the same material as the Al-based material for the substrate can also be used.

特に,本発明では,Mgを0.2〜0.3wt%以上含んだAl系合
金溶湯においても,基体とのぬれ性が保持され固化後に
は良好な接合状態が得られる。Mgを含む溶湯の具体的な
例としては,AC4C(Al−7.0%Si−0.3%Mg),AC8A(Al
−11.4%Si−1.1%Cu−1.3%Mg−1.8%Ni),ADC12S(A
l−10.9%Si−2.1%Cu−0.23%Mg)材等がある。鋳ぐる
みに際しては基体の融点よりも若干低い融点の溶湯を用
いたほうがよい場合もあるが,基体をチル鋳物のときと
同様に適当に冷すことができるようにして鋳型内に配置
するときは,溶湯の溶融温度を上記の如く必配する必要
はない。
In particular, in the present invention, the wettability with the substrate is maintained even in an Al-based alloy melt containing Mg in an amount of 0.2 to 0.3 wt% or more, and a good joining state is obtained after solidification. Specific examples of molten metal containing Mg include AC4C (Al-7.0% Si-0.3% Mg), AC8A (Al
-11.4% Si-1.1% Cu-1.3% Mg-1.8% Ni), ADC12S (A
l-10.9% Si-2.1% Cu-0.23% Mg) materials. It may be better to use a molten metal having a melting point slightly lower than the melting point of the base material when casting, but when placing the base material in the mold so that it can be cooled appropriately as in the case of chill casting. , It is not necessary to set the melting temperature of the molten metal as described above.

鋳ぐるみ等溶湯と基体との接触工程は,非酸化性雰囲気
下で行うのが最も好ましいが,少量の酸素を含む雰囲気
下でも,また場合によっては大気中で行ってもよい。
The step of contacting the molten metal such as the cast stuff with the substrate is most preferably carried out in a non-oxidizing atmosphere, but it may be carried out in an atmosphere containing a small amount of oxygen or, in some cases, in the atmosphere.

本接触工程において,上記AlF3−CsF系複合物質として
基体上に存在する物質はフラックスとして作用するの
で,溶湯と基体との「ぬれ性」が良好となり,良好な鋳
ぐるみまたはAl系合金被覆が得られる。
In this contact step, the substance existing on the substrate as the AlF 3 -CsF-based composite substance acts as a flux, so that the “wettability” between the molten metal and the substrate is good, and a good cast dolly or Al-based alloy coating is formed. can get.

なお本発明におけるAlF3−CsF系複合物質の適当量を公
知フラックスであるフルオロアルミニウム酸カリウム錯
塩(KF−AlF3系)に添加するか,あるいはKイオンとF
イオンを含む化成処理液にCsイオンを加えて化成処理
し,該Al系材料表面にフルオロアルミニウム酸カリウム
錯塩とフルオロアルミニウム酸セシウム錯塩の混合物又
はフルオロアルミニウム酸カリウムセシウム錯塩を生成
せしめても,確かにMgを含有する溶湯へのぬれ性改良効
果は認められるが,Mg含有量の多い(Mg:0.3wt%以
上)溶湯に対しては,AlF3−CsF系複合物質単独を用い
た方が改良効果はより著しい。
It should be noted that an appropriate amount of the AlF 3 -CsF composite material in the present invention is added to the known flux potassium fluoroaluminate complex salt (KF-AlF 3 system), or K ion and F are added.
Even if Cs ions are added to a chemical conversion treatment liquid containing ions to perform chemical conversion treatment, and a mixture of potassium fluoroaluminate complex salt and cesium fluoroaluminate complex salt or potassium cesium fluoroaluminate complex salt is formed on the surface of the Al-based material, it is true. Although the wettability-improving effect to the molten metal containing Mg is recognized, the improving effect is obtained by using the AlF 3 -CsF composite material alone for the molten metal with a large Mg content (Mg: 0.3 wt% or more). Is more remarkable.

さらに,本発明はAl系材料の基体について示したが,
鋼,ステンレス鋼等の非Al系材料の基体にも,本発明に
おけるAlF3−CsF系複合物質を供給すれば,Mgを含有す
るAl系合金の溶湯で一体化した鋳ぐるみ体あるいはAl系
合金被覆体を得ることができる。
Furthermore, although the present invention has been shown for the substrate of Al-based material,
If the AlF 3 -CsF composite material of the present invention is supplied to a non-Al-based material substrate such as steel or stainless steel, a cast body or an Al-based alloy integrated with a melt of an Al-based alloy containing Mg. A coating can be obtained.

本発明におけるAlF3−CsF系複合物質の作用については
その詳細は不明であるが,次ように考えられる。
The details of the action of the AlF 3 -CsF composite material in the present invention are unknown, but it is considered as follows.

まず,溶湯と接して基体の温度が上昇し,フラックスで
あるAlF3−CsF系複合物質が融解し始める。融解したAlF
3−CsF系複合物質は溶湯および基体のAl系合金,材料の
表面で反応して該材料上の酸化皮膜を除去する。
First, the temperature of the substrate is increased in contact with the molten metal, AlF 3 -csf composite material is a flux begins to melt. Melted AlF
The 3- CsF-based composite material reacts on the surface of the molten metal, the Al-based alloy of the substrate, and the material to remove the oxide film on the material.

従来のAlF3−KF系複合物質をフラックスとして使用する
場合には,KMgF3(融点:1070℃)のような高融点の物
質がAl系材料と溶湯との境界面に生成したり,フッ化マ
グネシウム(MgF2)が生成したりして溶湯によるぬれ性
を阻害することがあった。しかし,本発明におけるAlF3
−CsF系複合物質は,高融点物質を生成することもな
く,また,MgF2を溶かし込む作用を有しているため,ぬ
れ性を阻害することがない。このように酸化皮膜が除去
されると,該材料の清浄なAl面が現われるため,両者間
の「ぬれ性」がよくなり,基体の形状が複雑でもすみず
みまで溶湯がゆきわたり,良好な接着が得られるものと
考えられる。
When using conventional AlF 3 -KF composite material as a flux, KMgF 3 (melting point: 1070 ° C.) high melting point materials such as is or generated at the interface between Al-based material and the melt, fluoride In some cases, magnesium (MgF 2 ) was generated, which impeded the wettability by the molten metal. However, in the present invention, AlF 3
-CsF composite material, without generating a high-melting material, also, since it has an effect Komu dissolved MgF 2, not inhibit wettability. When the oxide film is removed in this way, a clean Al surface of the material appears, improving the “wettability” between the two, and even if the substrate has a complicated shape, the molten metal spreads to every corner and good adhesion is achieved. Is considered to be obtained.

なお,鋳ぐるまれなかった部分などに残存したAlF3−Cs
F系複合物質は,水に実質的に不溶であるため,基体を
腐食させるなどの問題は生じない。
It should be noted that AlF 3 -Cs remaining in the parts that were not cast
Since the F-based composite material is substantially insoluble in water, problems such as corrosion of the substrate do not occur.

〔効 果〕[Effect]

本発明は,Mgを含有するAl溶湯に対して,フラックスと
して作用する非吸湿性,非腐食性のAlF3−CsF系複合物
質を鋳ぐるまれるべきAl系材料基体の表面に予じめ供給
しておくので,Mgを0.2〜0.3wt%程度含むため充分な接
合が困難であったAC4C,ADC12SのようなAl合金鋳物との
接合が完全にできる。またMgを1%以上含むAC8Aのよう
なAl合金鋳物に対しても,従来は,ほとんど満足すべき
接合が得られなかったのに対し,本発明によれば完全な
接合ができる。このことは溶湯のMg含有量の許容量が大
きくてもよいことを表わし,本来Mgを含有しないはずの
Al合金溶湯で鋳ぐるむ際に,Mgを含まない純度の良い一
次塊のみでなく,Mgを含む純度の低い再生塊を利用でき
ることになる。このことは技術的には当然のこと,経済
的にも大きな効果をもたらす。
The present invention preliminarily supplies a non-hygroscopic and non-corrosive AlF 3 —CsF composite material acting as a flux to the surface of an Al-based material substrate to be cast, with respect to an Al-containing molten metal containing Mg. Since it contains about 0.2 to 0.3 wt% of Mg, it is possible to completely bond with Al alloy castings such as AC4C and ADC12S, which were difficult to bond sufficiently. Further, even in the case of an Al alloy casting such as AC8A containing Mg in an amount of 1% or more, conventionally, almost no satisfactory joining was obtained, whereas the present invention enables complete joining. This means that the permissible Mg content of the molten metal may be large, and it should not contain Mg.
It is possible to use not only pure Mg-free primary lumps but also recycled Mg-containing low-purity lumps when casting the molten Al alloy. This has great technical and economic effects.

また,本発明におけるAlF3−CsF系複合物質は,AlF3−K
F系複合物質よりも低融点とすることが可能であるため
に,比較的低い温度からフラックスとしての活性を示
す。それ故,鋳ぐるみ条件,たとえば溶湯温度を従来よ
りも低くすることができる。
Further, the AlF 3 —CsF composite material in the present invention is AlF 3 —K.
Since it can have a lower melting point than F-based composite materials, it exhibits flux activity at relatively low temperatures. Therefore, it is possible to lower the cast stuff condition, for example, the molten metal temperature, than before.

本発明によれば,Al系材料とAl系金鋳物との接合が容易
にできる。そのため,一方の部材を例えば耐蝕性とし,
他方の部材を耐摩耗性など高強度の機能を有するものと
した複合Al部材を,軽量であるというAlの利点を損うこ
となく得ることができる。本発明方法によれば予じめ特
定形状に仕上げた部品を鋳ぐるむことができ,1つの鋳
物に鋳ぐるまれる部品(基体)は1つである必要はない
ので,種々複雑な形状のものを作ることができる。一
方,従来肉厚であるため,内部欠陥が発生しやすい鋳物
にあってはその位置にあらかじめ準備した基体を配置し
て鋳ぐるむことによって,引け欠陥を防止した健全鋳物
を得ることができるなどの利点を有する。
According to the present invention, it is possible to easily join an Al-based material and an Al-based gold casting. Therefore, one of the members should be corrosion resistant,
A composite Al member in which the other member has a high-strength function such as wear resistance can be obtained without impairing the advantage of Al, which is lightweight. According to the method of the present invention, it is possible to cast parts that have been preliminarily finished in a specific shape, and it is not necessary that there is only one part (base body) that is cast into one casting, so that there are various complicated shapes. You can make things. On the other hand, because of the conventional wall thickness, it is possible to obtain a sound casting that prevents shrinkage defects by arranging a pre-prepared substrate at that position and surrounding it in the casting where internal defects are likely to occur. Have the advantage of.

また,本発明によれば,Al系合金溶湯による表面被覆も
できるため,従来のクラッド板の如く貼り合せ時に厚さ
が変るとか硬さが増すなどの欠点を伴なうことなく,所
望のAl被覆層を有する複合Al板が得られる,など多くの
優れた効果を有する。
Further, according to the present invention, since the surface coating with the molten Al-based alloy can be performed, the desired Al can be obtained without the drawbacks such as the change in thickness or the increase in hardness at the time of bonding as in the conventional clad plate. It has many excellent effects such as obtaining a composite Al plate with a coating layer.

〔実施例〕〔Example〕

以下,本発明の実施例を説明する。 Examples of the present invention will be described below.

実施例1. 基体1として厚さ1mm,巾30mm,長さ130mmの純Al板(J
ISA1050)を第1図(A),(B)に示すような鋳型2内に,
片面が鋳型2に接するように配置して鋳ぐるんで溶湯と
の接合状態をみた。
Example 1. Pure Al plate with a thickness of 1 mm, a width of 30 mm, and a length of 130 mm as the base 1 (J
ISA1050) in a mold 2 as shown in FIGS. 1 (A) and (B),
The state of joining with the molten metal was observed by arranging one side so as to be in contact with the mold 2 and casting around.

鋳型はシェル鋳型または金型で,内容積が巾70mm,厚さ
が15mm,高さが100mmの寸法を有するものを用いた。な
お,第1図で3は押え具を示す。
The mold used was a shell mold or a mold having an inner volume of 70 mm, a thickness of 15 mm, and a height of 100 mm. In addition, in FIG. 1, reference numeral 3 indicates a presser foot.

鋳ぐるみ用溶湯としてのアルミニウムとしてはMgを含有
するAC4C(Al−7.0%Si−0.3%Mg)材,AC8A(Al−11.4
%Si−1.1%Cu−1.3%Mg−1.8%Ni)材,ADC12S(Al−1
0.9%Si−2.1%Cu−0.23%Mg)材を用いた。
As aluminum as a molten metal for casting, AC4C (Al-7.0% Si-0.3% Mg) material containing Mg, AC8A (Al-11.4%)
% Si-1.1% Cu-1.3% Mg-1.8% Ni) material, ADC12S (Al-1
0.9% Si-2.1% Cu-0.23% Mg) material was used.

上記基体1(純Al板)にAlF3−CsF系物質を供給する方
法は,該板を0.5モル/CsHF2水溶液に浸漬する化成処
理法によった。AlF3−CsF系物質の付着重量が2〜3g
/m2となるように処理を行った。各溶湯の注型時の温度
を第1表の実施番号1〜3に示す。
The method for supplying the AlF 3 —CsF-based substance to the substrate 1 (pure Al plate) was a chemical conversion treatment method in which the plate was immersed in a 0.5 mol / CsHF 2 aqueous solution. AlF 3 -CsF-based material adhesion weight is 2-3g
The treatment was carried out so as to be / m 2 . The temperatures of each molten metal at the time of casting are shown in Run Nos. 1 to 3 in Table 1.

一方,比較例として,無処理のもの(実施番号C1,C3,
C5),および0.1モル/KHF2水溶液によりペンタフル
オロアルミニウム酸カリウム(K2AlF5)を2〜3g/m2
の割合で生成させたもの(実施番号C2,C4,C6)用意
し,第1表に示す温度で注湯を行った。
On the other hand, as a comparative example, untreated ones (implementation numbers C1, C3,
C5), and 0.1 mol / KHF 2 aqueous solution to add potassium pentafluoroaluminate (K 2 AlF 5 ) to 2 to 3 g / m 2
Those produced at the ratio of (No. C2, C4, C6) were prepared, and the molten metal was poured at the temperature shown in Table 1.

第1表の結果からわかるように処理しないものは全くAl
鋳物がAl板に接合せず,さらにカリウム化成処理を施し
てもMg含有量が1.3wt%のAC8Aでは全く接合しない(C
4)のに対し,セシウム処理したものは良好な接を示
す。
As can be seen from the results in Table 1, Al is not treated.
The casting does not bond to the Al plate, and even if it is subjected to potassium conversion treatment, AC8A with a Mg content of 1.3 wt% does not bond at all (C
In contrast to 4), those treated with cesium show good contact.

本例によって得られた複合Al部材は剥離試験によっても
容易に剥離しなかった。
The composite Al member obtained in this example was not easily peeled off even by the peeling test.

実施例2. 基体として肉厚1mm,外径20mm,長さ70mmのAl製パイプ
4(JISA6063)を用い,第2図に示す様に鋳型2内に置
き湯口6から温度680℃のAl合金の湯溶AC4Cを注いで鋳
ぐるみ,溶湯との接合状態をみた。なお,セシウム系フ
ラックスの供給方法は,粉末法によった。フラックス粉
末の製造は次のようにして行った。AlF3・3H2O1モル
(138g),CsF1モル(152g)および水10モル(180
g)を乳鉢上で10分間よく混合した後,水分を蒸発させ
80℃で10時間乾燥し,得られた塊りを再粉砕してフラッ
クス粉末を得た。本粉末は吸湿性は存在せず,X線回折
の結果,未反応のCsFは検出されず,複雑な錯塩からな
ることを示していた。上記粉末を水に分散させ,ハケで
該Al製パイプの外表面に均一に塗布した。(実施番号
4) また別法で合成したCs3AlF6粉末にAlF3粉末をAlF3/CsF
のモル値が1となる様に加え,均一となる様十分良く混
合し,実施番号4と同様に該Al製パイプの外表面に均一
に塗布した。(実施番号5) また,比較例としてフラックス粉末を供給しない基体
(実施番号C7),およびAlF3・3H2O0.45モル(62
g)とKF0.55モル(32g)と水5モル(90g)を実施番
号4と同様に調整したフルオロアルミニウム酸カリウム
系フラックスから成る粉末を塗布した基体を用意した
(実施番号C8)。これらの基体についてもAC4C溶湯に
より鋳ぐるみを行い,溶湯との接合状態を調べた。鋳ぐ
るみ体の接合部断面を観察した結果,実施番号4および
5によればパイプ4とAl合金溶湯5の接合は良好であっ
た。しかし,比較例C7のフラックスを供給しない場合
は全く接合せず,比較例C8のフルオロアルミニウム酸
カリウムから成るフラックスを供給した場合は,接合の
不完全な箇所が部分的にみられた。
Example 2. Using an Al pipe 4 (JIS A6063) with a wall thickness of 1 mm, an outer diameter of 20 mm, and a length of 70 mm as a substrate, place it in a mold 2 as shown in FIG. Pouring, casting, and joining with molten metal were observed. The cesium-based flux was supplied by the powder method. The flux powder was manufactured as follows. AlF 3 · 3H 2 O1 moles (138 g), CSF1 mol (152 g) and water 10 moles (180
g) Mix well in a mortar for 10 minutes, then evaporate the water
After drying at 80 ° C for 10 hours, the obtained lumps were re-ground to obtain flux powder. This powder did not have hygroscopicity, and as a result of X-ray diffraction, unreacted CsF was not detected, indicating that it consisted of a complex complex salt. The above powder was dispersed in water and uniformly applied to the outer surface of the Al pipe with a brush. The AlF 3 powder Cs 3 AlF 6 powders synthesized in (Run # 4) Another method AlF 3 / CsF
Was mixed sufficiently well so as to be uniform, and was evenly applied to the outer surface of the Al pipe in the same manner as in Example No. 4. (Execution No. 5) As a comparative example, a substrate to which no flux powder was supplied (Execution No. C7) and AlF 3 .3H 2 O 0.45 mol (62
g), 0.55 mol (32 g) of KF and 5 mol (90 g) of water were prepared in the same manner as in Example No. 4, and a substrate coated with a powder made of a potassium fluoroaluminate-based flux was prepared (No. C8). These substrates were also cast with AC4C molten metal, and the joining state with the molten metal was examined. As a result of observing the cross section of the joining portion of the cast body, according to Run Nos. 4 and 5, the joining of the pipe 4 and the molten Al alloy 5 was good. However, when the flux of Comparative Example C7 was not supplied, no bonding was performed at all, and when the flux of Comparative Example C8 consisting of potassium fluoroaluminate was supplied, incomplete bonding was partially observed.

実施例3,4 第3図および第4図は本発明の実施例3を示す図で,第
3図は基体4として例えば圧延Al板などの板状体を用い
た例である。図中,5は鋳物部分(キャビテイ部),6
は湯口,7は揚り(排気口)示す。
Embodiments 3 and 4 FIGS. 3 and 4 are views showing Embodiment 3 of the present invention, and FIG. 3 is an example in which a plate-shaped body such as a rolled Al plate is used as the base 4. In the figure, 5 is a casting part (cavity part), 6
Is a sprue and 7 is a frying (exhaust port).

第4図は,本発明の実施例4を示す図で,基体4として
Al板,例えばJIS3003,1050,7072等のAl系合金からな
る圧延板を用い,実施例1と同様にして化成処理したも
のをAl系合金溶湯8中に浸漬し,引き上げてアルミナイ
ズドAl板を得る方法を示す。図中,9はAl系合金溶湯8
を入れたルツボ,10はAl被膜を示す。
FIG. 4 is a diagram showing Embodiment 4 of the present invention.
Using an Al plate, for example, a rolled plate made of an Al-based alloy such as JIS3003, 1050, 7072, etc., a material subjected to chemical conversion treatment in the same manner as in Example 1 is immersed in the Al-based alloy molten metal 8 and pulled up to form an aluminized Al plate. The method of obtaining is shown. In the figure, 9 is a molten Al-based alloy 8
The crucible containing 10 and 10 are Al coatings.

本例においてAl板は硬質板でも軟質板でもよく,また,
Al溶湯としては,たとえば純Al,AC2B等のMgを含有しな
い材料のみでなく,Mgを含むAC4C,AC8Aなども使用でき
る。このようにして得た複合Al板のAl皮膜は,厚さ0.8m
mのAl板に0.05mm厚に塗布したもので,半径1mmの折り
曲げ試験においても皮膜は剥離しなかった。またエリク
セン試験においても剥離しなかった。
In this example, the Al plate may be a hard plate or a soft plate, and
As the molten aluminum, not only materials such as pure Al and AC2B that do not contain Mg but also AC4C and AC8A that contain Mg can be used. The Al film of the composite Al plate obtained in this way has a thickness of 0.8 m.
It was applied to an Al plate of m with a thickness of 0.05 mm, and the coating did not peel off even in a bending test with a radius of 1 mm. No peeling occurred in the Erichsen test.

【図面の簡単な説明】[Brief description of drawings]

第1図(A)は本発明の一実施例を示す鋳型の断面図, 第1図(B)は第1図(A)のB−B線断面図, 第2図および第3図は本発明の鋳ぐるみを示す鋳型の他
の例を示す断面図, 第4図はアルミナイズド方法を示すためのルツボの断面
図, 第5図は,AlF3−CsF系物質の相平衡状態図である。 1,4……基体,2……鋳型,3……押え,5……鋳物
部分(キャビテイ),6……湯口,7……排気口,8…
…溶湯,9……ルツボ,10……Al被膜
FIG. 1 (A) is a cross-sectional view of a mold showing an embodiment of the present invention, FIG. 1 (B) is a cross-sectional view taken along the line BB of FIG. 1 (A), FIGS. Sectional drawing showing another example of the mold showing the cast doll of the invention, FIG. 4 is a sectional view of the crucible for showing the aluminized method, and FIG. 5 is a phase equilibrium diagram of the AlF 3 —CsF-based material. . 1, 4 ... Base, 2 ... Mold, 3 ... Presser, 5 ... Cast part (cavity), 6 ... Gate, 7 ... Exhaust port, 8 ...
… Molten metal, 9 …… crucible, 10 …… Al coating

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】予じめ所定の形状に形成されたアルミニウ
ム系材料よりなる基体の表面の必要部分に,実質的に遊
離のフッ化セシウムを含まないフルオロアルミニウム酸
セシウムから成る複合フッ化物又は該複合フッ化物とフ
ッ化アルミニウムとから成る混合組成物を供給した後,
該基体をアルミニウムまたはアルミニウム合金の溶湯と
接触せしめることを特徴とする複合アルミニウム部材の
製造方法。
1. A complex fluoride comprising cesium fluoroaluminate substantially free of free cesium fluoride in a required portion of the surface of a substrate made of an aluminum-based material formed in a predetermined shape in advance. After supplying a mixed composition of complex fluoride and aluminum fluoride,
A method for producing a composite aluminum member, which comprises bringing the substrate into contact with a molten metal of aluminum or an aluminum alloy.
【請求項2】上記複合フッ化物又は複合フッ化物とフッ
化アルミニウムとから成る混合組成物の供給はセシウム
イオンとフッ素イオンを含有する処理溶液と上記基体と
を接触させ,該基体の表面に化成処理層を形成せしめて
行うことを特徴とする特許請求の範囲第(1)項記載の複
合アルミニウム部材の製造方法。
2. The complex fluoride or a mixed composition comprising a complex fluoride and aluminum fluoride is supplied by bringing a treatment solution containing cesium ions and fluoride ions into contact with the substrate to form a chemical conversion film on the surface of the substrate. The method for producing a composite aluminum member according to claim (1), characterized in that the treatment layer is formed.
【請求項3】上記溶湯との接触は鋳造により行うことを
特徴とする特許請求の範囲第(1)項記載の複合アルミニ
ウム部材の製造方法。
3. The method for producing a composite aluminum member according to claim 1, wherein the contact with the molten metal is performed by casting.
【請求項4】上記溶湯との接触は,基体を溶湯に浸漬し
て行うことを特徴とする特許請求の範囲第(1)項記載の
複合アルミニウム部材の製造方法。
4. The method for producing a composite aluminum member according to claim 1, wherein the contact with the molten metal is performed by immersing the substrate in the molten metal.
JP1529686A 1986-01-27 1986-01-27 Method for manufacturing composite aluminum member Expired - Lifetime JPH0647163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1529686A JPH0647163B2 (en) 1986-01-27 1986-01-27 Method for manufacturing composite aluminum member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1529686A JPH0647163B2 (en) 1986-01-27 1986-01-27 Method for manufacturing composite aluminum member

Publications (2)

Publication Number Publication Date
JPS62173065A JPS62173065A (en) 1987-07-29
JPH0647163B2 true JPH0647163B2 (en) 1994-06-22

Family

ID=11884864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1529686A Expired - Lifetime JPH0647163B2 (en) 1986-01-27 1986-01-27 Method for manufacturing composite aluminum member

Country Status (1)

Country Link
JP (1) JPH0647163B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273099A (en) * 1989-05-18 1993-12-28 Aisin Seiki Kabushiki Kaisha Composite aluminum member joining process
DE3916562A1 (en) * 1989-05-20 1990-11-22 Wall Giselher METHOD AND AUXILIARY PART FOR THE PRODUCTION OF A DENTAL TECHNICAL PROSTHETIC GATE CONNECTION WITH AN OXIDE-FORMING ALLOY
FR2665383A1 (en) * 1990-07-31 1992-02-07 Pechiney Recherche PROCESS FOR OBTAINING MOLDING BIMATERIAL PARTS.
US5802716A (en) * 1994-09-30 1998-09-08 Toyota Jidosha Kabushiki Kaisha Method for bonding a valve seat with a cylinder head
JPH11285808A (en) * 1998-04-02 1999-10-19 Nippon Light Metal Co Ltd Inserting method in casting
DE10026338B4 (en) * 2000-05-26 2004-06-09 Daimlerchrysler Ag Process for coating a metallic component

Also Published As

Publication number Publication date
JPS62173065A (en) 1987-07-29

Similar Documents

Publication Publication Date Title
EP0140267B1 (en) Method of brazing an aluminum material
CA1206076A (en) Flux for brazing aluminum and method of employing the same
TW495561B (en) Etchant for aluminum alloys
HU229017B1 (en) Flux and process for hot dip galvanization
JPH0235627B2 (en)
JPH0438507B2 (en)
JP7147084B2 (en) Method of preparation for adhesively bonding 7xxx aluminum alloys and related products
JPS61293699A (en) Flux for brazing and its production
JPH0647163B2 (en) Method for manufacturing composite aluminum member
CN110846662A (en) Copper/graphene-plated magnesium alloy composite material and preparation method thereof
JP3845328B2 (en) Method for forming a chemical conversion coating on magnesium alloy
JPH08144063A (en) Surface treatment of aluminum based metallic material
JP2003171774A (en) Aluminum base material, and surface treatment method therefor
JPS6083771A (en) Brazing method of aluminum material
US2458660A (en) Process of making composite metal articles
JPH0784665B2 (en) Aluminum conversion treatment method
JP2639846B2 (en) Liquid composition for cleaning surface of aluminum or aluminum alloy
JPS626774A (en) Brazing method for aluminum material
JP2001123294A (en) Method for surface treatment of magnesium or magnesium alloy
JPS62168669A (en) Manufacture of composite aluminum member
JPS60102271A (en) Brazing method of aluminum material
JPS60130463A (en) Brazing method of aluminum material
JPS62156072A (en) Brazing method for aluminum compound material
JPH0359144B2 (en)
JPH01254365A (en) Partially reinforced metal material