JPH0445681Y2 - - Google Patents

Info

Publication number
JPH0445681Y2
JPH0445681Y2 JP3121587U JP3121587U JPH0445681Y2 JP H0445681 Y2 JPH0445681 Y2 JP H0445681Y2 JP 3121587 U JP3121587 U JP 3121587U JP 3121587 U JP3121587 U JP 3121587U JP H0445681 Y2 JPH0445681 Y2 JP H0445681Y2
Authority
JP
Japan
Prior art keywords
bending
shape memory
memory alloy
drive member
omnidirectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3121587U
Other languages
Japanese (ja)
Other versions
JPS63137601U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3121587U priority Critical patent/JPH0445681Y2/ja
Publication of JPS63137601U publication Critical patent/JPS63137601U/ja
Application granted granted Critical
Publication of JPH0445681Y2 publication Critical patent/JPH0445681Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、形状記憶合金を用いて挿入部を湾曲
するようにした内視鏡などの湾曲機能付可撓体に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a flexible body with a bending function, such as an endoscope, whose insertion portion is curved using a shape memory alloy.

[従来の技術] 従来、内視鏡の挿入部内に1方向性の形状記憶
合金(SMA)からなる線材または板材を組み込
み、その形状記憶合金を加熱することにより挿入
部を湾曲させるものがあつた(実開昭58−101601
号公報参照)。
[Prior Art] Conventionally, there have been endoscopes in which a wire or plate made of a unidirectional shape memory alloy (SMA) is incorporated into the insertion section, and the insertion section is curved by heating the shape memory alloy. (Jitsukai 58-101601
(see publication).

[考案が解決しようとする問題点] しかしながら、この従来のものは1方向性の形
状記憶合金を用いるため、1本(または1枚)の
ものでは1方向のみの湾曲しか得られず、したが
つて、挿入部をたとえば上下、さらに上下左右の
複数方向に湾曲させるためには各方向ごとの対応
した複数本の形状記憶合金を設ける必要があり、
必然的に構造が複雑化大形化するという欠点があ
つた。
[Problems to be solved by the invention] However, since this conventional one uses a unidirectional shape memory alloy, a single piece (or one piece) can only curve in one direction. Therefore, in order to curve the insertion part in multiple directions, for example, up and down, as well as up and down and left and right, it is necessary to provide a plurality of shape memory alloys corresponding to each direction.
The drawback was that the structure inevitably became more complex and larger.

なお、変態点をはさんで、その高温側と低温側
の両方の形状を記憶し、加熱冷却により2方向性
の形状回復を行わせる2方向性を用いたものも知
られているが、この形状記憶合金の形状回復力は
1方向性に比べてきわめて小さく、充分な湾曲力
量が得られないという欠点があつた。
There is also a known method that uses bidirectionality, which memorizes the shape of both the high temperature side and the low temperature side across the transformation point, and performs bidirectional shape recovery by heating and cooling. The shape-recovery force of shape-memory alloys is extremely small compared to that of unidirectional alloys, and the disadvantage is that sufficient bending force cannot be obtained.

本考案は、上記問題点に着目してなされたもの
で、その目的とするところは挿入部を2方向以上
の向きに湾曲させるものにおいて、簡単かつコン
パクトな構造でありながら大きな湾曲力量が得ら
れるものとした湾曲機能付可撓体を提供すること
を目的とする。
The present invention was developed in view of the above-mentioned problems, and its purpose is to bend the insertion portion in two or more directions, and to obtain a large bending force with a simple and compact structure. The object of the present invention is to provide a flexible body with a bending function.

[問題点を解決するための手段およびその作用] 本考案は挿入部内に全方位型形状記憶合金から
なる湾曲駆動用部材を設け、この湾曲駆動用部材
を構成する全方位型形状記憶合金を加熱放熱する
温度制御手段を設けた湾曲機能付可撓体である。
このように湾曲駆動用部材に全方位型形状記憶合
金を用いることにより簡単でコンパクトに湾曲駆
動部を構成できる。
[Means for solving the problems and their effects] The present invention provides a bending drive member made of an omnidirectional shape memory alloy in the insertion section, and heats the omnidirectional shape memory alloy that constitutes the bending drive member. It is a flexible body with a bending function that is equipped with a temperature control means for radiating heat.
In this way, by using the omnidirectional shape memory alloy for the bending drive member, the bending drive section can be configured easily and compactly.

[実施例] 図面は本考案の1実施例を示すものである。第
1図はその全体的構成を示している。すなわち、
1は内視鏡であり、この内視鏡1の挿入部2の先
端側部分は湾曲部2aとして形成され、この湾曲
部2a内には、全方位型により形成した湾曲駆動
用部材3が設けられている。すなわち、この湾曲
駆動用部材3はその挿入部2の長手方向の沿つて
配線され、この両端にはそれぞれ第1および第2
のリード線4,5が接続されている。第2のリー
ド線5の他端は操作部6に設けられた通電スイツ
チ7に接続され、この通電スイツチ7から導出す
る第3のリード線8と上記第1のリード線4の各
他端は内視鏡1の、ライトガイトケーブル9内を
経由して内視鏡1とは別に設けられる光源装置1
0内の電気回路に接続されている。光源装置10
内には、照明に必要な機能の他に、全方位型から
なる湾曲駆動用部材3へ通電するためのパルス通
電回路11と、同じく全方位型からなるその湾曲
駆動用部材3の抵抗値を検出するための抵抗値検
出回路12、この抵抗値検出回路12で検出され
た抵抗値にもとづいて通電量をコントロールする
通電制御回路13が設けられている。
[Embodiment] The drawings show one embodiment of the present invention. FIG. 1 shows its overall configuration. That is,
Reference numeral 1 designates an endoscope, and the distal end portion of the insertion portion 2 of the endoscope 1 is formed as a curved portion 2a, and a curved drive member 3 formed of an omnidirectional type is provided within this curved portion 2a. It is being That is, this bending drive member 3 is wired along the longitudinal direction of the insertion portion 2, and has first and second wires at both ends thereof.
Lead wires 4 and 5 are connected. The other end of the second lead wire 5 is connected to an energization switch 7 provided on the operating section 6, and the other ends of the third lead wire 8 and the first lead wire 4 led out from the energization switch 7 are A light source device 1 provided separately from the endoscope 1 via the light guide cable 9 of the endoscope 1
Connected to the electrical circuit inside 0. Light source device 10
In addition to the functions necessary for illumination, the interior includes a pulse energization circuit 11 for energizing the bending drive member 3, which is an omnidirectional type, and a resistance value of the bending drive member 3, which is also an omnidirectional type. A resistance value detection circuit 12 for detecting the resistance value and an energization control circuit 13 for controlling the amount of energization based on the resistance value detected by the resistance value detection circuit 12 are provided.

一方、第2図は上記全方位型からなる湾曲駆動
用部材3を設けた挿入部2の部分を示している。
挿入部2はたとえばポリウレタン製の樹脂からな
るマルチルーメンチユーブにて構成され、その各
孔はイメージガイドフアイバ14、ライトガイド
フアイバ15を挿入配設し、または各種処置具挿
通や流体の注入、吸引等を行うためのチヤンネル
孔16としてある。そして、この挿入部2の略中
心部に対して上述した断面薄板状の全方位型から
なる湾曲駆動用部材3を埋設しているのである。
On the other hand, FIG. 2 shows a portion of the insertion portion 2 provided with the above-mentioned omnidirectional bending drive member 3.
The insertion section 2 is composed of a multi-lumen tube made of, for example, polyurethane resin, and each hole is used for inserting an image guide fiber 14 and a light guide fiber 15, or for inserting various treatment tools, injecting fluids, suctioning, etc. There is a channel hole 16 for performing this. The bending drive member 3, which is omnidirectional and has a thin plate-like cross section, is buried approximately in the center of the insertion portion 2.

ここでの全方位型形状記憶合金は、例えばTi
−Ni合金(例えば、配合値Ti−51at%Ni)から
なる。通常の2方向性形状記憶合金の場合は冷却
時のマルテンサイト変態で変形するときの力は、
加熱時の逆変態(マルテンサイト相→オーステナ
イト相)で形状回復する力の5分の1程度以下で
あるが、本考案に用いる全方位型形状記憶合金の
場合は冷却時でも加温時の51%以上の回復力を発
生できる。つまり、一般の2方向性形状記憶合金
に比し、全方位型形状記憶合金の使用により冷却
時は25倍以上の湾曲力量を出すことができるので
ある。
The omnidirectional shape memory alloy here is, for example, Ti
-Ni alloy (for example, composition value Ti-51at%Ni). In the case of a normal bidirectional shape memory alloy, the force when it deforms due to martensitic transformation during cooling is:
This is about one-fifth of the force for shape recovery during reverse transformation (martensitic phase → austenite phase) during heating, but in the case of the omnidirectional shape memory alloy used in this invention, the force of 51% when heated even when cooled. % or more recovery power can be generated. In other words, by using an omnidirectional shape memory alloy, it is possible to generate more than 25 times the bending force during cooling compared to a general bidirectional shape memory alloy.

また、第3図は全方位型形状記憶合金からなる
湾曲駆動用部材3への通電パルスと抵抗値検出パ
ルスの関係を示し、第4図は全方位型形状記憶合
金からなる湾曲駆動用部材3の温度と湾曲角度お
よび抵抗値変化の関係を示す。また、第5図は、
湾曲角θと抵抗値変化の関係を示す。すなわち、
全方位型形状記憶合金からなる湾曲駆動用部材3
は、第1図で示すように一方向への湾曲角度θ1
示す湾曲形状を高温側で記憶するよう作られてお
り、低温側では全方位型形状記憶合金からなる湾
曲駆動用部材3の特徴である上記高温側の湾曲と
曲率が全く逆転したθ2=|−θ1|(紙面下方向)
の湾曲形状を記憶していることになる。この高温
側変態終了温度(マルテンサイト相またはロンボ
ヘドラル相から母相への変態終了温度)をT1
また、低温側変態終了温度(母相からロンボヘド
ラル相またはマルテンサイト相への変態終了温
度)をT2とすると、それぞれT1=55℃、T2=40
℃と設定しておく。これにより、全方位型形状記
憶合金からなる湾曲駆動用部材3を加熱し、T1
以上にすることで、第1図のθ1の湾曲を得ること
ができる。また、T2以下にすることで逆方向の
湾曲をし、θ2=|−θ1|の湾曲を得ることができ
る。
Further, FIG. 3 shows the relationship between the energization pulse and the resistance value detection pulse to the bending drive member 3 made of an omnidirectional shape memory alloy, and FIG. 4 shows the relationship between the bending drive member 3 made of an omnidirectional shape memory alloy. The relationship between temperature, bending angle, and resistance change is shown. Also, Figure 5 shows
The relationship between bending angle θ and resistance value change is shown. That is,
Curving drive member 3 made of omnidirectional shape memory alloy
is made to memorize a curved shape exhibiting a bending angle θ 1 in one direction on the high temperature side, as shown in FIG. The characteristic curvature and curvature on the high temperature side are completely reversed, θ 2 = |−θ 1 | (downward in the paper)
This means that the curved shape of is memorized. This high temperature side transformation end temperature (transformation end temperature from martensitic phase or rhombohedral phase to parent phase) is T 1 ,
Furthermore, if the low-temperature side transformation end temperature (transformation end temperature from the parent phase to the rhombohedral phase or martensitic phase) is T2 , then T1 = 55℃ and T2 = 40, respectively.
Set it to ℃. As a result, the bending drive member 3 made of omnidirectional shape memory alloy is heated, and T 1
By doing the above, the curvature of θ 1 shown in FIG. 1 can be obtained. Moreover, by setting T 2 or less, it is possible to curve in the opposite direction and obtain a curvature of θ 2 =|−θ 1 |.

そこで、第3図のごとく、全方位型形状記憶合
金からなる湾曲駆動用部材3にパルス通電を行な
い、また、この通電パルスの休止時間に、形状記
憶合金からなる湾曲駆動用部材3の抵抗値を検出
する。まず、ニユートラル位置、つまり、θ=0°
の時には、通電パルス幅をコントロールし形状記
憶合金からなる湾曲駆動用部材3が直線上になる
温度T0になるようにする。このT0は、第4図で
示すごとく、T0に相当する形状記憶合金からな
る湾曲駆動用部材3の抵抗値または、抵抗値変化
をあらかじめ検出しておき、このρ0になるよう、
通電パルスをPWM変調方式にてコントロールす
る(全方位型形状記憶合金をマルテンサイト相←
→中間相←→母相にて、その抵抗値が変化する)。
Therefore, as shown in FIG. 3, the bending drive member 3 made of an omnidirectional shape memory alloy is energized in pulses, and during the rest time of this energization pulse, the resistance of the bending drive member 3 made of a shape memory alloy is Detect. First, the neutral position, i.e. θ=0°
At this time, the energization pulse width is controlled so that the temperature T 0 is reached at which the bending drive member 3 made of a shape memory alloy is on a straight line. As shown in FIG. 4, this T 0 is determined by detecting the resistance value or resistance change of the bending driving member 3 made of a shape memory alloy corresponding to T 0 in advance, and adjusting it so that this value ρ 0 becomes ρ 0.
The energizing pulse is controlled by PWM modulation (the omnidirectional shape memory alloy is transformed into a martensitic phase←
→ intermediate phase ← → the resistance value changes at the parent phase).

また、θ=θ1の湾曲角を得るには、形状記憶合
金からなる湾曲駆動用部材3への通電量を、通電
パルス幅を広げることで大きくし、加熱温度を上
げ、温度をT1とする。これに該当する抵抗値変
化は第4図で示すρ1に当り、このρ1を維持するよ
うパルス幅をコントロールする。これにより、第
1および第2図で示すA方向の湾曲を得ることが
できる。
In addition, in order to obtain a bending angle of θ=θ 1 , the amount of current applied to the bending drive member 3 made of a shape memory alloy is increased by widening the energization pulse width, the heating temperature is increased, and the temperature is set to T 1 . do. The resistance value change corresponding to this corresponds to ρ 1 shown in FIG. 4, and the pulse width is controlled to maintain this ρ 1 . Thereby, the curvature in the A direction shown in FIGS. 1 and 2 can be obtained.

次に、θ2=|−θ1|の湾曲角を得るためには、
通電をOFFすることで、形状記憶合金からなる
湾曲駆動用部材3の温度を下げT2以下にする。
これに該当する抵抗値変化は第4図でのρ2に相当
する。患者の体温が36〜37℃とすればT2=40℃
であるため、自然冷却が可能である。
Next, to obtain the curvature angle of θ 2 = |−θ 1 |,
By turning off the current, the temperature of the bending drive member 3 made of a shape memory alloy is lowered to below T2 .
The resistance value change corresponding to this corresponds to ρ 2 in FIG. If the patient's body temperature is 36-37℃, T 2 = 40℃
Therefore, natural cooling is possible.

なお、第4図で示すように全方位型形状記憶合
金からなる湾曲駆動用部材3への加温によりその
湾曲角θが増加することを示すとともに加温と共
にその抵抗値が減少する。
As shown in FIG. 4, the bending angle θ increases as the bending drive member 3 made of omnidirectional shape memory alloy is heated, and its resistance value decreases with heating.

また、第5図は第4図で示す特性から湾曲角θ
の変化を全方位型形状記憶合金からなる湾曲駆動
用部材3の抵抗値変化を検出することで知ること
ができることを示し、本実施例では、+θ、へ向
かう程、その抵抗値が減少している。
Also, Fig. 5 shows the bending angle θ from the characteristics shown in Fig. 4.
It is shown that it is possible to know the change in the resistance value of the bending drive member 3 made of an omnidirectional shape memory alloy by detecting the change in the resistance value, and in this example, the resistance value decreases as it moves toward +θ. There is.

また、θ=+θ1〜0〜−θ1の間の湾曲位置制御
は、第4,5図からわかるように必要な湾曲角度
で抵抗値をコントロールするよう通電パルスをコ
ントロールすれば任意の角度の湾曲角を得、維持
することができる。
Furthermore, the bending position control between θ = +θ 1 ~ 0 ~ -θ 1 can be performed at any angle by controlling the energizing pulse to control the resistance value at the required bending angle, as shown in Figures 4 and 5. A curved angle can be obtained and maintained.

なお、本考案は上記実施例のものに限定される
ものではない。たとえば第2図の板状の湾曲駆動
用部材3の代わりにこれを線材状のものとし、ま
た、これを2本設け、1本は上下湾曲方向用、他
の1本は左右湾曲用として、4方向の湾曲が得ら
れるようにしても良い。
Note that the present invention is not limited to the above embodiments. For example, instead of the plate-shaped bending drive member 3 shown in FIG. 2, a wire-shaped one is used, and two pieces are provided, one for vertical bending and the other for left-right bending. Curvature in four directions may be obtained.

また、通電に必要な装置は光源装置内だけでは
なく別に独立して設けても良い。
Further, the device necessary for energization may be provided not only within the light source device but also separately.

また、内視鏡以外のカテーテル等の湾曲に用い
ても良い。
Further, it may be used for bending catheters other than endoscopes.

また、全方位型形状記憶合金からなる湾曲駆動
用部材3に対する加熱放熱手段は通電による加熱
以外にも温水や冷却水を注入することで温度変化
をさせるようにしても良い。
Further, the heating and heat dissipating means for the bending drive member 3 made of an omnidirectional shape memory alloy may change the temperature by injecting hot water or cooling water instead of heating by energization.

さらに、本考案は内視鏡の挿入部に限らず、カ
テーテル等の可撓体の湾曲にも適用することがで
きる。
Furthermore, the present invention can be applied not only to the insertion section of an endoscope but also to the curving of a flexible body such as a catheter.

[発明の効果] 以上説明したように本考案によれば簡単な構造
で高い湾曲力量が得られる。また、挿入部の細径
化ができ、たとえば患者の苦痛を低減できる。
[Effects of the Invention] As explained above, according to the present invention, a high bending force can be obtained with a simple structure. Furthermore, the diameter of the insertion portion can be reduced, and for example, pain to the patient can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の一実施例を示すもので、第1図
はその全体の概略的な構成図、第2図は挿入部の
湾曲部の縦断面図、第3図は通電パルスと抵抗値
検出パルスの関係を示す図、第4図は湾曲駆動用
部材の温度と湾曲角および抵抗値変化の関係を示
す特性図、第5図は同じくその湾曲角と抵抗値変
化の関係を示す特性図である。 2……挿入部、3……湾曲駆動用部材、4,
5,8……リード線、7……通電スイツチ、11
……パルス通電回路、12……抵抗値検出回路、
13……通電制御回路。
The drawings show an embodiment of the present invention, in which Fig. 1 is a schematic diagram of the overall configuration, Fig. 2 is a vertical cross-sectional view of the curved part of the insertion section, and Fig. 3 is a diagram showing energization pulses and resistance value detection. FIG. 4 is a characteristic diagram showing the relationship between the temperature of the bending drive member, the bending angle, and resistance value change, and FIG. 5 is a characteristic diagram showing the relationship between the bending angle and resistance value change. be. 2... Insertion part, 3... Curving drive member, 4,
5, 8... Lead wire, 7... Energization switch, 11
...Pulse energization circuit, 12...Resistance value detection circuit,
13...Electrification control circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 挿入部内に全方位型形状記憶合金からなる湾曲
駆動用部材を設け、この湾曲駆動用部材を構成す
る全方位型形状記憶合金を加熱および放熱する温
度制御手段を設けたことを特徴とする湾曲機能付
可撓体。
A bending function characterized in that a bending drive member made of an omnidirectional shape memory alloy is provided in the insertion portion, and a temperature control means for heating and dissipating heat from the omnidirectional shape memory alloy constituting the bending drive member is provided. Flexible body.
JP3121587U 1987-03-04 1987-03-04 Expired JPH0445681Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3121587U JPH0445681Y2 (en) 1987-03-04 1987-03-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3121587U JPH0445681Y2 (en) 1987-03-04 1987-03-04

Publications (2)

Publication Number Publication Date
JPS63137601U JPS63137601U (en) 1988-09-09
JPH0445681Y2 true JPH0445681Y2 (en) 1992-10-27

Family

ID=30836743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3121587U Expired JPH0445681Y2 (en) 1987-03-04 1987-03-04

Country Status (1)

Country Link
JP (1) JPH0445681Y2 (en)

Also Published As

Publication number Publication date
JPS63137601U (en) 1988-09-09

Similar Documents

Publication Publication Date Title
US4601705A (en) Steerable and aimable catheter
US4758222A (en) Steerable and aimable catheter
US4543090A (en) Steerable and aimable catheter
US5090956A (en) Catheter with memory element-controlled steering
US5114402A (en) Spring-biased tip assembly
US5055101A (en) Variable shape guide apparatus
US6620126B2 (en) Variable shape guide apparatus
US4930494A (en) Apparatus for bending an insertion section of an endoscope using a shape memory alloy
US4799474A (en) Medical tube to be inserted in body cavity
US20060064055A1 (en) Steerable devices
EP0310295A2 (en) Maneuverable distal apparatus
JPH0246907Y2 (en)
JP3142928B2 (en) Variable hardness device for flexible tubes
JPH0445681Y2 (en)
JPH0546214B2 (en)
JP3135134B2 (en) Flexible tube bending device
JPH0378610B2 (en)
JPH0461840A (en) Curving device for insertion tool
JPH0673516B2 (en) Endoscope
JPH0744922B2 (en) Medical tube
JPS6321066A (en) Medical tube
JPH0397426A (en) Curving operation device for tubular fitting tool
JP2653818B2 (en) Endoscope
JPH0386142A (en) Deflection operation device for tubular insertion tool
JPH0716201A (en) Flexible tube