JPH0641533Y2 - Bending drive - Google Patents

Bending drive

Info

Publication number
JPH0641533Y2
JPH0641533Y2 JP1988150069U JP15006988U JPH0641533Y2 JP H0641533 Y2 JPH0641533 Y2 JP H0641533Y2 JP 1988150069 U JP1988150069 U JP 1988150069U JP 15006988 U JP15006988 U JP 15006988U JP H0641533 Y2 JPH0641533 Y2 JP H0641533Y2
Authority
JP
Japan
Prior art keywords
bending
joint body
amount
shape memory
memory material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988150069U
Other languages
Japanese (ja)
Other versions
JPH0245702U (en
Inventor
康弘 植田
友尚 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP1988150069U priority Critical patent/JPH0641533Y2/en
Priority to US07/291,242 priority patent/US4930494A/en
Publication of JPH0245702U publication Critical patent/JPH0245702U/ja
Application granted granted Critical
Publication of JPH0641533Y2 publication Critical patent/JPH0641533Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] この考案は形状記憶材料を内蔵して能動的に湾曲する湾
曲駆動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a bending drive device that incorporates a shape memory material and actively bends.

[従来の技術] このような湾曲駆動装置の従来例として、内視鏡の挿入
部に形状記憶合金を内蔵し、形状記憶合金を通電加熱し
た時の形状回復動作により挿入部を湾曲駆動する内視鏡
が実開昭58-25140号公報、実開昭58-101601号公報、特
開昭59-48710号公報、実開昭61-201018号公報において
既に知られている。
[Prior Art] As a conventional example of such a bending driving device, a shape memory alloy is built in the insertion portion of an endoscope, and the insertion portion is bent by a shape recovery operation when the shape memory alloy is electrically heated. The endoscopes are already known in Japanese Utility Model Laid-Open Nos. 58-25140, 58-101601, 59-48710, and 61-201018.

[考案が解決しようとする課題] しかしながら、従来例では複雑な管路、例えば大腸への
挿入性を向上しようとして挿入部の長い範囲を形状記憶
合金により湾曲駆動しようとする場合、以下のような問
題点があった。一般に、形状記憶合金は長いものが製造
できないので、この場合、多数の形状記憶合金を直列に
接続する必要がある。すると、各形状記憶合金はそれよ
り先端側の挿入部の自重も含めて湾曲する必要がある。
そのため、同一の湾曲量を得る場合、基端側(以下、手
元側と称する)の形状記憶合金ほどの湾曲に要する力量
が大きく、先端側の形状記憶合金はその負荷が小さく、
必要力量は減少する。従って、各形状記憶合金に同量の
通電加熱を行なっても同じ湾曲量が得られず、挿入部を
均一に湾曲、制御ができないという欠点があった。
[Problems to be Solved by the Invention] However, in the conventional example, when it is attempted to bend a long range of the insertion portion with a shape memory alloy in order to improve the insertability into a complicated duct, for example, the large intestine, the following is performed. There was a problem. In general, a long shape memory alloy cannot be manufactured, and in this case, it is necessary to connect a large number of shape memory alloys in series. Then, each shape memory alloy needs to be curved including its own weight of the insertion portion on the distal end side.
Therefore, when obtaining the same amount of bending, the amount of force required for bending is as large as that of the shape memory alloy on the proximal side (hereinafter referred to as the proximal side), and the shape memory alloy on the distal side has a small load,
Required power is reduced. Therefore, even if the same amount of electric heating is applied to each shape memory alloy, the same amount of bending cannot be obtained, and there is a drawback that the insertion portion cannot be uniformly bent and controlled.

この考案は上記課題に着目してなされたもので、その目
的は直列に接続された形状記憶材料から湾曲部を構成
し、それを通電加熱することにより湾曲駆動する湾曲駆
動装置において、湾曲部を均一かつ確実に湾曲制御でき
るようにすることである。
This invention was made in view of the above problems, and its purpose is to construct a bending portion from shape-memory materials connected in series, and to bend the bending portion in a bending driving device that is driven by heating by energizing the bending portion. It is to be able to control the curvature uniformly and surely.

[課題を解決するための手段および作用] この考案による湾曲駆動装置は、それぞれが形状記憶材
料を有してその形状回復動作により湾曲する関節体を複
数個直列に接続してなる湾曲部と、湾曲部に接続され形
状記憶材料を通電加熱する手段とを具備し、先端側の関
節体は湾曲しにくく手元側の関節体ほど湾曲しやすくす
るか、あるいは同一の目標湾曲量に対する通電量を先端
側の関節体は少なく手元側の関節体ほど通電量を多くす
ることにより、各関節体は先端側、手元側にかかわらず
均一に湾曲駆動でき、湾曲部を均一かつ確実に湾曲制御
できる。
[Means and Actions for Solving the Problem] A bending drive device according to the present invention includes a bending portion formed by connecting in series a plurality of joint bodies, each of which has a shape memory material and is bent by a shape recovery operation. And a means for electrically heating the shape memory material connected to the bending portion, wherein the joint body on the distal end side is less likely to bend, and the joint body on the proximal side is more likely to bend, or the energization amount for the same target bending amount is set at the tip end. The number of side joints is small, and the amount of electricity is increased toward the proximal side, so that each of the joints can be uniformly driven to bend regardless of the distal side or the proximal side, and the bending portion can be uniformly and surely controlled to bend.

[実施例] 以下図面を参照してこの考案による湾曲駆動装置の実施
例を説明する。ここでは、実施例としては内視鏡装置を
説明する。第1図に第1実施例全体の構成を示す。内視
鏡11は操作部12と挿入部13とからなり、挿入部13の先端
には複数(ここでは7個)の直列に接続された2方向に
湾曲可能な関節体8a〜8gが設けられる。挿入部13の最先
端には先端構成部14が設けられる。挿入部13の基端(以
下、手元端と称する)側部分は可撓管15で構成される。
なお、図示していはいないが、挿入部13内には通常の内
視鏡と同様に、観察光学系、照明光学系が設けられる。
[Embodiment] An embodiment of a bending drive device according to the present invention will be described below with reference to the drawings. Here, an endoscope apparatus will be described as an example. FIG. 1 shows the overall configuration of the first embodiment. The endoscope 11 includes an operating portion 12 and an insertion portion 13, and a plurality (here, seven) of joint bodies 8a to 8g that are bendable in two directions connected in series are provided at the tip of the insertion portion 13. . A tip forming unit 14 is provided at the tip of the insertion unit 13. A portion of the insertion portion 13 on the base end (hereinafter, referred to as a proximal end) side is formed of a flexible tube 15.
Although not shown, the insertion section 13 is provided with an observation optical system and an illumination optical system as in a normal endoscope.

各関節体8a〜8gのそれぞれは第2図に示すように同一長
さで同様に構成される。すなわち、挿入部13の外皮16の
内側には関節体8a〜8gを接続するとともに仕切るフラン
ジ17が設けられる。各フランジ17間にはコイルばね18が
設置される。コイルばね18は挿入部13の中心軸上に配置
され、その両端は対応する前後のフランジ7に連結され
る。ただし、最先端ではコイルばね18の先端は先端構成
部14に取り付けられる。コイルばね18はその張力により
各関節体8a〜8gを直線状に維持し、力が加えられると湾
曲する。コイルばね18の材料としては、通常のばね用線
材、例えばばね用ステンレス線等がある。
Each of the joint bodies 8a to 8g has the same length and is similarly configured as shown in FIG. That is, a flange 17 for connecting and partitioning the joint bodies 8a to 8g is provided inside the outer skin 16 of the insertion portion 13. A coil spring 18 is installed between the flanges 17. The coil spring 18 is arranged on the central axis of the insertion portion 13, and both ends thereof are connected to the corresponding front and rear flanges 7. However, at the tip, the tip of the coil spring 18 is attached to the tip forming portion 14. The coil spring 18 keeps the joint bodies 8a to 8g in a linear shape by its tension and bends when a force is applied. As a material of the coil spring 18, there is a usual wire material for spring, for example, stainless wire for spring.

この実施例では、これらのコイルばね18の湾曲特性(湾
曲のしやすさ)は一様ではなく、その弾性度、硬さを挿
入部13の先端構成部14側から手元側に向かうにつれて柔
らかくしてある。従って、挿入部13の各関節体8a〜8gの
可撓性は先端側のものに対して手元側のものほど大きく
なる。具体的には、コイルばね18の弾性度、硬さの程度
を変えるため、コイルばね18の線径を手元側のものほど
小さくしてある。なお、これ以外にも、有効径を大きく
したり、巻き数を増したり、これらを組み合せたりして
も実現できる。さらに、コイルばね18の材質を変え、手
元側のものほど、弾性係数の大きいものを使用してもよ
い。これらの手段を第1表に示す。
In this embodiment, the bending characteristics (easiness of bending) of these coil springs 18 are not uniform, and the elasticity and hardness of the coil springs 18 are made softer from the tip forming portion 14 side of the insertion portion 13 toward the hand side. There is. Therefore, the flexibility of each of the joint bodies 8a to 8g of the insertion portion 13 is greater on the distal side than on the distal side. Specifically, in order to change the degree of elasticity and hardness of the coil spring 18, the wire diameter of the coil spring 18 is made smaller toward the hand side. In addition to this, it can be realized by increasing the effective diameter, increasing the number of windings, or combining these. Further, the material of the coil spring 18 may be changed, and the one closer to the hand may have a larger elastic coefficient. These means are shown in Table 1.

第2図はコイルばね18を先端側ほど太くし、手元側のも
のほど細くした場合を示す。
FIG. 2 shows a case where the coil spring 18 is thicker on the tip side and thinner on the hand side.

また、各関節体8a〜8gにはそれぞれコイル状の形状記憶
合金からなる湾曲駆動部材21a,21bが2本ずつ挿入部13
の軸方向に沿って配置されている。コイル状の湾曲駆動
部材21a,21bは各関節体8a〜8g内において上下に偏心し
て配置されるとともに、その前後のフランジ7,7間に架
設される。湾曲駆動部材21a,21bを構成する形状記憶合
金としては、NiTi系合金、CuZuAl系合金等があり、その
記憶形状はたとえば密巻きコイルであり、各関節体8a〜
8g内に設置する場合はこれを伸展して歪みを与えた状態
で両端をフランジ7等に固定する。また、その変態温度
(オーステナイト変態温度Af)は40〜60℃に設定してお
く。
Further, each of the joint bodies 8a to 8g is provided with two bending drive members 21a and 21b made of a coil-shaped shape memory alloy.
Are arranged along the axial direction of. The coil-shaped bending drive members 21a, 21b are vertically eccentrically arranged in the joint bodies 8a-8g, and are installed between the front and rear flanges 7, 7. As the shape memory alloy forming the bending drive members 21a, 21b, there are NiTi alloys, CuZuAl alloys, etc., and the memory shape is, for example, a close-wound coil, and each joint body 8a ~
When installing within 8g, both ends are fixed to the flange 7 etc. in a state where it is extended and strained. The transformation temperature (austenite transformation temperature Af) is set to 40 to 60 ° C.

各関節体毎の湾曲駆動部材21a,21bの一端は共通に接続
され、全関節体に共通の接地リード線20に接続される。
各関節体の上側の湾曲駆動部材21aの他端は通電リード
線22にそれぞれ接続され、下側の湾曲駆動部材21bの他
端も通電リード線23にそれぞれ接続されている。そし
て、これらのリード線20,22,23は挿入部13、操作部12、
およびユニバーサルコード24の各内部を通じて外部の光
源装置25内に設けられた通電部26に接続される。光源装
置25内には抵抗検出部27も設けられる。抵抗検出部27は
リード線20,22,23を介して形状記憶合金からなる湾曲駆
動部材21a,21bの相変態による抵抗値の変化を検出し
て、湾曲駆動部材21a,21bの変位量、つまり各関節体8a
〜8gの湾曲量を検出して、これを通電制御部28にフィー
ドバックする。通電制御部28はこの検出湾曲量に応じて
各関節体8a〜8gの湾曲量が所望の量に一致するような通
電量指令を通電部26に与える。なお、通電方式としては
通電量指令に応じて通電時間が可変されるパルス幅変調
(PWM)方式を用い、各通電期間の間の休止期間に湾曲
駆動部材21a,21bの抵抗値を検出する。
One end of each of the bending drive members 21a and 21b for each joint body is connected in common, and is connected to the ground lead wire 20 common to all joint bodies.
The other end of the upper bending drive member 21a of each joint body is connected to the current-carrying lead wire 22, and the other end of the lower bending drive member 21b is also connected to the current-carrying lead wire 23, respectively. And these lead wires 20, 22, 23 are the insertion portion 13, the operation portion 12,
Also, it is connected to an energization section 26 provided in an external light source device 25 through each inside of the universal cord 24. A resistance detector 27 is also provided in the light source device 25. The resistance detection unit 27 detects the change in resistance value due to the phase transformation of the bending drive members 21a, 21b made of a shape memory alloy via the lead wires 20, 22, 23, and the displacement amount of the bending drive members 21a, 21b, that is, Each joint body 8a
A bending amount of up to 8 g is detected and fed back to the energization control unit 28. The energization control unit 28 gives an energization amount command to the energization unit 26 so that the bending amount of each of the joint bodies 8a to 8g matches the desired amount according to the detected bending amount. A pulse width modulation (PWM) method in which the energization time is variable according to the energization amount command is used as the energization method, and the resistance values of the bending drive members 21a and 21b are detected during the rest periods between the energization periods.

次に、第1実施例の動作を説明する。通電部26よりリー
ド線22、または23を通じて湾曲駆動部材21a、または21b
を通電する。通電された湾曲駆動部材21a、または21bは
それ自身の電気抵抗により発熱し変態温度まで加熱され
る。この結果、加熱された湾曲駆動部材21a,21bは記憶
形状である密巻き状態に戻ろうと変位する。これにより
通電された湾曲駆動部材21a,21b側に関節体8a〜8gは湾
曲される。この通電は湾曲が必要な関節体8a〜8gの湾曲
駆動部材21a,21bのみに行なえばよい。そして、通電量
を湾曲駆動部材21a,21bの抵抗値を検出しながら制御す
れば、所定の湾曲量に制御することができ、所望の湾曲
形状が実現される。
Next, the operation of the first embodiment will be described. The bending drive member 21a or 21b from the current-carrying portion 26 through the lead wire 22 or 23.
Energize. The energized bending drive member 21a or 21b generates heat due to its own electric resistance and is heated to the transformation temperature. As a result, the heated bending drive members 21a and 21b are displaced so as to return to the close-wound state which is the memory shape. As a result, the joint bodies 8a to 8g are bent toward the energized bending driving members 21a and 21b. This energization may be performed only on the bending drive members 21a and 21b of the joint bodies 8a to 8g that require bending. Then, if the energization amount is controlled while detecting the resistance values of the bending driving members 21a and 21b, it is possible to control to a predetermined bending amount, and a desired bending shape is realized.

このような湾曲動作の場合、仮に、関節体8a〜8gの各コ
イルばね18の湾曲特性が同じであると、前述したように
コイルばね18を除いた各関節体8a〜8gを湾曲させるのに
必要な駆動力量は手元側ほど大きくなる。つまり、手元
側の関節体を湾曲させようとすると、それより先端側に
接続されている関節体の自重を含めて動かす必要があ
り、手元側の関節体ほど湾曲力量が大きくなる。これに
対して、先端側の関節体を湾曲させる場合にはその負荷
が小さくなり必要な湾曲力量は減少する。第3図にこの
関係を示す。従って、各関節体8a〜8gの湾曲駆動部材21
a,21bに等しく通電し等しい湾曲力量を与えても、各関
節体8a〜8gの湾曲角度は手元側ほど小さくなってしま
う。第4図にこの関係を示す。この現象は抵抗値フィー
ドバック制御を行ない、一定の通電量で一定の湾曲角度
を実現しようとすることの妨げになる。
In the case of such a bending operation, if the bending characteristics of the coil springs 18 of the joint bodies 8a to 8g are the same, it is possible to bend the joint bodies 8a to 8g excluding the coil springs 18 as described above. The amount of driving force required becomes larger toward the hand side. In other words, when the joint body on the hand side is to be bent, it is necessary to move the joint body including the weight of the joint body connected to the distal end side, and the amount of bending force increases toward the joint body on the hand side. On the other hand, when the joint body on the distal end side is bent, the load is reduced and the required bending force amount is reduced. This relationship is shown in FIG. Therefore, the bending drive member 21 of each joint body 8a-8g
Even if the a and 21b are energized equally and the same amount of bending force is applied, the bending angles of the joint bodies 8a to 8g become smaller toward the hand side. This relationship is shown in FIG. This phenomenon hinders resistance value feedback control from being performed to achieve a constant bending angle with a constant energization amount.

これに対して、第1実施例においては関節体8a〜8gにお
ける各コイルばね18の弾性度、硬さを挿入部13の先端構
成部14側から手元側に向かうにつれて柔らかくして、関
節体自体を湾曲するに必要な力量を手元側のものほど小
さくしてある。従って、コイルばね18を除いた各関節体
8a〜8gを湾曲する力量が手元側のものほど大きくても、
コイルばね18の湾曲力量を考慮した各関節体8a〜8g全体
の湾曲力量としては先端側、手元側にかかわらず等しく
なる。第5図にこの関係を示す。
On the other hand, in the first embodiment, the elasticity and hardness of each coil spring 18 in the joint bodies 8a to 8g are made softer from the tip forming portion 14 side of the insertion portion 13 toward the proximal side, and the joint body itself is formed. The amount of force required to bend is smaller on the hand side. Therefore, each joint body except the coil spring 18
Even if the ability to bend 8a to 8g is larger on the hand side,
The amount of bending force of each joint body 8a to 8g considering the amount of bending force of the coil spring 18 is equal regardless of the distal end side or the proximal side. This relationship is shown in FIG.

従って、各関節体8a〜8gの湾曲駆動部材21a,21bに等し
く通電すれば、その通電量に応じて各関節体8a〜8gは第
6図に示すように同じ湾曲角度を示す。この現象は抵抗
値フィードバック制御を行ない、一定通電量で一定の湾
曲角度を得ようとする制御方式に適する。
Therefore, if the bending drive members 21a and 21b of the joint bodies 8a to 8g are equally energized, the joint bodies 8a to 8g exhibit the same bending angle according to the energization amount as shown in FIG. This phenomenon is suitable for a control method in which resistance value feedback control is performed and a constant bending angle is obtained with a constant amount of electricity.

このように第1実施例によれば、各関節体の湾曲しやす
さを先端側のものに対して手元側のものほど大きくした
とにより、各関節体における湾曲駆動部材を同じように
制御すれば、各関節体の湾曲量が一定になり、その湾曲
制御が容易である。
As described above, according to the first embodiment, since the easiness of bending of each joint body is made larger than that of the distal end side, the bending drive member in each joint body can be controlled in the same manner. If so, the amount of bending of each joint body becomes constant, and the bending control is easy.

なお、各関節体を湾曲するのに必要な力量を同じくする
ためコイルばねの湾曲特性を変える代わりに、関節体の
外皮の厚さを手元側のものほど薄くするようにしてもよ
い。例えば、関節体の外皮を構成する部材としてフレッ
クス、ブレードなどを使用する場合、これの硬さを手元
側のものほど柔らかくすればよい。具体的には、フレッ
クスの肉厚、材質、ブレードの線径等を手元側ほど柔ら
かくなるようにすればよい。また、通電加熱する湾曲駆
動部材の冷却用に空気を流す場合等には、先端側のもの
ほど送気量を増やし先端側の湾曲駆動部材ほど強く冷却
されるようにして、一定通電に対する温度上昇を抑制
し、先端側のものの湾曲力量を小さくするようにしても
よい。
Instead of changing the bending characteristics of the coil springs in order to equalize the amount of force required to bend each joint body, the outer skin of the joint body may be made thinner toward the proximal side. For example, when a flex, a blade, or the like is used as a member that constitutes the outer skin of the joint body, the hardness of the flexure, the blade, or the like may be made softer toward the hand side. Specifically, the thickness of the flex, the material, the wire diameter of the blade, etc. may be made softer toward the hand side. Further, when air is supplied to cool the bending drive member that is heated by energization, the amount of air supplied is increased toward the tip side so that the bending drive member near the tip side is cooled more strongly to raise the temperature for a constant energization. May be suppressed and the amount of bending force on the tip side may be reduced.

次に、第2実施例を説明する。第7図に第2実施例の全
体構成を示す。ここでは、挿入部13の挿入距離を検出す
るために、挿入部13の外皮16の表面に一定間隔Δの縞模
様からなるマーキング部44が設けられる。マーキング部
44の検出のためにそれぞれが発光部と受光部とからなる
3個のフォトセンサ42が挿入方向に沿って1.5Δ間隔で
マウスピースに設けられる。フォトセンサ42の出力が挿
入量検出部40を介して通電制御部28に供給される。挿入
量検出部40は3個のフォトセンサ42の出力パルスの位相
の遅れ/進みから挿入方向を検出し、出力パルスの数か
ら移動量(挿入量)を検出する。
Next, a second embodiment will be described. FIG. 7 shows the overall construction of the second embodiment. Here, in order to detect the insertion distance of the insertion portion 13, a marking portion 44 having a striped pattern with a constant interval Δ is provided on the surface of the outer cover 16 of the insertion portion 13. Marking part
For detecting 44, three photosensors 42 each including a light emitting portion and a light receiving portion are provided on the mouthpiece along the insertion direction at 1.5Δ intervals. The output of the photo sensor 42 is supplied to the energization controller 28 via the insertion amount detector 40. The insertion amount detector 40 detects the insertion direction from the phase delay / advance of the output pulses of the three photosensors 42, and detects the movement amount (insertion amount) from the number of output pulses.

第8図は第2実施例の各関節体の構成を示す。ここで
は、両端のフランジ17の間に中間フランジ17aも設けら
れ、形状記憶合金からなる湾曲駆動部材21a,21bは3重
になっている。また、ここでは、全関節体の湾曲特性は
同一になっている。
FIG. 8 shows the structure of each joint body of the second embodiment. Here, an intermediate flange 17a is also provided between the flanges 17 at both ends, and the bending drive members 21a and 21b made of shape memory alloy are tripled. Also, here, the bending characteristics of all joint bodies are the same.

第9図は第2実施例の通電制御部28の詳細を示す図であ
る。挿入量検出部40で検出された挿入部13の挿入量信号
と、操作部12により指示された挿入部13の先端の湾曲方
向を決める操作信号が操作制御部281に入力される。操
作制御部281はこれらの信号を基に各関節体の湾曲量を
決定する。ここでは、いわゆるシフト制御が行われ、最
も先端の関節体8aの湾曲方向と湾曲量の目標値は操作信
号に基づいて設定され、挿入部13が1関節体分の距離だ
け挿入されると、各関節体の湾曲方向と湾曲量が1つ手
元側の関節体の湾曲方向と湾曲量の目標値として設定さ
れる。PWM制御回路282はこの湾曲方向と湾曲量に基づい
てPWM信号を発生し、各関節体毎の通電回路26a〜26gに
供給する。通電回路26a〜26gの電圧値は可変抵抗VRによ
り可変調整可能となっている。
FIG. 9 is a diagram showing details of the energization control unit 28 of the second embodiment. An insertion amount signal of the insertion unit 13 detected by the insertion amount detection unit 40 and an operation signal for instructing the bending direction of the distal end of the insertion unit 13 designated by the operation unit 12 are input to the operation control unit 281. The operation control unit 281 determines the bending amount of each joint body based on these signals. Here, so-called shift control is performed, the bending direction and the target value of the bending amount of the most distal joint body 8a are set based on the operation signal, and when the insertion portion 13 is inserted by the distance of one joint body, The bending direction and the bending amount of each joint body are set as the target values of the bending direction and the bending amount of the joint body on the near side. The PWM control circuit 282 generates a PWM signal based on the bending direction and the bending amount, and supplies the PWM signal to the energizing circuits 26a to 26g for each joint body. The voltage values of the energizing circuits 26a to 26g can be variably adjusted by the variable resistor VR.

以下、第2実施例の動作を説明する。前述したように、
先端側より手元側の方が関節体にとって負荷が大きいの
で、各関節体は湾曲特性が同一であるので同じ湾曲量を
得ようとして同様のPWM制御を行っても同一の湾曲量は
得られない。そこで、第2実施例では同じ湾曲量に対す
る各関節体毎の通電量を変えている。すなわち、手元側
ほどPWM信号の電圧値を大きくし、手元側の方が通電量
が大きくなるようにしている。先端側の湾曲時の通電波
形を第10図に、その時の挿入部13の様子を第11図に示
す。手元側の湾曲時の通電波形を第12図に、その時の挿
入部13の様子を第13図に示す。第10図と第12図からわか
るように、手元側へのPWM電圧の振幅V1′,V2′を先端側
のそれV1,V2より大きくし、通電量を大きくしている。
電圧振幅の調整は通電回路26に接続されている可変抵抗
VRにより行われる。この関節体毎の電圧振幅は第3図に
示すような各関節体のコイルばねを除いた湾曲力量に応
じて設定すればよい。これによって、同量の湾曲量を得
ようとする場合、先端側でも手元側でもPWM制御自体は
同じで、加える電圧値を関節体の位置によって可変する
だけでよく、簡単に均一な湾曲制御が実現できる。
The operation of the second embodiment will be described below. As previously mentioned,
Since the load on the joint side is larger on the hand side than on the tip side, each joint body has the same bending characteristic, so even if the same PWM control is performed to obtain the same bending amount, the same bending amount cannot be obtained. . Therefore, in the second embodiment, the energization amount is changed for each joint body with respect to the same bending amount. In other words, the voltage value of the PWM signal is increased toward the hand side, and the amount of electricity is increased toward the hand side. FIG. 10 shows a current waveform when the distal end side is bent, and FIG. 11 shows a state of the insertion portion 13 at that time. FIG. 12 shows a current waveform when the hand side is bent, and FIG. 13 shows a state of the insertion portion 13 at that time. As can be seen from FIGS. 10 and 12, the amplitudes V1 ′ and V2 ′ of the PWM voltage to the hand side are made larger than those V1 and V2 at the tip side to increase the energization amount.
The voltage amplitude is adjusted by a variable resistor connected to the energizing circuit 26.
It is done by VR. The voltage amplitude for each joint body may be set according to the amount of bending force excluding the coil spring of each joint body as shown in FIG. With this, when trying to obtain the same amount of bending, the PWM control itself is the same on the tip side and the hand side, and it suffices to change the applied voltage value depending on the position of the joint body, and uniform bending control can be performed easily. realizable.

この各関節体毎の通電量の調整は種々変形可能であり、
第1の変形例における先端側の関節体の通電波形を第14
図に、手元側の湾曲時の通電波形を第15図に示す。ここ
では、PWM制御ではなくパルス振幅制御を採用する。す
なわち、先端側の通電信号のパルス幅wは小さく設定
し、自重などの負荷が大きくなる手元側の関節ほどパル
ス幅wを大きく設定する。湾曲量はパルスの振幅を変化
させることによって制御する。
The adjustment of the energization amount for each joint body can be variously modified,
The conduction waveform of the distal end side joint body in the first modified example is shown in FIG.
FIG. 15 shows an energization waveform at the time of bending on the hand side. Here, pulse amplitude control is adopted instead of PWM control. That is, the pulse width w of the energization signal on the distal end side is set small, and the pulse width w is set larger for the joint on the proximal side where the load such as its own weight increases. The amount of bending is controlled by changing the amplitude of the pulse.

第2の変形例における先端側の関節体の通電波形を第16
図に、手元側の通電波形を第17図に示す。ここでは、PW
M制御において通電パルスにバイアス電圧VBを常時加え
るようにしている。そして、先端側より手元側の関節体
の通電パルスのバイアス電圧VB′を大きく設定するよう
にする。これによっても、手元側の方が通電量を大きく
できる。
The energization waveform of the distal end side joint body in the second modification is shown in FIG.
Figure 17 shows the current waveform on the hand side. Here, PW
In the M control, the bias voltage VB is always added to the energizing pulse. Then, the bias voltage VB 'of the energizing pulse of the joint body on the hand side from the tip side is set to be large. This also makes it possible to increase the energization amount on the hand side.

第3の変形例における先端側の関節体の通電波形を第18
図に、手元側の関節体の通電波形を第19図に示す。形状
記憶合金を通電加熱する際、形状回復動作の応答性、加
熱速度を早めるために、加熱初期に一時的に通電量を大
きくする方法が知られている。これを利用して、手元側
の関節体ほど初期加熱のための通電時間toを長くするよ
うにする。これによって、手元側ほど加熱速度が早ま
り、湾曲力量の初期発生量が大きくり、全体の湾曲力量
を上昇させることができる。
The energization waveform of the distal end side joint body in the third modification is shown in FIG.
FIG. 19 shows the waveform of the current flowing through the joint body on the proximal side. When electrically heating a shape memory alloy, a method is known in which the amount of electricity is temporarily increased at the initial stage of heating in order to accelerate the response of the shape recovery operation and the heating rate. By utilizing this, the energization time to for initial heating is set to be longer for the joint body on the near side. As a result, the heating speed becomes faster toward the hand side, the initial amount of bending force generated becomes larger, and the overall bending force amount can be increased.

第9図は関節体の位置によって通電量を変化する手段を
ハードウェア回路により構成したものであるが、第20図
に示すように、ソフトウェア的に実現してもよい。すな
わち、通電制御部28をCPU283と波形パターン記録ROM284
から構成し、各関節体毎の通電量の変化を予めROM284に
記録させておいてもよい。
FIG. 9 shows a means for changing the energization amount according to the position of the joint body by a hardware circuit, but it may be realized by software as shown in FIG. That is, the energization control unit 28 is connected to the CPU 283 and the waveform pattern recording ROM 284.
Alternatively, the change in the energization amount for each joint body may be recorded in the ROM 284 in advance.

なお、上述の説明は内視鏡を実施例として行なったが、
この考案は内視鏡に限らずカテーテル等にも応用できる
し、医療用以外にも適応できる。また、PWM通電等のパ
ルス通電の場合を説明したが、連続波形による駆動方法
においても関節体毎に通電量に変化をもたせれば適応可
能である。また、関節体の湾曲方向は2方向に限定され
ずに、湾曲駆動部材を3以上設ければ、3方向以上に湾
曲可能である。
Although the above description has been made with the endoscope as an example,
This invention can be applied not only to an endoscope but also to a catheter or the like, and can be applied to other than medical purposes. Further, the case of pulse energization such as PWM energization has been described, but a driving method based on a continuous waveform is also applicable if the energization amount is changed for each joint body. Further, the bending direction of the joint body is not limited to two directions, and can be bent in three or more directions by providing three or more bending driving members.

[考案の効果] 以上説明したようにこの考案によれば、湾曲部を均一か
つ確実に湾曲制御できる湾曲駆動装置を提供できる。
[Advantage of the Invention] As described above, according to the present invention, it is possible to provide the bending drive device capable of uniformly and reliably controlling the bending of the bending portion.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明による湾曲駆動装置の第1実施例とし
ての内視鏡装置の全体を示す図、第2図はその挿入部の
側断面図、第3図〜第6図はそれぞれ湾曲部の湾曲特性
を示す図、第7図はこの発明の第2実施例の内視鏡装置
の全体を示す図、第8図はその関節体の内部構成を示す
斜視図、第9図は第2実施例の通電制御部の回路図、第
10図〜第13図は第2実施例の動作を説明する図、第14図
〜第19図は第2実施例の変形例の動作を説明する図、第
20図は第2実施例の通電制御部の変形例を示すブロック
図である。 8a〜8g……関節体、11……内視鏡、12……操作部、13…
…挿入部、18……コイルばね、21a,21b……湾曲駆動部
材、26……通電部、28……通電制御部。
FIG. 1 is a view showing an entire endoscope apparatus as a first embodiment of a bending drive apparatus according to the present invention, FIG. 2 is a side sectional view of an insertion portion thereof, and FIGS. 3 to 6 are bending portions, respectively. FIG. 7 is a diagram showing the bending characteristics of the present invention, FIG. 7 is a diagram showing the entire endoscope apparatus of a second embodiment of the present invention, FIG. 8 is a perspective view showing the internal structure of its joint body, and FIG. Circuit diagram of the energization control unit of the embodiment,
10 to 13 are diagrams for explaining the operation of the second embodiment, and FIGS. 14 to 19 are diagrams for explaining the operation of the modified example of the second embodiment.
FIG. 20 is a block diagram showing a modification of the energization controller of the second embodiment. 8a to 8g …… Joint body, 11 …… Endoscope, 12 …… Operation part, 13…
… Insertion part, 18 …… Coil spring, 21a, 21b …… Bending drive member, 26 …… Energization part, 28 …… Energization control part.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】加熱制御される第1の形状記憶材料と、 前記第1の形状記憶材料の形状回復動作により湾曲する
第1の関節体と、 前記第1の形状記憶材料とは独立して加熱制御される第
2の形状記憶材料と、 前記第2の形状記憶材料の形状回復動作により前記第1
の関節体の湾曲力量より大きい湾曲力量で湾曲する第2
の関節体とを具備し、前記第2の関節体を基端側とし、
該第2の関節体に前記第1の関節体を直列に接続して湾
曲部を構成することを特徴とする湾曲駆動装置。
1. A first shape memory material controlled to be heated, a first joint body curved by a shape recovery operation of the first shape memory material, and the first shape memory material independently. A second shape memory material that is heated, and the first shape memory material that performs the shape recovery operation of the second shape memory material.
To bend with an amount of bending force greater than the amount of bending force of the joint body of the second
And a second joint body as a base end side,
A bending drive device, wherein the first joint body is connected in series to the second joint body to form a bending portion.
【請求項2】加熱制御される第1の形状記憶材料と、 前記第1の形状記憶材料の形状回復動作により湾曲する
第1の関節体と、 前記第1の関節体に設けられ、前記第1の形状記憶材料
の形状回復動作を妨げる第1の弾性部材と、 前記第1の形状記憶材料とは独立して加熱制御される第
2の形状記憶材料と、 前記第2の形状記憶材料の形状回復動作により湾曲する
第2の関節体と、 前記第2の関節体に設けられ、前記第1の弾性部材より
小さい力量で前記第2の形状記憶材料の形状回復動作を
妨げる第2の弾性部材とを具備し、 前記第2の関節体を基端側とし、該第2の関節体に前記
第1の関節体を直列に接続して湾曲部を構成することを
特徴とする湾曲駆動装置。
2. A first shape memory material controlled to be heated, a first joint body that is curved by a shape recovery operation of the first shape memory material, a first joint body, and the first joint body. A first elastic member that interferes with the shape recovery operation of the first shape memory material; a second shape memory material that is heated and controlled independently of the first shape memory material; A second joint body that bends by a shape recovery operation, and a second elasticity that is provided in the second joint body and that interferes with the shape recovery operation of the second shape memory material with a force smaller than that of the first elastic member. A bending drive device comprising: a member, wherein the second joint body is a proximal end side, and the first joint body is connected in series to the second joint body to form a bending portion. .
JP1988150069U 1988-03-09 1988-11-17 Bending drive Expired - Lifetime JPH0641533Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1988150069U JPH0641533Y2 (en) 1988-05-19 1988-11-17 Bending drive
US07/291,242 US4930494A (en) 1988-03-09 1988-12-28 Apparatus for bending an insertion section of an endoscope using a shape memory alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-65140 1988-05-19
JP6514088 1988-05-19
JP1988150069U JPH0641533Y2 (en) 1988-05-19 1988-11-17 Bending drive

Publications (2)

Publication Number Publication Date
JPH0245702U JPH0245702U (en) 1990-03-29
JPH0641533Y2 true JPH0641533Y2 (en) 1994-11-02

Family

ID=31718316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988150069U Expired - Lifetime JPH0641533Y2 (en) 1988-03-09 1988-11-17 Bending drive

Country Status (1)

Country Link
JP (1) JPH0641533Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784303B2 (en) 2007-01-29 2014-07-22 Intuitive Surgical Operations, Inc. System for controlling an instrument using shape sensors
WO2018083763A1 (en) * 2016-11-02 2018-05-11 オリンパス株式会社 Variable stiffness actuator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015643A (en) * 1983-07-07 1985-01-26 Canon Inc Photoconductive member
JPH0741018B2 (en) * 1986-06-12 1995-05-10 オリンパス光学工業株式会社 Endoscope

Also Published As

Publication number Publication date
JPH0245702U (en) 1990-03-29

Similar Documents

Publication Publication Date Title
US4930494A (en) Apparatus for bending an insertion section of an endoscope using a shape memory alloy
US4977886A (en) Position controlling apparatus
US6447478B1 (en) Thin-film shape memory alloy actuators and processing methods
EP0310295A2 (en) Maneuverable distal apparatus
JPH0577045B2 (en)
US20180064310A1 (en) Flexible tube insertion apparatus
JPH0641533Y2 (en) Bending drive
JPH11267095A (en) Tubular insert tool
JPH0574054B2 (en)
JP2000262464A (en) Multi-directional bending mechanism, and head oscillating structural body
JP3135134B2 (en) Flexible tube bending device
JP3944651B2 (en) Active tube driving device and control stick for active tube driving device
CN114746000A (en) Endoscope system and method for changing rigidity of insertion section of endoscope
JP3115880B2 (en) Medical probe
JPH0386142A (en) Deflection operation device for tubular insertion tool
JP6936395B2 (en) Stiffness variable device and endoscope
JP3014974B2 (en) Swing mechanism and stereoscopic scope using it
JP2702973B2 (en) Shape memory alloy device
JPH0461840A (en) Curving device for insertion tool
JP2502199Y2 (en) Medical tube
JPH0445681Y2 (en)
JP2911051B2 (en) Bending section drive control device
JPH0432081Y2 (en)
JPH084629B2 (en) catheter
JPH0574055B2 (en)