JPH0643377U - Wave spring with non-linear load characteristics - Google Patents

Wave spring with non-linear load characteristics

Info

Publication number
JPH0643377U
JPH0643377U JP8107592U JP8107592U JPH0643377U JP H0643377 U JPH0643377 U JP H0643377U JP 8107592 U JP8107592 U JP 8107592U JP 8107592 U JP8107592 U JP 8107592U JP H0643377 U JPH0643377 U JP H0643377U
Authority
JP
Japan
Prior art keywords
spring
corrugated
wave
ring
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8107592U
Other languages
Japanese (ja)
Other versions
JP2580648Y2 (en
Inventor
雅昭 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANCALL CORPORATION
Original Assignee
SANCALL CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANCALL CORPORATION filed Critical SANCALL CORPORATION
Priority to JP1992081075U priority Critical patent/JP2580648Y2/en
Publication of JPH0643377U publication Critical patent/JPH0643377U/en
Application granted granted Critical
Publication of JP2580648Y2 publication Critical patent/JP2580648Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

(57)【要約】 【目的】 波形ばね(10A)やウェーブリング(10B)
の荷重特性を複数段階に亘って変化させる。 【構成】 偏平横断面を有するばね鋼をコイル状に複数
回巻回してなる波形ばね(10A)や、上記ばね鋼の単層
リングからなるウェーブリング(10B)において、上記
コイル状巻層または単層リングの巻層毎に、高さの異な
る複数の波形部分P1、P2を交互配置状態で形成し、こ
れらの波形部分P1、P2の当接開始時期をずらせること
によって、荷重特性が複数段階に亘って変化するばね構
体を形成する。
(57) [Abstract] [Purpose] Wave spring (10A) and wave ring (10B)
The load characteristics of are changed in multiple stages. [Structure] A wave spring (10A) formed by winding a spring steel having a flat cross section in a coil shape a plurality of times, and a wave ring (10B) formed of a single-layer ring of the spring steel. By forming a plurality of corrugated portions P 1 and P 2 having different heights in an alternating arrangement for each winding layer of the layer ring and shifting the contact start timing of these corrugated portions P 1 and P 2 , the load is increased. A spring structure is formed whose characteristics change in multiple steps.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は非線形の荷重特性を具えた波形ばねに関するものであり、詳しくは、 機械装置や計測器などの精密機器の振動伝達防止部材として使用されている波形 ばねの荷重特性を2段階以上に亘って変化させる非線形の荷重負荷特性を具えた 波形ばねに関するものである。 The present invention relates to a wave spring having a non-linear load characteristic. More specifically, the wave spring used as a vibration transmission preventing member for precision equipment such as mechanical devices and measuring instruments has two or more load characteristics. The present invention relates to a corrugated spring having a non-linear load-load characteristic that is changed by the following.

【0002】[0002]

【従来の技術】[Prior art]

図2を参照しながら波形ばね(1)の使用例を説明する。計測器などの精密機 器(2)へのプレス機などの機械装置(3)からの振動が伝達されるのを防止す るため、図2(A)に示すように脚座(4)内には、偏平横断面を有するばね鋼 をコイル状に巻回して製作された波形ばね(1)が組込まれている。レベリング ボルト(5)を締込み圧縮荷重Pを付加すると、ハウジング(6)内に取付けら れている波形ばね(1)がベアリングブロック(7)を介して圧縮変形し、ばね 弾性を利用した防振構体として機能することによって、計測器(2)や機械装置 (3)への振動の伝達を防止する。 An example of using the wave spring (1) will be described with reference to FIG. In order to prevent the transmission of vibration from the mechanical device (3) such as a press to the precision instrument (2) such as a measuring instrument, as shown in FIG. A wave spring (1) manufactured by winding a spring steel having a flat cross section in a coil shape is incorporated in the above. When the leveling bolt (5) is tightened and a compressive load P is applied, the corrugated spring (1) mounted in the housing (6) is compressed and deformed via the bearing block (7), and the spring elasticity is used for protection. By functioning as a swing structure, transmission of vibration to the measuring instrument (2) and the mechanical device (3) is prevented.

【0003】 一般に図2(A)に示す波形ばね(1)は、偏平横断面を有するばね鋼をコイ ル状に巻回して製作された皿ばねやリング状に形成した単層構造のウェーブリン グ(図示省略)がハウジング(6)内に組込まれている。Generally, a wave spring (1) shown in FIG. 2 (A) is a disc spring formed by winding a spring steel having a flat cross section in a coil shape or a single-layer wavelin formed in a ring shape. A plug (not shown) is incorporated in the housing (6).

【0004】 上記波形ばね(1)またはウェーブリングは、従来図2(B)に示すように、 コイル状またはリング状に巻回された巻層毎に高さHの等しい2個以上の波形部 (1A)を形成し、この波形部(1A)を上下の巻層の対応する位置に設けられ た波形部(1A)または計測器(2)や機械装置(3)の座面などの隣接する部 材に同時に当接させるばね構体として製作されていた。複数個の波形部(1A) が対向する巻層上の波形部(1A)や機械装置(3)などの座面に最初から当接 状態に維持されていることによって、レベルングボルト(5)を締込み圧縮荷重 Pを付加したとき、波形ばね(1)またはウェーブリングには図2(C)に示す ような右上がりで直線的に増大するたわみSが発生する。As shown in FIG. 2B, the corrugated spring (1) or the corrugated ring has two or more corrugated portions having the same height H for each winding layer wound in a coil shape or a ring shape. (1A) is formed, and the corrugated portion (1A) is provided adjacent to the corrugated portion (1A) or the measuring device (2) or the seating surface of the mechanical device (3) provided at corresponding positions of the upper and lower winding layers. It was manufactured as a spring structure that simultaneously abuts the parts. Since the plurality of corrugated portions (1A) are kept in contact with the seating surfaces of the corrugated portions (1A) and the mechanical device (3) on the opposite winding layers from the beginning, the leveling bolt (5) When a compressive load P is applied by tightening, a flexure S that linearly increases in a rightward direction as shown in FIG. 2C is generated in the wave spring (1) or the wave ring.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

振動伝達防止用の脚座(4)として図2に示す波形ばね(1)またはウェーブ リングを使用した場合、波形部(1A)が最初から圧縮荷重Pの作用点として機 能しているため、圧縮荷重Pの負荷開始点〔図2(C)に示すグラフの原点O〕 から締付け終了点F迄、圧縮荷重PとたわみSとの間には勾配の緩やかな直線関 係が維持される。このため、圧縮荷重Pが増加する割に波形ばね(1)のたわみ S、即ち、弾性変形量が小さく、急速に荷重増加域が形成されないことにより防 振機能が不足し、結果的に、計測器(2)や機械装置(3)に振動が伝達され、 故障や破損などが発生する。 When the wave spring (1) or wave ring shown in FIG. 2 is used as the leg seat (4) for preventing vibration transmission, since the wave portion (1A) functions as the point of action of the compressive load P from the beginning, From the load start point [the origin O of the graph shown in FIG. 2 (C)] to the tightening end point F of the compression load P, a linear relationship with a gentle slope is maintained between the compression load P and the deflection S. Therefore, the deflection S of the corrugated spring (1), that is, the amount of elastic deformation is small in spite of the increase of the compressive load P, and the vibration increasing function is insufficient because the load increasing area is not formed rapidly. Vibration is transmitted to the device (2) and the mechanical device (3), which causes failure or damage.

【0006】 このような問題を解決するため、振動伝達防止用の脚座として金属製皿ばねの 代りに防振ゴムを使用することも提案されているが、防振ゴム製の脚座は、耐油 性、耐熱性および経時的な劣化に問題があるため適用できない場合が多い。[0006] In order to solve such a problem, it has been proposed to use a vibration-proof rubber instead of a metal disc spring as a vibration-prevention leg seat. It is often not applicable due to problems with oil resistance, heat resistance, and deterioration over time.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

上記課題の解決手段として本考案は、偏平横断面を有するばね鋼をコイル状に 複数回巻回してなる波形ばねにおいて、上記コイル状巻層毎に高さの異なる複数 種の波形部分を形成し、隣接する波形部分の対向する山と谷の当接開始時期に差 を設けることによって、荷重特性が複数段階に亘って変化するように構成されて いることを特徴とする非線形の荷重特性を具えた波形ばねおよび偏平横断面を有 するばね鋼の単層リングからなる波形ばねにおいて、上記リングに、高さの異な る2種類以上の波形部分を形成し、これらの波形部分と締着部材の当接開始時期 に差を設けることによって、荷重特性が複数段階に亘って変化するように構成さ れていることを特徴とする非線形の荷重特性を具えた波形ばねを提供するもので ある。 As a means for solving the above-mentioned problems, the present invention provides a corrugated spring formed by winding a spring steel having a flat cross section a plurality of times in a coil shape, in which a plurality of corrugated portions having different heights are formed for each coiled winding layer. , The non-linear load characteristic is characterized in that the load characteristic is configured to change in a plurality of steps by providing a difference in the contact start time between the facing peaks and valleys of the adjacent corrugated portions. Corrugated spring and corrugated spring consisting of a single-layer ring of spring steel having a flat cross section, two or more kinds of corrugated parts having different heights are formed in the ring, and these corrugated parts and fastening members are Provided is a wave spring having a non-linear load characteristic, which is characterized in that the load characteristic is changed in a plurality of steps by providing a difference in abutment start timing.

【0008】[0008]

【作用】[Action]

複数のコイル状巻層を具えた波形ばねあるいはウェーブリングに高さの異なる 複数種の波形部分を形成し、これらの波形部分を所定の時間差で対向する巻層あ るいは機器の締着部材に順次当接させることによって、荷重特性が複数段階に亘 って変化するばね構体を形成する。 Forming multiple types of corrugated parts with different heights on a corrugated spring or wavy ring with multiple coiled wound layers, and forming these corrugated parts on opposing winding layers or fastening members of equipment with a specified time difference. By sequentially contacting each other, a spring structure whose load characteristic changes in multiple stages is formed.

【0009】[0009]

【実施例】【Example】

図1(A)に示す波形ばね(10A)および図1(B)に示すウェーブリング( 10B)を参照しながら本考案の二つの具体例を説明する。尚、以下の記述におい て、波形ばね(10A)およびウェーブリング(10B)は、偏平横断面を有するば ね鋼をコイル状に巻回するかあるいは、単層構造のリング部材に成形されており 、成形手段に関しては図2に示す従来品と同一であるので、説明を省略する。 Two specific examples of the present invention will be described with reference to the wave spring (10A) shown in FIG. 1 (A) and the wave ring (10B) shown in FIG. 1 (B). In the following description, the corrugated spring (10A) and the wave ring (10B) are formed by winding coil steel having a flat cross section in a coil shape or by molding them into a single-layer ring member. Since the molding means is the same as the conventional product shown in FIG. 2, the description thereof is omitted.

【0010】 図1(A)に示す波形ばね(10A)は、コイル状巻層の巻層毎に小さな高さH 1 を有する第1の波形部と、大きな高さH2を有する第2の波形部とを交互に配設 することによって、非線形の荷重特性を具えたばね構体に形成されている。The wave spring (10A) shown in FIG. 1 (A) has a small height H for each winding layer of the coiled winding layer. 1 A first corrugated portion having a large height H2By alternately arranging the second corrugated portions having the above, the spring structure having a non-linear load characteristic is formed.

【0011】 また、図1(B)に示すウェーブリング(10B)は、リングの本体に、小さな 高さH1を有する第1の波形部と、大きな高さH2を有する第2の波形部とを所定 の間隔で交互に配設することによって、非線形の荷重特性を具えたばね構体に形 成されている。Further, the wave ring (10B) shown in FIG. 1 (B) has a first corrugated portion having a small height H 1 and a second corrugated portion having a large height H 2 in the body of the ring. By alternately arranging and at a predetermined interval, a spring structure having a non-linear load characteristic is formed.

【0012】 上記波形ばね(10A)およびウェーブリング(10B)は、図1(A)に円で囲 んだ部分P2に表示するように、圧縮荷重Pが付加される以前の段階では、大き な波形高さH2を有する部分の山を対向する巻層上の大きな波形高さH2を有する 部分の谷、あるいは締着対象部材である計測器(2)の座面に密着させると共に 、円で囲んだ部分P1に表示するように、圧縮荷重Pが付加される以前の段階で は、小さな波形高さH1を有する部分の山を対向する巻層上の小さな波形高さH1 を有する部分の谷、あるいは締着対象部材である計測器(2)の座面から離間さ せている。圧縮荷重Pの増大に伴って波形ばね(10A)およびウェーブリング( 10B)は高さ減少方向に弾性変形し、最初、離間状態に保持されていた小さな波 形高さH1を有する部分の山を対向する巻層上の小さな波形高さH1を有する部分 の谷、あるいは締着対象部材である計測器(2)の座面に密着させる。この後、 図1(C)に示すように、圧縮荷重Pの増加と共に締付け中間点F1から急激な 立上がりで波形ばね(10A)およびウェーブリング(10B)の圧縮変形量、即ち 、たわみSが増大する。締付け終了点F2迄レベリングボルト(5)を締込むこ とによって、波形ばね(10A)あるいはウェーブリング(10B)には、所定の最 終締付け荷重Pfが発生する。 The wave spring (10A) and the wave ring (10B) have a large size before the compressive load P is applied, as indicated by a circled portion P 2 in FIG. 1 (A). portion of the valley with a large waveform height H 2 of the winding layer opposite the mountain portions having a waveform a height H 2 or with is brought into close contact with the seat surface of the fastening object member in a measuring instrument (2), As indicated by the circled portion P 1 , before the compressive load P is applied, the peaks of the portion having the small corrugation height H 1 are formed on the opposite winding layer at the small corrugation height H 1 It is separated from the valley of the part having the or the seating surface of the measuring instrument (2) which is the member to be fastened. The corrugated spring (10A) and the wave ring (10B) are elastically deformed in the direction of decreasing height as the compressive load P increases, and the peak of the portion having the small wave height H 1 that was initially held in the separated state. Are brought into close contact with the valley of a portion having a small corrugated height H 1 on the facing winding layer or the seating surface of the measuring instrument (2) which is the member to be fastened. After that, as shown in FIG. 1 (C), the compressive deformation amount of the wave spring (10A) and the wave ring (10B), that is, the deflection S, is sharply increased from the tightening intermediate point F 1 as the compressive load P is increased. Increase. By tightening the leveling bolt (5) to the tightening end point F 2 , a predetermined final tightening load P f is generated on the wave spring (10A) or the wave ring (10B).

【0013】 波形ばね(10A)またはウェーブリング(10B)の形成素材として用いられる ばね鋼の弾性係数をE、板幅をb、板厚をt、リングまたはコイル巻層毎の波形 部分の山数をN、コイル巻層数をZ、コイルまたはリングの中心径をD、コイル 形状の修正係数をKとすると、波形ばね(10A)またはウェーブリング(10B) のばね常数kは、下記に示すようになる。[0013] The elastic modulus of spring steel used as a forming material of the corrugated spring (10A) or the wave ring (10B) is E, the plate width is b, the plate thickness is t, and the number of peaks of the corrugated portion for each ring or coil winding layer. Where N is the number of coil layers, Z is the center diameter of the coil or ring, and K is the modification factor of the coil shape, the spring constant k of the wave spring (10A) or wave ring (10B) is as shown below. become.

【0014】 k=Ebt34/KZD3 K = Ebt 3 N 4 / KZD 3

【0015】 上記式から、波形ばね(10A)またはウェーブリング(10B)のばね常数kが 、リングまたはコイル1層当たりの波形部分の山数Nの関数として表示されるこ とが理解される。From the above equation, it is understood that the spring constant k of the wave spring (10A) or wave ring (10B) is expressed as a function of the number N of peaks of the wave portion per ring or coil layer.

【0016】 本考案者は上記の事実に着目し、波形ばね(10A)あるいはウェーブリング( 10B)の設計に際し、圧縮荷重Pが負荷される以前の波形部の山数Nに対して、 圧縮荷重Pが一定の大きさPmに増大した後、当接し始める波形部の山数Nが2 倍以上となるように波形部の高さを2段階以上に亘って変化させ、波形部分P1 、P2の当接開始時期に差を設けることによって、荷重特性が2段階以上に亘っ て変化するばね構体を製作している。仮に、圧縮荷重Pが付加される以前の波形 部の山数Nに対して、圧縮荷重Pが一定の大きさPmに増大した後当接し始める 波形部の山数が2Nであれば、小さな波形高さH1を有する部分が対向部位に密 着した後の圧縮荷重Pは、同一の波形高さHを有する波形部(1A)を具えた従 来型の波形ばねまたはウェーブリング(1)に比較して16倍になる。The present inventor pays attention to the above facts, and when designing the wave spring (10A) or the wave ring (10B), the compressive load is compared with the number N of peaks of the corrugated portion before the compressive load P is applied. After P has increased to a certain size P m , the height of the corrugated portion is changed in two or more steps so that the number N of peaks of the corrugated portion which starts contacting is doubled or more, and the corrugated portion P 1 , By creating a difference in the contact start timing of P 2 , a spring structure whose load characteristics change in two or more steps is manufactured. If the number of peaks in the corrugated portion before the compressive load P is applied is N and the number of peaks in the corrugated portion starts to abut after the compressive load P has increased to a certain magnitude P m , it is small. The compressive load P after the portion having the corrugated height H 1 is tightly adhered to the opposing portion is the conventional corrugated spring or wave ring (1) having the corrugated portion (1A) having the same corrugated height H. 16 times compared to.

【0017】[0017]

【考案の効果】[Effect of device]

本考案によれば、波形ばね(10A)またはウェーブリング(10B)の締付け力 を利用して計測器(2)や機械装置(3)を所定の取付け位置に固定するとき、 波形ばね(10A)またはウェーブリング(10B)の荷重特性をその使用範囲内で 多段階的に変化させることが可能になる。締付け途上で急速に締付けトルクを増 大させることが可能であるため、共振ならびに振動の伝達防止に好適な非線形の 荷重特性を具えたばね構体が形成される。 According to the present invention, when the measuring device (2) or the mechanical device (3) is fixed at a predetermined mounting position by using the tightening force of the wave spring (10A) or the wave ring (10B), the wave spring (10A) Alternatively, it becomes possible to change the load characteristics of the wave ring (10B) in multiple steps within its usage range. Since the tightening torque can be rapidly increased during tightening, a spring structure having a non-linear load characteristic suitable for preventing transmission of resonance and vibration is formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本考案に係る波形ばねの正面図 (B)はウェーブリングの正面図 (C)は本考案に係る波形ばねまたはウェーブリングの
圧縮荷重−たわみ線図
FIG. 1A is a front view of a wave spring according to the present invention, FIG. 1B is a front view of a wave ring, and FIG. 1C is a compression load-deflection diagram of the wave spring or wave ring according to the present invention.

【図2】(A)は従来型の波形ばねを組込んだ脚座の部
分破断正面図 (B)は波形ばねの従来例を示す正面図 (C)は従来型波形ばねまたはウェーブリングの圧縮荷
重−たわみ線図
2A is a partially cutaway front view of a leg seat incorporating a conventional wave spring, FIG. 2B is a front view showing a conventional example of the wave spring, and FIG. 2C is a compression of the wave spring or wave ring of the related art. Load-deflection diagram

【符号の説明図】[Explanation of symbols]

10A 波形ばね 10B ウェーブリング H1 小さな波形高さ H2 大きな波形高さ P1 小さな波形高さを具えた第1の波形部分 P2 大きな波形高さを具えた第2の波形部分10A Wave spring 10B Wave ring H 1 Small waveform height H 2 Large waveform height P 1 1st waveform portion with small waveform height P 2 2nd waveform portion with large waveform height

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 偏平横断面を有するばね鋼をコイル状に
複数回巻回してなる波形ばねにおいて、上記コイル状巻
層毎に高さの異なる複数種の波形部分を形成し、隣接す
る波形部分の対向する山と谷の当接開始時期に差を設け
ることによって、荷重特性が複数段階に亘って変化する
ように構成されていることを特徴とする非線形の荷重特
性を具えた波形ばね。
1. A corrugated spring formed by winding a spring steel having a flat cross section in a coil shape a plurality of times, wherein a plurality of corrugated portions having different heights are formed for each coiled winding layer, and adjacent corrugated portions are formed. A wave spring having a non-linear load characteristic, characterized in that the load characteristic is configured to change in a plurality of steps by providing a difference in the contact start timing of the opposing peaks and valleys.
【請求項2】 偏平横断面を有するばね鋼の単層リング
からなる波形ばねにおいて、上記リングに、高さの異な
る2種類以上の波形部分を形成し、これらの波形部分と
締着部材の当接開始時期に差を設けることによって、荷
重特性が複数段階に亘って変化するように構成されてい
ることを特徴とする非線形の荷重特性を具えた波形ば
ね。
2. A corrugated spring comprising a single-layer ring of spring steel having a flat cross section, wherein two or more kinds of corrugated parts having different heights are formed on the ring, and the corrugated part and the fastening member are contacted with each other. A wave spring having a non-linear load characteristic, characterized in that the load characteristic is changed in a plurality of steps by providing a difference in contact start timing.
JP1992081075U 1992-11-25 1992-11-25 Wave spring with nonlinear load characteristics Expired - Fee Related JP2580648Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992081075U JP2580648Y2 (en) 1992-11-25 1992-11-25 Wave spring with nonlinear load characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992081075U JP2580648Y2 (en) 1992-11-25 1992-11-25 Wave spring with nonlinear load characteristics

Publications (2)

Publication Number Publication Date
JPH0643377U true JPH0643377U (en) 1994-06-07
JP2580648Y2 JP2580648Y2 (en) 1998-09-10

Family

ID=13736273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992081075U Expired - Fee Related JP2580648Y2 (en) 1992-11-25 1992-11-25 Wave spring with nonlinear load characteristics

Country Status (1)

Country Link
JP (1) JP2580648Y2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303456A (en) * 1996-03-12 1997-11-25 Mitsubishi Steel Mfg Co Ltd Coiled wave spring and its manufacture
JP2007270934A (en) * 2006-03-31 2007-10-18 Piolax Inc Wave coil spring
JP2007321832A (en) * 2006-05-31 2007-12-13 Piolax Inc Waved coil spring
JPWO2014016930A1 (en) * 2012-07-25 2016-07-07 トヨタ自動車株式会社 Differential gear device for vehicle
JP2022145753A (en) * 2019-04-11 2022-10-04 日本発條株式会社 wave washer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4422004Y1 (en) * 1965-02-25 1969-09-18
JPH0278820U (en) * 1988-12-05 1990-06-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4422004Y1 (en) * 1965-02-25 1969-09-18
JPH0278820U (en) * 1988-12-05 1990-06-18

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303456A (en) * 1996-03-12 1997-11-25 Mitsubishi Steel Mfg Co Ltd Coiled wave spring and its manufacture
JP2007270934A (en) * 2006-03-31 2007-10-18 Piolax Inc Wave coil spring
JP4549998B2 (en) * 2006-03-31 2010-09-22 株式会社パイオラックス Corrugated coil spring
JP2007321832A (en) * 2006-05-31 2007-12-13 Piolax Inc Waved coil spring
JP4611244B2 (en) * 2006-05-31 2011-01-12 株式会社パイオラックス Corrugated coil spring
JPWO2014016930A1 (en) * 2012-07-25 2016-07-07 トヨタ自動車株式会社 Differential gear device for vehicle
JP2022145753A (en) * 2019-04-11 2022-10-04 日本発條株式会社 wave washer

Also Published As

Publication number Publication date
JP2580648Y2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
JP6914853B2 (en) Elastic sliding friction joint
EP0619441B1 (en) Vibration damping body and method for fabricating same
EP0538529B1 (en) Uniform loading springs of improved configuration
EP0795696B1 (en) Coiled wave spring and production method thereof
US4711423A (en) Shock and vibration mount
JPH0643377U (en) Wave spring with non-linear load characteristics
EP0481144A1 (en) Damped extended-motion strut
EP0583868B1 (en) Vibration damping device
US11963451B2 (en) System and method for passive damping of mechanical vibrations
US4483426A (en) Coiled damper element
JPH0567836U (en) Wave coil spring
JP3935979B2 (en) Wave spring device
JP2602017Y2 (en) Wave coil spring
US5707292A (en) Vibration damping equipment for torsional damper, including a low rigidity member
JPH0610226Y2 (en) Clutch device
JP2994262B2 (en) Seismic isolation structure for buildings, etc.
JP4427852B2 (en) Sliding bearing device
JP3640330B2 (en) Seismic isolation devices and seismic isolation structures for light weight buildings
CN201129425Y (en) Block inverse apparatus
JPH0732242U (en) Unequal pitch coil spring
JP2686584B2 (en) Anti-vibration device with displacement conversion mechanism
JPH0717868Y2 (en) Multi-stage clutch device for vehicles
JPH0143562Y2 (en)
JPH1129986A (en) Laminated rubber bearing body and its manufacture
JP3020927U (en) Elastic vibration absorber

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980519

LAPS Cancellation because of no payment of annual fees