JPH0641168A - New bisdithiobenzylnickel complex and benzoin derivative - Google Patents

New bisdithiobenzylnickel complex and benzoin derivative

Info

Publication number
JPH0641168A
JPH0641168A JP5076732A JP7673293A JPH0641168A JP H0641168 A JPH0641168 A JP H0641168A JP 5076732 A JP5076732 A JP 5076732A JP 7673293 A JP7673293 A JP 7673293A JP H0641168 A JPH0641168 A JP H0641168A
Authority
JP
Japan
Prior art keywords
nickel
bis
infrared absorbing
chemical
bisdithiobenzylnickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5076732A
Other languages
Japanese (ja)
Inventor
Toshiyuki Takano
俊幸 高野
Hisami Satake
寿巳 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP5076732A priority Critical patent/JPH0641168A/en
Publication of JPH0641168A publication Critical patent/JPH0641168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

PURPOSE:To provide the new compound useful as a near infrared absorber, a material, etc. CONSTITUTION:The compound of formulas I and/or II [R1 to R5 are each a (substituted)alkyl cycloalkyl aryl halogen, H, etc., except when all the R1 to R5 are H], etc., e.g. bis(4-methyldithiobenzyl)-nickel. This compound of formulas I and/or II is obtained by dissolving, e.g. 4'-ethylbenzoin in 1,4-dioxane, adding diphosphorus pentasulfide to the resultant solution, carrying out reaction while refluxing subsequently filtering the reactional solution, adding an aqueous solution of nickel chloride hexahydrate to the obtained filtrate and refluxing the formed mixture solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、近赤外線吸収剤あるい
は材料として有用な新規ビスジチオベンジルニッケル錯
体、およびその錯体の中間体として有用な新規ベンゾイ
ン誘導体に関する。
TECHNICAL FIELD The present invention relates to a novel bisdithiobenzylnickel complex useful as a near infrared absorber or a material, and a novel benzoin derivative useful as an intermediate of the complex.

【0002】[0002]

【従来技術】ビスジチオベンジルニッケル錯体、例え
ば、ビスジチオベンジルニッケル、ビス(4-ジメチルア
ミノ)ジチオベンジルニッケル、ビス(4-ジエチルアミ
ノ)ジチオベンジルニッケルなどの錯体は、 700〜1300
nmの近赤外領域で強い吸収を示すことから、近赤外線吸
収材料、あるいは光ディスク用有機材料などとして有用
であることが知られている。例えば、染料と薬品, 35 5
(1990) 14-25 、特開昭63-227597 号公報、特開昭64-6
1492号公報などに報告されている。
2. Description of the Related Art Bisdithiobenzylnickel complexes such as bisdithiobenzylnickel, bis (4-dimethylamino) dithiobenzylnickel and bis (4-diethylamino) dithiobenzylnickel are available at 700-1300.
Since it exhibits strong absorption in the near-infrared region of nm, it is known to be useful as a near-infrared absorbing material or an organic material for optical disks. For example, dyes and drugs, 35 5
(1990) 14-25, JP-A-63-227597, JP-A-64-6
It is reported in Japanese Patent No. 1492.

【0003】[0003]

【発明が解決しようとする課題】一方、近赤外線吸収材
料と感熱記録材料から成る光記録体が特開平2-120082号
公報に開示されている。この光記録体において、特に紙
をベ−スとした光記録紙の場合、白色度が高いことが要
求される。しかしながら、従来知られているビスジチオ
ベンジルニッケル錯体は、暗緑色や深緑色の濃色を呈す
るため、なるべく淡色の錯体が望まれていた。
On the other hand, an optical recording medium comprising a near infrared ray absorbing material and a heat sensitive recording material is disclosed in Japanese Patent Laid-Open No. 21-20082. In this optical recording medium, particularly in the case of an optical recording paper whose base is paper, high whiteness is required. However, the conventionally known bisdithiobenzylnickel complex exhibits a dark green color or a deep green color, and therefore, a pale color complex has been desired.

【0004】また一方、ビスジチオベンジルニッケル錯
体の吸収極大波長は、固体状態と溶剤に溶解した状態で
は異なるため、紙に塗布した場合、その吸収極大波長が
溶液状態と異なり、シフトが起こる。そのため、これら
の錯体を半導体レ−ザ−(波長:830nm)を用いる光記録
体に応用する場合、紙に塗布した状態で830nm 付近に吸
収極大波長を有するものが必要であった。例えば、紙に
塗布した状態での各錯体の吸収極大波長は、ビスジチオ
ベンジルニッケルで、 850-870nm、ビス(4-ジメチルア
ミノ)ジチオベンジルニッケルで、1060-1070nm 、ビス
(4-ジエチルアミノ)ジチオベンジルニッケルで、1100
-1120nm であり、適切な波長を有していなかった。
On the other hand, the maximum absorption wavelength of the bisdithiobenzylnickel complex differs between the solid state and the state dissolved in a solvent. Therefore, when it is applied to paper, the maximum absorption wavelength differs from that in the solution state, and a shift occurs. Therefore, when these complexes are applied to an optical recording medium using a semiconductor laser (wavelength: 830 nm), it is necessary that the complex has an absorption maximum wavelength around 830 nm when coated on paper. For example, the maximum absorption wavelength of each complex when coated on paper is 850-870 nm for bisdithiobenzylnickel, 1060-1070 nm for bis (4-dimethylamino) dithiobenzylnickel, bis (4-diethylamino) dithio 1100 with benzyl nickel
It was -1120nm and did not have a proper wavelength.

【0005】[0005]

【課題を解決するための手段】そこで、本発明では、上
記課題を解決するために、新規なビスジチオベンジルニ
ッケル錯体を合成することにより、課題の解決を図っ
た。
In order to solve the above-mentioned problems, the present invention has aimed to solve the problems by synthesizing a novel bisdithiobenzylnickel complex.

【0006】本発明の第1の発明は、新規なビスジチオ
ベンジルニッケル錯体に関する発明であって、一般式
[1]及び/または[2]で表される。
The first invention of the present invention relates to a novel bisdithiobenzylnickel complex and is represented by the general formula [1] and / or [2].

【化7】 (式中、R〜Rは、同一または異なるものであっ
て、置換または非置換のアルキル基、シクロアルキル
基、アルコキシ基、アリ−ル基、アリロキシ基、ハロゲ
ン原子、又は水素原子を表し、置換または非置換のアミ
ノ基およびアルコキシアルコキシ基は除く。ただし、R
〜Rすべてが水素原子の場合は除く。)
[Chemical 7] (In the formula, R 1 to R 5 are the same or different and represent a substituted or unsubstituted alkyl group, cycloalkyl group, alkoxy group, aryl group, aryloxy group, halogen atom, or hydrogen atom. , A substituted or unsubstituted amino group and an alkoxyalkoxy group are excluded, provided that R
Except when 1 to R 5 are all hydrogen atoms. )

【0007】本発明の錯体の構造については、一般式
[1]と[2]の2通りの可能性があるが、本発明で
は、そのいずれか、あるいはその混合物でもよい。
Regarding the structure of the complex of the present invention, there are two possibilities of the general formulas [1] and [2], but in the present invention, either one or a mixture thereof may be used.

【0008】一般式[1]及び/または[2]に含まれ
るビスジチオベンジルニッケル錯体としては、例えば、
次のものが挙げられる。なお、例示の錯体の構造式は、
一般式[1]の型の構造のみを記載しているが、一般式
[2]の型の構造についても含む。
Examples of the bisdithiobenzyl nickel complex contained in the general formulas [1] and / or [2] include:
These include: The structural formula of the exemplified complex is
Although only the structure of the type of general formula [1] is described, the structure of the type of general formula [2] is also included.

【0009】ビス(4-メチルジチオベンジル)- ニッケ
ル[21] ビス(4-エチルジチオベンジル)- ニッケル[22] ビス(4-n-プロピルジチオベンジル)- ニッケル[23] ビス(4-iso-プロピルジチオベンジル)- ニッケル[2
4] ビス(4-n-ブチルジチオベンジル)- ニッケル[25] ビス(4-sec-ブチルジチオベンジル)- ニッケル[26] ビス(4-tert- ブチルジチオベンジル)- ニッケル[2
7] ビス(4-n-アミルジチオベンジル)- ニッケル[28] ビス(4-n-ヘキシルジチオベンジル)- ニッケル[29] ビス(4-n-ヘプチルジチオベンジル)- ニッケル[30] ビス(4-n-オクチルジチオベンジル)- ニッケル[31] ビス(2,5-ジメチルジチオベンジル)- ニッケル[32] ビス(3,5-ジメチルジチオベンジル)- ニッケル[33] ビス(3,4-ジメチルジチオベンジル)- ニッケル[34] ビス(2,4,6-トリメチルジチオベンジル)- ニッケル
[35] ビス(2,3,4,5-テトラメチルジチオベンジル)- ニッケ
ル[36] ビス(4-メトキシジチオベンジル)- ニッケル[37] ビス(2,5-ジメトキシジチオベンジル)- ニッケル[3
8] ビス(4-フェニルジチオベンジル)- ニッケル[39] ビス(4-フェノキシジチオベンジル)- ニッケル[40] ビス(4-シクロヘキシルジチオベンジル)- ニッケル
[41] ビス(4-クロロジチオベンジル)- ニッケル[42]
Bis (4-methyldithiobenzyl) -nickel [21] Bis (4-ethyldithiobenzyl) -nickel [22] Bis (4-n-propyldithiobenzyl) -nickel [23] Bis (4-iso- Propyldithiobenzyl) -nickel [2
4] Bis (4-n-butyldithiobenzyl) -nickel [25] Bis (4-sec-butyldithiobenzyl) -nickel [26] Bis (4-tert-butyldithiobenzyl) -nickel [2
7] Bis (4-n-amyldithiobenzyl) -nickel [28] Bis (4-n-hexyldithiobenzyl) -nickel [29] Bis (4-n-heptyldithiobenzyl) -nickel [30] Bis (4 -n-octyldithiobenzyl) -nickel [31] bis (2,5-dimethyldithiobenzyl) -nickel [32] bis (3,5-dimethyldithiobenzyl) -nickel [33] bis (3,4-dimethyldithio) Benzyl) -Nickel [34] Bis (2,4,6-trimethyldithiobenzyl) -Nickel [35] Bis (2,3,4,5-tetramethyldithiobenzyl) -Nickel [36] Bis (4-methoxydithio) Benzyl) -nickel [37] Bis (2,5-dimethoxydithiobenzyl) -nickel [3
8] Bis (4-phenyldithiobenzyl) -Nickel [39] Bis (4-phenoxydithiobenzyl) -Nickel [40] Bis (4-cyclohexyldithiobenzyl) -Nickel [41] Bis (4-chlorodithiobenzyl)- Nickel [42]

【0010】[0010]

【化8】 [Chemical 8]

【化9】 [Chemical 9]

【化10】 [Chemical 10]

【化11】 [Chemical 11]

【化12】 [Chemical 12]

【化13】 [Chemical 13]

【化14】 [Chemical 14]

【化15】 [Chemical 15]

【0011】ビスジチオベンジルニッケル錯体は、一般
に、対応するベンゾイン誘導体から五硫化リン/塩化ニ
ッケルを用いるG.N.Schrauzer らの方法により合成する
ことができる[JOURNAL OF THE AMERICAN CHEMICAL SOC
IETY,87,(1965),1483-1489]。すなわち、ベンゾイン誘
導体を1,4-ジオキサンに溶解し、これに五硫化リンを加
え還流しながら反応させる。反応液を濾過し、濾液に塩
化ニッケル水溶液を加え、再び、還流する。反応沈澱物
を濾過し、これを精製することにより、一般式[1]及
び/または[2]で表されるビスジチオベンジルニッケ
ル錯体を合成することができる。
Bisdithiobenzylnickel complexes can generally be synthesized from the corresponding benzoin derivatives by the method of GN Schrauzer et al. Using phosphorus pentasulfide / nickel chloride [JOURNAL OF THE AMERICAN CHEMICAL SOC.
IETY, 87, (1965), 1483-1489]. That is, the benzoin derivative is dissolved in 1,4-dioxane, phosphorus pentasulfide is added to this, and the mixture is reacted under reflux. The reaction solution is filtered, an aqueous nickel chloride solution is added to the filtrate, and the mixture is refluxed again. By filtering the reaction precipitate and purifying it, the bisdithiobenzyl nickel complex represented by the general formula [1] and / or [2] can be synthesized.

【0012】ビスジチオベンジルニッケル錯体の置換基
は、原料となるベンゾイン誘導体の置換基に由来するた
め、錯体の合成は、ベンゾイン誘導体の合成が課題であ
る。ベンゾイン誘導体の合成の最も一般的な方法は、ベ
ンゾイン縮合と呼ばれる反応である。例えば、特開昭63
-227597 号公報、特開平3-148290号公報などに、ベンゾ
イン縮合を用いてベンゾイン誘導体を合成し、さらにビ
スジチオベンジルニッケル錯体を合成した例がある。こ
の反応は、ベンズアルデヒド誘導体2分子をシアンイオ
ン存在下反応させる方法であり、通常ベンゾインの両芳
香核に置換基を対称的に導入するのに適している。
Since the substituents of the bisdithiobenzylnickel complex are derived from the substituents of the benzoin derivative as a raw material, the synthesis of the complex requires the synthesis of the benzoin derivative. The most common method of synthesizing benzoin derivatives is a reaction called benzoin condensation. For example, JP-A-63
-227597 and Japanese Patent Laid-Open No. 3-148290 disclose examples in which a benzoin derivative is synthesized using benzoin condensation and then a bisdithiobenzylnickel complex is synthesized. This reaction is a method of reacting two molecules of a benzaldehyde derivative in the presence of a cyan ion, and is usually suitable for symmetrically introducing a substituent into both aromatic nuclei of benzoin.

【化16】2X-Ph-CHO → X-Ph-C(=O)-CH(OH)-Ph-X[Chemical 16] 2X-Ph-CHO → X-Ph-C (= O) -CH (OH) -Ph-X

【0013】しかしながら、一般式[1]あるいは
[2]で表されるビスジチオベンジルニッケル錯体を合
成するための対応するベンゾイン誘導体は、両芳香核の
片側のみ置換基を有している必要がある。ベンゾイン縮
合において、2種類のベンズアルデヒド誘導体(ベンズ
アルデヒドと置換ベンズアルデヒド)を原料とすれば合
成可能ではあるが、同種のベンズアルデヒド誘導体同士
の反応が避けられず、収率の点で問題が残る。本発明で
は、反応の簡便さおよび収率を考慮して、フェニルグリ
オキサ−ルを用いる方法で合成を行った。
However, the corresponding benzoin derivative for synthesizing the bisdithiobenzylnickel complex represented by the general formula [1] or [2] needs to have a substituent on only one side of both aromatic nuclei. . In the benzoin condensation, it can be synthesized by using two kinds of benzaldehyde derivatives (benzaldehyde and substituted benzaldehyde) as raw materials, but reaction between benzaldehyde derivatives of the same kind is unavoidable, and a problem remains in terms of yield. In the present invention, the synthesis was carried out by a method using phenylglyoxal in consideration of the simplicity of the reaction and the yield.

【0014】本発明の第2の発明は、一般式[1]及び
/または[2]で表されるビスジチオベンジルニッケル
錯体の合成の中間体として有用な新規なベンゾイン誘導
体に関する発明であって、すなわち前述の[3]〜[2
0]で表される、 4'- エチルベンゾイン [3] 4'-n- プロピルベンゾイン [4] 4'-iso- プロピルベンゾイン [5] 4'-n- ブチルベンゾイン [6] 4'-sec- ブチルベンゾイン [7] 4'-tert-ブチルベンゾイン [8] 4'-n- アミルベンゾインン [9] 4'-n- ヘキシルベンゾイン [10] 4'-n- ヘプチルベンゾイン [11] 4'-n- オクチルベンゾイン [12] 2',5'-ジメチルベンゾイン [13] 3',5'-ジメチルベンゾイン [14] 3',4'-ジメチルベンゾイン [15] 2',3',4',5'-テトラメチルベンゾイン [16] 2',5'-ジメトキシベンゾイン [17] 4'- フェニルベンゾイン [18] 4'- フェノキシベンゾイン [19] 4'- シクロヘキシルベンゾイン [20] に関する。
The second invention of the present invention relates to a novel benzoin derivative useful as an intermediate for the synthesis of the bisdithiobenzylnickel complex represented by the general formula [1] and / or [2], That is, the above [3] to [2
0] represented by 4'-ethylbenzoin [3] 4'-n-propylbenzoin [4] 4'-iso-propylbenzoin [5] 4'-n-butylbenzoin [6] 4'-sec- Butyl benzoin [7] 4'-tert-butyl benzoin [8] 4'-n-amyl benzoin [9] 4'-n-hexyl benzoin [10] 4'-n-heptyl benzoin [11] 4'-n -Octylbenzoin [12] 2 ', 5'-Dimethylbenzoin [13] 3', 5'-Dimethylbenzoin [14] 3 ', 4'-Dimethylbenzoin [15] 2', 3 ', 4', 5 ' -Tetramethylbenzoin [16] 2 ', 5'-dimethoxybenzoin [17] 4'-phenylbenzoin [18] 4'-phenoxybenzoin [19] 4'-cyclohexylbenzoin [20].

【0015】この[3]〜[20]の化合物を合成するに
は、フェニルグリオキサ−ルと置換ベンゼン誘導体をル
イス酸存在下で反応させる方法により得ることができ
る。すなわち、フェニルグリオキサ−ル及び置換ベンゼ
ン誘導体を、ジクロロメタン、ジクロロエタンのごとき
ハロゲン化炭化水素溶媒に溶解し、これに、三フッ化ホ
ウ素−ジエチルエ−テル錯体、四塩化チタンのようなル
イス酸を加え、室温で反応させる。反応混合物を酢酸エ
チル抽出し、抽出液を中和、水洗、乾燥後、抽出液から
溶媒を留去する。次に、反応生成物を再結晶させて精製
すればよい。
The compounds [3] to [20] can be synthesized by a method of reacting phenylglyoxal with a substituted benzene derivative in the presence of a Lewis acid. That is, phenylglyoxal and a substituted benzene derivative are dissolved in a halogenated hydrocarbon solvent such as dichloromethane and dichloroethane, and a Lewis acid such as boron trifluoride-diethyl ether complex and titanium tetrachloride is added thereto. , React at room temperature. The reaction mixture is extracted with ethyl acetate, the extract is neutralized, washed with water and dried, and then the solvent is distilled off from the extract. Next, the reaction product may be recrystallized and purified.

【0016】次に、本発明における第3の発明は、一般
式[1]及び/または[2]で表されるビスジチオベン
ジルニッケル錯体からなる近赤外線吸収材料に関する。
Next, a third invention of the present invention relates to a near infrared ray absorbing material comprising a bisdithiobenzylnickel complex represented by the general formula [1] and / or [2].

【0017】一般式[1]及び/または[2]で表され
るビスジチオベンジルニッケル錯体を溶媒に溶解し、そ
れを、紙に塗布し、近赤外吸収スペクトルの測定を行っ
た。その結果、本発明の錯体は、近赤外領域に強い吸収
を有し、その吸収極大波長は、 810nm〜 900nmであっ
た。また、紙に塗布した時、従来品では緑〜深緑色を呈
するのに対し、ビス(2,5-ジメチルジチオベンジル)-
ニッケル、ビス(2,3,4,5-テトラメチルジチオベンジ
ル)- ニッケルなどでは、青〜青緑色を呈し、白色度向
上により有利であった。
The bisdithiobenzylnickel complex represented by the general formula [1] and / or [2] was dissolved in a solvent, the solution was coated on paper, and the near infrared absorption spectrum was measured. As a result, the complex of the present invention had strong absorption in the near infrared region, and its absorption maximum wavelength was 810 nm to 900 nm. In addition, when applied to paper, conventional products show green to deep green, whereas bis (2,5-dimethyldithiobenzyl)-
Nickel, bis (2,3,4,5-tetramethyldithiobenzyl) -nickel, etc. exhibited blue to blue-green color, which was advantageous for improving whiteness.

【0018】ビスジチオベンジルニッケル錯体は、一重
項酸素のクエンチャ−として優れた特性を有することも
知られており、シアニン色素の光退色防止剤として利用
されている。本発明の錯体は、それ自身近赤外線吸収剤
であるが、シアニン色素などと併用して近赤外線吸収材
料としてもよい。
The bisdithiobenzylnickel complex is also known to have excellent properties as a quencher for singlet oxygen and is used as a photobleaching inhibitor for cyanine dyes. The complex of the present invention is a near infrared absorbing agent itself, but may be used as a near infrared absorbing material in combination with a cyanine dye or the like.

【0019】次に、本発明の第4の発明は、一般式
[1]及び/または[2]で表されるビスジチオベンジ
ルニッケル錯体、あるいは錯体からなる近赤外線吸収材
料を用いた光記録体に関する。
Next, a fourth invention of the present invention is an optical recording material using a near infrared absorbing material composed of a bisdithiobenzylnickel complex represented by the general formula [1] and / or [2], or a complex. Regarding

【0020】ここで、光記録体とは、(1) 近赤外線吸収
剤、あるいは近赤外線吸収材料と、(2) 顕色剤と、(3)
発色剤(該顕色剤と反応して発色する有機酸の金属塩、
無機酸の金属塩、もしくはロイコ染料)とを含有した記
録層を設けた記録体のことである。
Here, the optical recording material includes (1) a near infrared absorbing agent or a near infrared absorbing material, (2) a color developing agent, and (3)
Coloring agent (a metal salt of an organic acid that develops a color by reacting with the color developing agent,
A recording medium provided with a recording layer containing a metal salt of an inorganic acid or a leuco dye).

【0021】ここで用いられる顕色剤と発色剤として
は、感圧および感熱記録紙の分野で公知の化合物はいず
れも使用可能である。
As the color developer and the color former used here, any of the compounds known in the field of pressure-sensitive and heat-sensitive recording paper can be used.

【0022】また支持体としては、紙、合成紙、ラミネ
−ト紙、不織布、プラスチックシ−ト、填料練り込みプ
ラスチックフィルム、填料をコ−ティングしたプラスチ
ックフィルム、金属箔などが使用可能であり、またこれ
らを組み合わせた複合シ−トを任意に用いてもよい。
As the support, paper, synthetic paper, laminated paper, non-woven fabric, plastic sheet, plastic film kneaded with filler, plastic film coated with filler, metal foil, etc. can be used. Moreover, you may use arbitrarily the composite sheet which combined these.

【0023】一般式[1]及び/または[2]で表され
るビスジチオベンジルニッケル錯体を増感剤に含有さ
せ、感熱発色材料と共に、紙に塗布し、光記録体を作成
した。この記録体にレ−ザ−光を照射したところ、画像
濃度が高く、十分なコントラストのある印字が可能であ
った。また、[21]〜[42]の錯体は、白色度に関して
も従来のビスジチオベンジルニッケルに比べて改善する
ことができた。
A bisdithiobenzylnickel complex represented by the general formula [1] and / or [2] was contained in a sensitizer, which was coated on paper together with a heat-sensitive coloring material to prepare an optical recording material. When this recording medium was irradiated with laser light, the image density was high and printing with sufficient contrast was possible. The whiteness of the complexes [21] to [42] was also improved as compared with the conventional bisdithiobenzyl nickel.

【0024】次に、本発明の第5の発明は、一般式
[1]及び/または[2]で表されるビスジチオベンジ
ルニッケル錯体、あるいは錯体からなる近赤外線吸収材
料を透明樹脂に含有させたことを特徴とする近赤外線吸
収性樹脂ペレット、およびそのペレットを成型して得ら
れる近赤外線吸収性樹脂成型体に関する。
Next, in a fifth aspect of the present invention, a transparent resin contains a near-infrared absorbing material composed of a bisdithiobenzylnickel complex represented by the general formula [1] and / or [2] or a complex. The present invention relates to a near-infrared absorbing resin pellet, and a near-infrared absorbing resin molded body obtained by molding the pellet.

【0025】一般式[1]及び/または[2]で表され
るビスジチオベンジルニッケル錯体と透明樹脂のペレッ
トを押し出し機で溶融混合させ、近赤外線吸収性樹脂ペ
レットを作成した。そして、引き続いてそのペレットを
成型機で成型し、近赤外線吸収性樹脂成型体を作成し
た。
Near-infrared absorbing resin pellets were prepared by melting and mixing the bisdithiobenzylnickel complex represented by the general formula [1] and / or [2] and the transparent resin pellets with an extruder. Then, the pellets were subsequently molded by a molding machine to prepare a near-infrared absorbing resin molded body.

【0026】ここで用いられる透明樹脂としては、実質
的に透明であって可視部の吸収および散乱が少ない樹脂
であれば良く、具体的なものとしては、メタクリル酸エ
ステルなどのアクリル樹脂、ポリスチレン、ポリ塩化ビ
ニル、ポリカ−ボネ−ト、オレフィン樹脂、エポキシ樹
脂などが挙げられる。本発明の錯体は、分解温度が従来
の近赤外線吸収色素に比べて高いため、成型加工するの
に高温を必要とする樹脂、例えば従来の近赤外線吸収色
素を含有させることのできないポリカ−ボネ−トなどに
も含有させることが可能である。ただし、上記樹脂の1
種類に限らず、2種類以上の樹脂をブレンドしたものを
用いてもよい。
The transparent resin used here may be a resin which is substantially transparent and has little absorption and scattering in the visible region. Specific examples thereof include acrylic resins such as methacrylic acid ester, polystyrene, and the like. Examples thereof include polyvinyl chloride, polycarbonate, olefin resin and epoxy resin. Since the decomposition temperature of the complex of the present invention is higher than that of the conventional near-infrared absorbing dye, a resin which requires a high temperature for molding, such as a polycarbonate which cannot contain a conventional near-infrared absorbing dye. It is also possible to include it in the gall. However, 1 of the above resins
Not limited to the type, a blend of two or more types of resins may be used.

【0027】近赤外線吸収性樹脂成型体は、上記方法の
他に、樹脂単量体に一般式[1]及び/または[2]で
表されるビスジチオベンジルニッケル錯体もしくは錯体
からなる近赤外線吸収材料を含有させ、これを重合させ
ることでも得ることも可能である。例えば、メタクリル
酸メチルモノマ−に一般式[1]及び/または[2]で
表されるビスジチオベンジルニッケル錯体を溶解し、2,
2'- アゾビス(イソブチロニトリル)、2,2'- アゾビス
(2,4-ジメチルバレロニトリル)、過酸化ベンゾイルな
どの重合開始剤を用いてプレ重合後、引き続いて鋳型に
注入し、本重合を行い、近赤外線吸収性樹脂成型体を作
成することができる。
In addition to the above-mentioned method, the near-infrared absorbing resin molding is a near-infrared absorbing resin composed of a bisdithiobenzylnickel complex represented by the general formula [1] and / or [2] or a complex. It is also possible to obtain it by incorporating a material and polymerizing it. For example, a bisdithiobenzyl nickel complex represented by the general formula [1] and / or [2] is dissolved in a methyl methacrylate monomer,
After pre-polymerization using a polymerization initiator such as 2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, etc. Polymerization can be performed to form a near infrared absorbing resin molded body.

【0028】得られた樹脂成型体は、従来のものと比べ
て、特定波長領域 800nm〜 950nmに特徴的な吸収を有し
ており、近赤外線カットフィルタ−、半導体受光素子の
フィルタ−、半導体レ−ザ−用の保護メガネなどに有用
であり、また熱線吸収性のグレ−ジング材料、温室用材
料などにも適用が可能である。
The resin molding thus obtained has a characteristic absorption in a specific wavelength region of 800 nm to 950 nm as compared with the conventional resin molding, and has a near infrared cut filter, a semiconductor light receiving element filter, and a semiconductor laser. -It is useful as protective glasses for the same, and also applicable to glazing materials that absorb heat rays, materials for greenhouses, and the like.

【0029】次に、本発明の第6の発明は、一般式
[1]及び/または[2]で表されるビスジチオベンジ
ルニッケル錯体、あるいは錯体からなる近赤外線吸収材
料を含有することを特徴とする近赤外線吸収性ハ−ドコ
−ト剤、および該ハ−ドコ−ト剤を付着せしめ、加熱硬
化させることにより近赤外線吸収性ハ−ドコ−ト層を設
けた近赤外線吸収体に関する。
Next, a sixth invention of the present invention is characterized by containing a bisdithiobenzylnickel complex represented by the general formula [1] and / or [2], or a near infrared absorbing material comprising the complex. The present invention relates to a near-infrared absorbing hard coat agent, and a near-infrared absorbing body provided with a near-infrared absorbing hard coat layer by adhering the hard coat agent and curing by heating.

【0030】一般式[1]及び/または[2]で表され
るビスジチオベンジルニッケル錯体をハ−ドコ−ト剤に
溶解し、このハ−ドコ−ト剤を基材表面に塗布あるいは
浸漬などにより付着させ、加熱硬化させ近赤外線吸収体
を得た。
The bisdithiobenzylnickel complex represented by the general formula [1] and / or [2] is dissolved in a hard coating agent, and the hard coating agent is applied or dipped on the surface of the substrate. And was cured by heating to obtain a near infrared absorber.

【0031】ここで、ハ−ドコ−ト剤とは、主に3官能
あるいは4官能のオルガノアルコキシシランモノマ−の
酸または塩基による加水分解物もしくは部分縮合物であ
るポリシロキサンを、アルコ−ル類、ベンゼン、トルエ
ン、アセトン、メチルエチルケトン、メチルセロソルブ
などの溶剤に溶解し、硬化剤ならびに各種の添加剤を加
えて調整したゾルのことである。
Here, the hard coating agent is mainly a polysiloxane, which is a hydrolyzate or partial condensate of a trifunctional or tetrafunctional organoalkoxysilane monomer with an acid or a base, and an alcohol. , A sol prepared by dissolving in a solvent such as benzene, toluene, acetone, methyl ethyl ketone, and methyl cellosolve and adding a curing agent and various additives.

【0032】また、ハ−ドコ−ト剤を付着させるための
基材としては、紙、薄葉紙、合成紙、繊維、軟質金属、
天然あるいは合成樹脂のなどであり、基材の形態は、フ
ィルム、シ−ト、ボ−ド、布、あるいは特定の形態でも
よい。
The base material to which the hard coating agent is attached is paper, thin paper, synthetic paper, fiber, soft metal,
The base material may be a film, a sheet, a board, a cloth, or a specific shape such as a natural or synthetic resin.

【0033】得られた近赤外線吸収体も、近赤外線カッ
トフィルタ−、受光素子のフィルタ−、熱線吸収性のグ
レ−ジング材料、農業用フィルムなどに有用である。
The obtained near-infrared ray absorber is also useful as a near-infrared ray cut filter, a filter of a light receiving element, a heat ray absorbing glazing material, an agricultural film and the like.

【0034】次に、本発明の第7の発明は、一般式
[1]及び/または[2]で表されるビスジチオベンジ
ルニッケル錯体、あるいは錯体からなる近赤外線吸収材
料を含有することを特徴とする紫外線硬化樹脂を2枚の
透明ガラスの間に挟持し、紫外線照射により硬化して近
赤外線吸収性樹脂層としたことを特徴とする近赤外線吸
収性ガラス複合体に関する。
Next, a seventh invention of the present invention is characterized by containing a bisdithiobenzyl nickel complex represented by the general formula [1] and / or [2], or a near infrared absorbing material comprising the complex. The near-infrared absorbing glass composite is characterized in that the ultraviolet-curing resin described below is sandwiched between two transparent glasses and cured by ultraviolet irradiation to form a near-infrared absorbing resin layer.

【0035】一般式[1]及び/または[2]で表され
るビスジチオベンジルニッケル錯体を、(メタ)アクリ
ル系樹脂、(メタ)アルコキシランなどの紫外線硬化樹
脂に溶解し、2枚の透明ガラスの間に設けた一定のスペ
−スに充填し、透明ガラスを通して紫外線を照射し、紫
外線硬化樹脂部を硬化させ、近赤外線吸収性ガラス複合
体を得た。
The bisdithiobenzylnickel complex represented by the general formula [1] and / or [2] is dissolved in an ultraviolet curable resin such as a (meth) acrylic resin or a (meth) alkoxylane to prepare two transparent sheets. A near-infrared absorbing glass composite was obtained by filling a certain space provided between the glasses and irradiating it with ultraviolet rays through transparent glass to cure the ultraviolet curable resin part.

【0036】得られた近赤外線吸収性ガラス複合体も、
近赤外線カットフィルタ−、熱線吸収性のグレ−ジング
材料として適用できる。
The obtained near-infrared absorbing glass composite is also
It can be applied as a near-infrared cut filter and a heat ray absorbing glazing material.

【0037】[0037]

【実施例】【Example】

[実施例1](4'- エチルベンゾイン[3]) フェニルグリオキサ−ル一水和物(304mg,2mM)とエチル
ベンゼン(0.49ml,4mM) をジクロロエタン(4ml)に溶解
し、これに、四塩化チタン(0.33ml,3mM) を加え、室温
で2時間反応させた。反応混合物を酢酸エチルで抽出
し、抽出液を、飽和炭酸水素ナトリウム溶液および飽和
食塩水で洗浄、硫酸ナトリウムで乾燥後、濃縮すると黄
色のオイルが得られた。そのオイルを石油エ−テル/ジ
エチルエ−テルの混合溶媒系から結晶化させ、4'- エチ
ルベンゾインを357.1mg(74.0% yield)得た。生成物(ベ
ンゾイン化合物)の同定は、 1H-NMR により行った。基
本的には、フェニルグリオキサ−ルおよび置換ベンゼン
の官能基のピ−クと、生成するα−ヒドロキシケトン部
位のα−水素(δ=5.90付近)のピ−クを確認すること
により、生成を確認した。すなわち、4'- エチルベンゾ
インの場合、δ=7.39, 7.91に、フェニルグリオキサ−
ルの芳香核由来のピ−ク、δ=7.12, 7.24に、エチルベ
ンゼンの芳香核由来のピ−ク、δ=1.18, 2.58に、エチ
ルベンゼンのエチル基由来のピ−ク、δ=5.93に、α−
ヒドロキシケトン部位のα−水素のピ−クが認められる
ことから、4'- エチルベンゾインであると同定される。
また、IRスペクトルより、3417cm-1に、α−ヒドロキシ
ケトン部位の水酸基のピ−ク、1676cm-1に、ケトンのピ
−クも認められ、4'- エチルベンゾインの構造を指示し
ている。 融点: 120-121℃ NMR(CDCl3 , δ):1.18(3H,t,J=7.5),2.58(2H,m),4.50
(1H,broard d,J=3.0),5.93(1H,d,J=3.0),7.12(2H,d,J=
7.5),7.24(2H,d,J=7.5),7.39(2H,tt,J=7.5,1.5),7.51(1
H,tt,J=7.5,1.5),7.91(2H,dt,J=7.5,1.5) IR (ν, cm-1): 3417, 1676
[Example 1] (4'-Ethylbenzoin [3]) Phenylglyoxal monohydrate (304 mg, 2 mM) and ethylbenzene (0.49 ml, 4 mM) were dissolved in dichloroethane (4 ml). Titanium chloride (0.33 ml, 3 mM) was added, and the mixture was reacted at room temperature for 2 hours. The reaction mixture was extracted with ethyl acetate, the extract was washed with saturated sodium hydrogen carbonate solution and saturated brine, dried over sodium sulfate, and concentrated to give a yellow oil. The oil was crystallized from a mixed solvent system of petroleum ether / diethyl ether to obtain 357.1 mg (74.0% yield) of 4'-ethylbenzoin. The product (benzoin compound) was identified by 1 H-NMR. Basically, by confirming the peak of the functional group of phenylglyoxal and the substituted benzene and the peak of α-hydrogen (around δ = 5.90) of the α-hydroxyketone site to be produced, It was confirmed. That is, in the case of 4'-ethylbenzoin, δ = 7.39, 7.91, phenylglyoxa-
Peak derived from aromatic nucleus of benzene, δ = 7.12, 7.24, peak derived from aromatic nucleus of ethylbenzene, δ = 1.18, 2.58, peak derived from ethyl group of ethylbenzene, δ = 5.93, α −
Since α-hydrogen peak at the hydroxyketone site was observed, it was identified as 4'-ethylbenzoin.
Further, from the IR spectrum, to 3417cm -1, α- hydroxy ketone site of the hydroxyl groups of peak - click, the 1676Cm -1, peak ketone - click also observed, which indicates the structure of 4'-ethylbenzoin. Melting point: 120-121 ° C NMR (CDCl 3 , δ): 1.18 (3H, t, J = 7.5), 2.58 (2H, m), 4.50
(1H, broard d, J = 3.0), 5.93 (1H, d, J = 3.0), 7.12 (2H, d, J =
7.5), 7.24 (2H, d, J = 7.5), 7.39 (2H, tt, J = 7.5,1.5), 7.51 (1
H, tt, J = 7.5,1.5), 7.91 (2H, dt, J = 7.5,1.5) IR (ν, cm -1 ): 3417, 1676

【0038】[実施例2](4'-n- プロピルベンゾイン
[4]) フェニルグリオキサ−ル一水和物(304mg,2mM)とn-プロ
ピルベンゼン(0.56ml,4mM) を、ジクロロエタン(6ml)
に溶解し、これに、四塩化チタン(0.33ml,3mM) を加
え、室温で2時間反応させた。そして、実施例1と同様
の操作により、4'-n- プロピルベンゾインを、結晶とし
て369.9mg(71.9% yield)得た。 融点: 111-112℃ NMR(CDCl3 , δ) :4.52(1H,d,J=5.0),5.93(1H,d,J=5.
0),7.12(2H,d,J=7.5),7.23(2H,d,J=7.5),7.37(2H,tt,J=
7.5,1.5),7.50(1H,tt,J=7.5,1.5),7.91(2H,dt,J=7.5,1.
5) IR (ν, cm-1): 3416, 1675
[Example 2] (4'-n-propylbenzoin [4]) Phenylglyoxal monohydrate (304 mg, 2 mM) and n-propylbenzene (0.56 ml, 4 mM) were added to dichloroethane (6 ml). )
Was dissolved in, and titanium tetrachloride (0.33 ml, 3 mM) was added thereto, and the mixture was reacted at room temperature for 2 hours. Then, by the same operation as in Example 1, 369.9 mg (71.9% yield) of 4'-n-propylbenzoin as crystals was obtained. Melting point: 111-112 ° C NMR (CDCl 3 , δ): 4.52 (1H, d, J = 5.0), 5.93 (1H, d, J = 5.
0), 7.12 (2H, d, J = 7.5), 7.23 (2H, d, J = 7.5), 7.37 (2H, tt, J =
7.5,1.5), 7.50 (1H, tt, J = 7.5,1.5), 7.91 (2H, dt, J = 7.5,1.
5) IR (ν, cm -1 ): 3416, 1675

【0039】[実施例3](4'-iso- プロピルベンゾイ
ン[5]) フェニルグリオキサ−ル一水和物(304mg,2mM)とクメン
(0.56ml,4mM) を、ジクロロエタン(4ml)に溶解し、こ
れに、四塩化チタン(0.33ml,3mM) を加え、室温で4時
間反応させた。そして、実施例1と同様の操作により、
4'-iso- プロピルベンゾインを、結晶として300.6mg(5
9.6% yield)得た。 融点: 116-117℃ NMR(CDCl3 , δ): 1.18(3H,s),1.20(3H,s),2.80(1H,
m),5.93(1H,s),7.17(2H,d,J=8.5), 7.25(2H,d,J=8.5),
7.40(2H,tt,J=7.0,1.5),7.52(1H,tt,J=7.0,1.5),7.93(2
H,dt,J=7.0,1.5) IR (ν, cm-1): 3415, 1678
[Example 3] (4'-iso-propylbenzoin [5]) Phenylglyoxal monohydrate (304 mg, 2 mM) and cumene (0.56 ml, 4 mM) were dissolved in dichloroethane (4 ml). Then, titanium tetrachloride (0.33 ml, 3 mM) was added thereto, and the mixture was reacted at room temperature for 4 hours. Then, by the same operation as in Example 1,
30'mg (5 ') of 4'-iso-propylbenzoin as crystals
9.6% yield) was obtained. Melting point: 116-117 ° C NMR (CDCl 3 , δ): 1.18 (3H, s), 1.20 (3H, s), 2.80 (1H,
m), 5.93 (1H, s), 7.17 (2H, d, J = 8.5), 7.25 (2H, d, J = 8.5),
7.40 (2H, tt, J = 7.0,1.5), 7.52 (1H, tt, J = 7.0,1.5), 7.93 (2
H, dt, J = 7.0,1.5) IR (ν, cm -1 ): 3415, 1678

【0040】[実施例4](4'-n- ブチルベンゾイン
[6]) フェニルグリオキサ−ル一水和物(304mg,2mM)とn-ブチ
ルベンゼン(0.62ml,4mM) を、ジクロロエタン(4ml)に
溶解し、これに、四塩化チタン(0.33ml,3mM)を加え、
室温で1時間反応させた。そして、実施例1と同様の操
作により、4'-n- ブチルベンゾインを、結晶として362.
7mg(67.2% yield)得た。 融点: 75-77℃ NMR(CDCl3 , δ): 0.86-0.94(3H,m),1.22-1.38(2H,m),
1.48-1.62(2H,m),2.52-2.64(2H,m),5.92(1H,s),7.13(2
H,d,J=8.0),7.23(2H,d,J=8.0),7.39(2H,tt,J=7.0,1.5),
7.52(1H,tt,J=7.0,1.5),7.92(2H,dt,J=7.0,1.5) IR (ν, cm-1): 3419, 1677
[Example 4] (4'-n-butylbenzoin [6]) Phenylglyoxal monohydrate (304 mg, 2 mM) and n-butylbenzene (0.62 ml, 4 mM) were added to dichloroethane (4 ml). ), Titanium tetrachloride (0.33 ml, 3 mM) was added to this,
The reaction was carried out at room temperature for 1 hour. Then, by the same operation as in Example 1, 4'-n-butylbenzoin was obtained as a crystal.
7 mg (67.2% yield) was obtained. Melting point: 75-77 ° C NMR (CDCl 3 , δ): 0.86-0.94 (3H, m), 1.22-1.38 (2H, m),
1.48-1.62 (2H, m), 2.52-2.64 (2H, m), 5.92 (1H, s), 7.13 (2
H, d, J = 8.0), 7.23 (2H, d, J = 8.0), 7.39 (2H, tt, J = 7.0,1.5),
7.52 (1H, tt, J = 7.0,1.5), 7.92 (2H, dt, J = 7.0,1.5) IR (ν, cm -1 ): 3419, 1677

【0041】[実施例5](4'-sec- ブチルベンゾイン
[7]) フェニルグリオキサ−ル一水和物(304mg,2mM)とsec-ブ
チルベンゼン(0.62ml,4mM) を、ジクロロエタン(2ml)
に溶解し、これに、四塩化チタン(0.33ml,3mM) を加
え、室温で2.5 時間反応させた。そして、実施例1と同
様の操作により、4'-sec- ブチルベンゾインを、結晶と
して200.6mg(37.3% yield)得た。 融点: 77-78℃ NMR(CDCl3 , δ): 0.76(3H,t,J=7.5),1.17(3H,m),1.53
(2H,m),2.54(1H,m),5.93(1H,s),7.13(2H,d,J=8.0),7.24
(2H,d,J=8.0),7.40(2H,tt,J=7.0,1.5),7.52(1H,tt,J=7.
0,1.5),7.93(2H,dt,J=7.0,1.5) IR (ν, cm-1): 3416, 1676
Example 5 (4'-sec-Butylbenzoin [7]) Phenylglyoxal monohydrate (304 mg, 2 mM) and sec-butylbenzene (0.62 ml, 4 mM) were added to dichloroethane (2 ml). )
Was dissolved in, and titanium tetrachloride (0.33 ml, 3 mM) was added thereto, and the mixture was reacted at room temperature for 2.5 hours. Then, by the same operation as in Example 1, 200.6 mg (37.3% yield) of 4'-sec-butylbenzoin as crystals was obtained. Melting point: 77-78 ° C NMR (CDCl 3 , δ): 0.76 (3H, t, J = 7.5), 1.17 (3H, m), 1.53
(2H, m), 2.54 (1H, m), 5.93 (1H, s), 7.13 (2H, d, J = 8.0), 7.24
(2H, d, J = 8.0), 7.40 (2H, tt, J = 7.0,1.5), 7.52 (1H, tt, J = 7.
0,1.5), 7.93 (2H, dt, J = 7.0,1.5) IR (ν, cm -1 ): 3416, 1676

【0042】[実施例6](4'-tert-ブチルベンゾイン
[8]) フェニルグリオキサ−ル一水和物(304mg,2mM)とtert-
ブチルベンゼン(0.62ml,4mM) を、ジクロロエタン(2m
l)に溶解し、これに、四塩化チタン(0.33ml,3mM) を加
え、室温で2.5 時間反応させた。そして、実施例1と同
様の操作により、4'-tert-ブチルベンゾインを、結晶と
して216.9mg(40.5% yield)得た。 融点: 114-115℃ NMR(CDCl3 , δ): 1.26(9H,s),5.94(1H,s),7.25(2H,d
t,J=7.5,1.5),7.34(2H,dt,J=7.5,1.5),7.40(2H,tt,J=7.
5,1.5),7.52(1H,tt,J=7.5,1.5),7.94(2H,dt,J=7.5,1.5) IR (ν, cm-1): 3413, 1676
[Example 6] (4'-tert-butylbenzoin [8]) phenylglyoxal monohydrate (304 mg, 2 mM) and tert-
Butylbenzene (0.62ml, 4mM), dichloroethane (2m
It was dissolved in l), titanium tetrachloride (0.33 ml, 3 mM) was added thereto, and the mixture was reacted at room temperature for 2.5 hours. Then, by the same operation as in Example 1, 216.9 mg (40.5% yield) of 4'-tert-butylbenzoin was obtained as crystals. Melting point: 114-115 ° C NMR (CDCl 3 , δ): 1.26 (9H, s), 5.94 (1H, s), 7.25 (2H, d
t, J = 7.5,1.5), 7.34 (2H, dt, J = 7.5,1.5), 7.40 (2H, tt, J = 7.
5,1.5), 7.52 (1H, tt, J = 7.5,1.5), 7.94 (2H, dt, J = 7.5,1.5) IR (ν, cm -1 ): 3413, 1676

【0043】[実施例7](4'-n- アミルベンゾイン
[9]) フェニルグリオキサ−ル一水和物(304mg,2mM)とn-アミ
ルベンゼン(0.69ml,4mM) を、ジクロロエタン(3ml)に
溶解し、これに、四塩化チタン(0.33ml,3mM)を加え、
室温で2時間反応させた。そして、実施例1と同様の操
作により、4'-n- アミルベンゾインを、結晶として297.
1mg(52.6% yield)得た。 融点: 83-84℃ NMR(CDCl3 , δ): 0.88(3H,t,J=6.5),1.20-1.35(4H,
m),1.48-1.62(2H,m),2.53(2H,dd,J=8.0,7.5),5.92(1H,
s),7.13(2H,d,J=8.0),7.23(2H,d,J=8.0),7.38(2H,tt,J=
7.5,1.5),7.51(1H,tt,J=7.5,1.5),7.92(2H,dt,J=7.5,1.
5) IR (ν, cm-1): 3417, 1676
[Example 7] (4'-n-amylbenzoin [9]) Phenylglyoxal monohydrate (304 mg, 2 mM) and n-amylbenzene (0.69 ml, 4 mM) were added to dichloroethane (3 ml). ), Titanium tetrachloride (0.33 ml, 3 mM) was added to this,
The reaction was carried out at room temperature for 2 hours. Then, by the same operation as in Example 1, 4'-n-amylbenzoin as crystals 297.
1 mg (52.6% yield) was obtained. Melting point: 83-84 ° C NMR (CDCl 3 , δ): 0.88 (3H, t, J = 6.5), 1.20-1.35 (4H,
m), 1.48-1.62 (2H, m), 2.53 (2H, dd, J = 8.0,7.5), 5.92 (1H,
s), 7.13 (2H, d, J = 8.0), 7.23 (2H, d, J = 8.0), 7.38 (2H, tt, J =
7.5,1.5), 7.51 (1H, tt, J = 7.5,1.5), 7.92 (2H, dt, J = 7.5,1.
5) IR (ν, cm -1 ): 3417, 1676

【0044】[実施例8](4'-n- ヘキシルベンゾイン
[10]) フェニルグリオキサ−ル一水和物(304mg,2mM)とn-ヘキ
シルベンゼン(0.76ml,4mM) を、ジクロロエタン(3ml)
に溶解し、これに、四塩化チタン(0.33ml,3mM) を加
え、室温で1時間反応させた。そして、実施例1と同様
の操作により、4'-n- ヘキシルベンゾインを、結晶とし
て352.8mg(59.4% yield)得た。 融点: 87-88℃ NMR(CDCl3 , δ): 0.85(3H,t,J=7.0),1.20-1.32(6H,
m),1.48-1.64(2H,m),2.53(2H,t,J=7.5),4.50(1H,d,J=5.
0),5.92(1H,d,J=5.0),7.12(2H,d,J=8.0),7.23(2H,d,J=
8.0),7.40(2H,tt,J=7.5,1.5),7.52(1H,tt,J=7.5,1.5),
7.92(2H,dt,J=7.5,1.5) IR (ν, cm-1): 3414, 1678
Example 8 (4'-n-hexylbenzoin [10]) Phenylglyoxal monohydrate (304 mg, 2 mM) and n-hexylbenzene (0.76 ml, 4 mM) were added to dichloroethane (3 ml). )
Was dissolved in, and titanium tetrachloride (0.33 ml, 3 mM) was added thereto, and the mixture was reacted at room temperature for 1 hour. Then, by the same operation as in Example 1, 352.8 mg (59.4% yield) of 4'-n-hexylbenzoin was obtained as crystals. Melting point: 87-88 ° C NMR (CDCl 3 , δ): 0.85 (3H, t, J = 7.0), 1.20-1.32 (6H,
m), 1.48-1.64 (2H, m), 2.53 (2H, t, J = 7.5), 4.50 (1H, d, J = 5.
0), 5.92 (1H, d, J = 5.0), 7.12 (2H, d, J = 8.0), 7.23 (2H, d, J =
8.0), 7.40 (2H, tt, J = 7.5,1.5), 7.52 (1H, tt, J = 7.5,1.5),
7.92 (2H, dt, J = 7.5,1.5) IR (ν, cm -1 ): 3414, 1678

【0045】[実施例9](4'-n- ヘプチルベンゾイン
[11]) フェニルグリオキサ−ル一水和物(304mg,2mM)とn-ヘプ
チルベンゼン(0.82ml,4mM) を、ジクロロエタン(3ml)
に溶解し、これに、四塩化チタン(0.33ml,3mM) を加
え、室温で1時間反応させた。そして、実施例1と同様
の操作により、4'-n- ヘキシルベンゾインを、結晶とし
て386.7mg(61.5% yield)得た。 融点: 82-83℃ NMR(CDCl3 , δ): 0.86(3H,t,J=7.
0),1.18-1.32(8H,m),1.48-1.60(2H,m),2.54(2H,dd,J=8.
0,7.5),5.92(1H,s),7.13(2H,d,J=8.0),7.23(2H,d,J=8.
0),7.39(2H,tt,J=7.5,1.5),7.52(1H,tt,J=7.5,1.5),7.9
2(2H,dt,J=7.5,1.5) IR (ν, cm-1): 3416, 1677
Example 9 (4'-n-heptylbenzoin [11]) Phenylglyoxal monohydrate (304 mg, 2 mM) and n-heptylbenzene (0.82 ml, 4 mM) were added to dichloroethane (3 ml). )
Was dissolved in, and titanium tetrachloride (0.33 ml, 3 mM) was added thereto, and the mixture was reacted at room temperature for 1 hour. Then, by the same operation as in Example 1, 386.7 mg (61.5% yield) of 4'-n-hexylbenzoin was obtained as crystals. Melting point: 82-83 ° C NMR (CDCl 3 , δ): 0.86 (3H, t, J = 7.
0), 1.18-1.32 (8H, m), 1.48-1.60 (2H, m), 2.54 (2H, dd, J = 8.
0,7.5), 5.92 (1H, s), 7.13 (2H, d, J = 8.0), 7.23 (2H, d, J = 8.
0), 7.39 (2H, tt, J = 7.5,1.5), 7.52 (1H, tt, J = 7.5,1.5), 7.9
2 (2H, dt, J = 7.5,1.5) IR (ν, cm -1 ): 3416, 1677

【0046】[実施例10](4'-n- オクチルベンゾイン
[12]) フェニルグリオキサ−ル一水和物(608mg,4mM)とn-オク
チルベンゼン(1.77ml,8mM) を、ジクロロエタン(8ml)
に溶解し、これに、四塩化チタン(0.66ml,6mM) を加
え、室温で30分間反応させた。そして、実施例1と同様
の操作により、4'-n- オクチルベンゾインを、結晶とし
て810.0mg(62.6% yield)得た。 融点: 88-89℃ NMR(CDCl3 , δ): 0.86(3H,t,J=7.5),1.20-1.32(10H,
m),1.48-1.60(2H,m),2.54(2H,dd,J=8.0,7.5),5.92(1H,
s),7.12(2H,d,J=8.0),7.23(2H,d,J=8.0),7.38(2H,tt,J=
7.5,1.5),7.52(1H,tt,J=7.5,1.5),7.92(2H,dt,J=7.5,1.
5) IR (ν, cm-1): 3414, 1679
Example 10 (4'-n-octylbenzoin [12]) Phenylglyoxal monohydrate (608 mg, 4 mM) and n-octylbenzene (1.77 ml, 8 mM) were added to dichloroethane (8 ml). )
Was dissolved in water, titanium tetrachloride (0.66 ml, 6 mM) was added thereto, and the mixture was reacted at room temperature for 30 minutes. Then, by the same operation as in Example 1, 81 'mg (62.6% yield) of 4'-n-octylbenzoin was obtained as crystals. Melting point: 88-89 ° C NMR (CDCl 3 , δ): 0.86 (3H, t, J = 7.5), 1.20-1.32 (10H,
m), 1.48-1.60 (2H, m), 2.54 (2H, dd, J = 8.0,7.5), 5.92 (1H,
s), 7.12 (2H, d, J = 8.0), 7.23 (2H, d, J = 8.0), 7.38 (2H, tt, J =
7.5,1.5), 7.52 (1H, tt, J = 7.5,1.5), 7.92 (2H, dt, J = 7.5,1.
5) IR (ν, cm -1 ): 3414, 1679

【0047】[実施例11](2',5'-ジメチルベンゾイン
[13]) フェニルグリオキサ−ル一水和物(500mg,3.29mM) とp-
キシレン(0.59ml,4.79mM)を、ジクロロエタン(5ml)に
溶解し、これに、四塩化チタン(0.9ml,8.2mM)を加え、
室温で30分間攪拌した。そして、実施例1と同様の操作
により、2',5'-ジメチルベンゾインを、結晶として584.
7mg(73.9% yield)得た。 融点: 91-93℃ NMR(CDCl3 , δ): 2.18(3H,s),2.49(3H,s),4.54(1H,br
oard s),6.01(1H,s),6.82(1H,broard s),6.98(1H,broar
d d,J=8.0),7.09(1H,d,J=8.0),7.36(2H,tt,J=7.5,1.5),
7.49(1H,tt,J=7.5,1.5),7.81(2H,dt,J=7.5,1.5) IR (ν, cm-1): 3472, 1671
[Example 11] (2 ', 5'-Dimethylbenzoin [13]) Phenylglyoxal monohydrate (500 mg, 3.29 mM) and p-
Xylene (0.59 ml, 4.79 mM) is dissolved in dichloroethane (5 ml), titanium tetrachloride (0.9 ml, 8.2 mM) is added to it,
The mixture was stirred at room temperature for 30 minutes. Then, by the same operation as in Example 1, 2 ', 5'-dimethylbenzoin as crystals 584.
7 mg (73.9% yield) was obtained. Melting point: 91-93 ° C NMR (CDCl 3 , δ): 2.18 (3H, s), 2.49 (3H, s), 4.54 (1H, br
oard s), 6.01 (1H, s), 6.82 (1H, broard s), 6.98 (1H, broar
dd, J = 8.0), 7.09 (1H, d, J = 8.0), 7.36 (2H, tt, J = 7.5,1.5),
7.49 (1H, tt, J = 7.5,1.5), 7.81 (2H, dt, J = 7.5,1.5) IR (ν, cm -1 ): 3472, 1671

【0048】[実施例12](3',5'-ジメチルベンゾイン
[14] ) フェニルグリオキサ−ル一水和物(304mg,2mM)とm-キシ
レン(0.49ml,4mM) を、ジクロロエタン(4ml)に溶解
し、これに、四塩化チタン(0.33ml,3mM) を加え、室温
で30分間反応させた。そして、実施例1と同様の操作に
より、3',5'-ジメチルベンゾインを、淡黄色の油状物質
として363.2mg(75.3% yield)得た。 NMR(CDCl3 , δ): 2.25(3H,s),2.50(3H,s),4.34(1H,
s),6.01(1H,s),6.90(2H,s),7.02(1H,s),7.36(2H,tt,J=
7.0,1.5),7.49(1H,tt,J=7.0,1.5),7.82(2H,dt,J=7.0,1.
5) IR (ν, cm-1): 3456, 1682
Example 12 (3 ', 5'-Dimethylbenzoin [14]) Phenylglyoxal monohydrate (304 mg, 2 mM) and m-xylene (0.49 ml, 4 mM) were added to dichloroethane (4 ml). ), Titanium tetrachloride (0.33 ml, 3 mM) was added, and the mixture was reacted at room temperature for 30 minutes. Then, by the same operation as in Example 1, 363.2 mg (75.3% yield) of 3 ′, 5′-dimethylbenzoin was obtained as a pale yellow oily substance. NMR (CDCl 3 , δ): 2.25 (3H, s), 2.50 (3H, s), 4.34 (1H,
s), 6.01 (1H, s), 6.90 (2H, s), 7.02 (1H, s), 7.36 (2H, tt, J =
7.0,1.5), 7.49 (1H, tt, J = 7.0,1.5), 7.82 (2H, dt, J = 7.0,1.
5) IR (ν, cm -1 ): 3456, 1682

【0049】[実施例13](3',4'-ジメチルベンゾイン
[15]) フェニルグリオキサ−ル一水和物(304mg,2mM)とo-キシ
レン(0.49ml,4mM) を、ジクロロエタン(4ml)に溶解
し、これに、四塩化チタン(0.33ml,3mM) を加え、室温
で20分間反応させた。そして、実施例1と同様の操作に
より、3',4'-ジメチルベンゾインを、結晶として258.7m
g(54.0% yield)得た。 融点: 127-129℃ NMR(CDCl3 , δ): 2.19(3H,s),2.20(3H,s),4.47(1H,d,
J=6.2),5.89(1H,d,J=6.2),7.08-7.09(3H,m),7.39(2H,t
t,J=7.0,1.5),7.51(1H,tt,J=7.0,1.5),7.93(2H,dt,J=7.
0,1.5) IR (ν, cm-1): 3456, 1673
Example 13 (3 ', 4'-Dimethylbenzoin [15]) Phenylglyoxal monohydrate (304 mg, 2 mM) and o-xylene (0.49 ml, 4 mM) were added to dichloroethane (4 ml). ), Titanium tetrachloride (0.33 ml, 3 mM) was added, and the mixture was reacted at room temperature for 20 minutes. Then, by the same operation as in Example 1, 3 ', 4'-dimethylbenzoin as crystals was obtained at 258.7 m.
g (54.0% yield) was obtained. Melting point: 127-129 ° C NMR (CDCl 3 , δ): 2.19 (3H, s), 2.20 (3H, s), 4.47 (1H, d,
J = 6.2), 5.89 (1H, d, J = 6.2), 7.08-7.09 (3H, m), 7.39 (2H, t
t, J = 7.0,1.5), 7.51 (1H, tt, J = 7.0,1.5), 7.93 (2H, dt, J = 7.
0,1.5) IR (ν, cm -1 ): 3456, 1673

【0050】[実施例14](2',3',4',5'-テトラメチル
ベンゾイン[16]) フェニルグリオキサ−ル一水和物(304mg,2mM)と1,2,3,
4-テトラメチルベンゼン(0.60ml,4mM) を、ジクロロエ
タン(5ml)に溶解し、これに、四塩化チタン(0.33ml,3
mM) を加え、室温で10分間反応させた。そして、実施例
1と同様の操作により、2',3',4',5'-テトラメチルベン
ゾインを、結晶として378.2mg(70.7%yield)得た。 融点: 99-101℃ NMR(CDCl3 , δ): 2.12(3H,s),2.13(3H,s),2.22(3H,
s),2.44(3H,s),4.31(1H,broard s),6.07(1H,s),6.64(1
H,s),7.35(2H,tt,J=7.0,1.5),7.48(1H,tt,J=7.0,1.5),
7.83(2H,dt,J=7.0,1.5) IR (ν, cm-1): 3468, 1665
Example 14 (2 ', 3', 4 ', 5'-Tetramethylbenzoin [16]) Phenylglyoxal monohydrate (304 mg, 2 mM) and 1,2,3,
4-Tetramethylbenzene (0.60 ml, 4 mM) was dissolved in dichloroethane (5 ml), and this was added to titanium tetrachloride (0.33 ml, 3 mM).
mM) was added and reacted at room temperature for 10 minutes. Then, by the same operation as in Example 1, 378.2 mg (70.7% yield) of 2 ', 3', 4 ', 5'-tetramethylbenzoin as crystals was obtained. Melting point: 99-101 ° C NMR (CDCl 3 , δ): 2.12 (3H, s), 2.13 (3H, s), 2.22 (3H,
s), 2.44 (3H, s), 4.31 (1H, broard s), 6.07 (1H, s), 6.64 (1
H, s), 7.35 (2H, tt, J = 7.0,1.5), 7.48 (1H, tt, J = 7.0,1.5),
7.83 (2H, dt, J = 7.0,1.5) IR (ν, cm -1 ): 3468, 1665

【0051】[実施例15](2',5'-ジメトキシベンゾイ
ン[17]) フェニルグリオキサ−ル一水和物(152mg,1mM)とp-ジメ
トキシベンゼン(0.21mg,1.5mM) を、ジクロロエタン
(2ml)に溶解し、これに、四塩化チタン(0.33ml,3mM)
を加え、室温で4時間反応させた。そして、実施例1と
同様の操作により、2,5-ジメトキシベンゾインを、油状
物質として219.4mg(79.2% yield)得た。 NMR(CDCl3 , δ): 3.69(3H,s),3.82(3H,s),4.53(1H,br
oad s),6.23(1H,s),6.77(1H,d,J=8.5),6.82(1H,d,J=8.
5),7.36(2H,tt,J=7.5,1.5),7.50(1H,tt,J=7.5,1.5),7.9
4(2H,dt,J=7.5,1.5) IR (ν, cm-1): 3456, 1683
Example 15 (2 ', 5'-dimethoxybenzoin [17]) Phenylglyoxal monohydrate (152 mg, 1 mM) and p-dimethoxybenzene (0.21 mg, 1.5 mM) were added to dichloroethane. Dissolve in (2 ml), and add it to titanium tetrachloride (0.33 ml, 3 mM)
Was added and reacted at room temperature for 4 hours. Then, by the same procedure as in Example 1, 219.4 mg (79.2% yield) of 2,5-dimethoxybenzoin was obtained as an oily substance. NMR (CDCl 3 , δ): 3.69 (3H, s), 3.82 (3H, s), 4.53 (1H, br
oad s), 6.23 (1H, s), 6.77 (1H, d, J = 8.5), 6.82 (1H, d, J = 8.
5), 7.36 (2H, tt, J = 7.5,1.5), 7.50 (1H, tt, J = 7.5,1.5), 7.9
4 (2H, dt, J = 7.5,1.5) IR (ν, cm -1 ): 3456, 1683

【0052】[実施例16](4'- フェニルベンゾイン
[18]) フェニルグリオキサ−ル一水和物(200mg,1.31mM) とジ
フェニル(405mg,2.62mM) を、ジクロロエタン(5ml)に
溶解し、これに、四塩化チタン(0.15ml,1.31mM)を加
え、室温で20分間反応させた。そして、実施例1と同様
の操作により、4'- フェニルベンゾインを、結晶として
136.0mg(35.5% yield)得た。 融点: 150-151℃ NMR(CDCl3 , δ): 6.01(1H,s),7.33(2H,tt,J=7.0,1.
5),7.38-7.46(5H,m),7.51-7.57(5H,m),7.96(2H,dt,J=7.
0,1.5) IR (ν, cm-1): 3426, 1679
Example 16 (4'-Phenylbenzoin [18]) Phenylglyoxal monohydrate (200 mg, 1.31 mM) and diphenyl (405 mg, 2.62 mM) were dissolved in dichloroethane (5 ml). Then, titanium tetrachloride (0.15 ml, 1.31 mM) was added thereto, and the mixture was reacted at room temperature for 20 minutes. Then, by the same operation as in Example 1, 4'-phenylbenzoin was converted into crystals.
136.0 mg (35.5% yield) was obtained. Melting point: 150-151 ° C NMR (CDCl 3 , δ): 6.01 (1H, s), 7.33 (2H, tt, J = 7.0,1.
5), 7.38-7.46 (5H, m), 7.51-7.57 (5H, m), 7.96 (2H, dt, J = 7.
0,1.5) IR (ν, cm -1 ): 3426, 1679

【0053】[実施例17](4'- フェノキシベンゾイン
[19]) フェニルグリオキサ−ル一水和物(200mg,1.31mM) とジ
フェニルエ−テル(0.4ml,2.62mM) を、ジクロロエタン
(3ml)に溶解し、これに、四塩化チタン(0.07ml,0.66m
M)を加え、室温で1時間反応させた。そして、実施例1
と同様の操作により、4'- フェノキシベンゾインを、結
晶として331.2mg(80.7% yield)得た。 融点: 100-102℃ NMR(CDCl3 , δ): 5.94(1H,s),6.92(2H,dd,J=7.5,1.
0),6.97(2H,dd,J=6.5,1.0),7.10(1H,ddd,J=7.5,6.5,1.
0),7.27(2H,t,J=6.5),7.29(2H,d,J=6.5),7.31(2H,tt,J=
7.5,1.5),7.40(1H,tt,J=7.0,1.5),7.92(2H,dt,J=7.0,1.
5) IR (ν, cm-1): 3422, 1674
Example 17 (4'-phenoxybenzoin [19]) Phenylglyoxal monohydrate (200 mg, 1.31 mM) and diphenylether (0.4 ml, 2.62 mM) were added to dichloroethane (3 ml). ), Titanium tetrachloride (0.07ml, 0.66m
M) was added and reacted at room temperature for 1 hour. And Example 1
By the same operation as in the above, 331.2 mg (80.7% yield) of 4'-phenoxybenzoin was obtained as crystals. Melting point: 100-102 ° C NMR (CDCl 3 , δ): 5.94 (1H, s), 6.92 (2H, dd, J = 7.5,1.
0), 6.97 (2H, dd, J = 6.5,1.0), 7.10 (1H, ddd, J = 7.5,6.5,1.
0), 7.27 (2H, t, J = 6.5), 7.29 (2H, d, J = 6.5), 7.31 (2H, tt, J =
7.5,1.5), 7.40 (1H, tt, J = 7.0,1.5), 7.92 (2H, dt, J = 7.0,1.
5) IR (ν, cm -1 ): 3422, 1674

【0054】[実施例18](4'- シクロヘキシルベンゾ
イン[20]) フェニルグリオキサ−ル一水和物(304mg,2mM)とフェニ
ルシクロヘキシル(0.67ml,4mM) を、ジクロロエタン
(4ml)に溶解し、これに、四塩化チタン(0.33ml,3mM)
を加え、室温で1.5 時間反応させた。そして、実施例1
と同様の操作により、4'- シクロヘキシルベンゾイン
を、結晶として441.8mg(75.2% yield)得た。 融点: 139-140℃ NMR(CDCl3 , δ): 1.14-1.44(5H,m),1.66-1.88(6H,m),
4.48(1H,d,J=6.0),5.93(1H,d,J=6.0),7.13(2H,dd,J=7.
0,1.5),7.24(2H,dd,J=7.0,1.5),7.40(2H,tt,J=7.5,1.
5),7.52(1H,tt,J=7.5,1.5),7.93(2H,dt,J=7.5,1.5) IR (ν, cm-1): 3414, 1677
Example 18 (4'-Cyclohexylbenzoin [20]) Phenylglyoxal monohydrate (304 mg, 2 mM) and phenylcyclohexyl (0.67 ml, 4 mM) were dissolved in dichloroethane (4 ml). , To this, titanium tetrachloride (0.33ml, 3mM)
Was added and reacted at room temperature for 1.5 hours. And Example 1
By the same operation as in the above, 441.8 mg (75.2% yield) of 4'-cyclohexylbenzoin was obtained as crystals. Melting point: 139-140 ° C NMR (CDCl 3 , δ): 1.14-1.44 (5H, m), 1.66-1.88 (6H, m),
4.48 (1H, d, J = 6.0), 5.93 (1H, d, J = 6.0), 7.13 (2H, dd, J = 7.
0,1.5), 7.24 (2H, dd, J = 7.0,1.5), 7.40 (2H, tt, J = 7.5,1.
5), 7.52 (1H, tt, J = 7.5,1.5), 7.93 (2H, dt, J = 7.5,1.5) IR (ν, cm -1 ): 3414, 1677

【0055】[実施例19〜36]実施例 1〜18で合成した
ベンゾイン化合物(1当量)を1,4-ジオキサンに溶解
し、これに、五硫化二リン(3当量)を加え、還流しな
がら、2時間反応させた。そして、反応液を濾過し、濾
液に塩化ニッケル六水和物(0.5 当量)の水溶液を加
え、再び、2時間還流した。反応沈殿物を濾過し、これ
を塩化メチレンにより抽出、精製を行ない目的とするビ
スジチオベンジルニッケル錯体を得た。
[Examples 19 to 36] The benzoin compound (1 equivalent) synthesized in Examples 1 to 18 was dissolved in 1,4-dioxane, to which diphosphorus pentasulfide (3 equivalents) was added and refluxed. While reacting for 2 hours. Then, the reaction solution was filtered, an aqueous solution of nickel chloride hexahydrate (0.5 equivalent) was added to the filtrate, and the mixture was refluxed again for 2 hours. The reaction precipitate was filtered, extracted with methylene chloride and purified to obtain the desired bisdithiobenzylnickel complex.

【0056】[実施例37〜40]また、4'- メチルベンゾ
イン、2',4',6'- トリメチルベンゾイン、4'- メトキシ
ベンゾイン、4'- クロロベンゾインを原料として、各
々、[実施例19〜36]で示した方法と同様な方法で反応
を行い、対応するビスジチオベンジルニッケル錯体を得
た。
[Examples 37 to 40] In addition, 4'-methylbenzoin, 2 ', 4', 6'-trimethylbenzoin, 4'-methoxybenzoin, and 4'-chlorobenzoin were used as raw materials, respectively, and [Examples 19-36] and the reaction was carried out in the same manner as in the above-mentioned method to obtain the corresponding bisdithiobenzylnickel complex.

【0057】[実施例19〜40] で得られた錯体は、IRス
ペクトルおよびX線マイクロアナライザ−分析により、
生成を確認した。また、得られた錯体を塩化メチレンに
溶解し、これをWhatman 濾紙に滴下し、乾燥後、日本分
光 UVIDEC-590型近赤外自記分光光度計で近赤外吸収ス
ペクトルを測定した。 ビス(4-メチルジチオベンジル)- ニッケル[21] 収率: 12.2% IR (ν, cm-1): 1356, 1140, 884, 755, 695 X線マイクロアナライザ−分析: S/Ni=4.09 吸収極大波長: 840-850nm ビス(4-エチルジチオベンジル)- ニッケル[22] 収率 13.4% IR (ν, cm-1): 2950, 2864, 1358, 1140, 883, 755, 6
95 X線マイクロアナライザ−分析: S/Ni=4.38 吸収極大波長 825-835nm ビス(4-n-プロピルジチオベンジル)- ニッケル[23] 収率 6.7% IR (ν, cm-1): 2954, 2859, 1357, 1140, 883, 754, 6
92 X線マイクロアナライザ−分析: S/Ni=4.39 吸収極大波長 825-835nm ビス(4-iso-プロピルジチオベンジル)- ニッケル[2
4] 収率 11.4% IR (ν, cm-1): 2956, 2864, 1359, 1142, 884, 756, 6
93 X線マイクロアナライザ−分析: S/Ni=4.12 吸収極大波長 860-880nm ビス(4-n-ブチルジチオベンジル)- ニッケル[25] 収率 28.5% IR (ν, cm-1): 2951, 2856, 1359, 1141, 884, 753, 6
94 X線マイクロアナライザ−分析: S/Ni=4.39 吸収極大波長 830-845nm ビス(4-sec-ブチルジチオベンジル)- ニッケル[26] 収率 5.9% IR (ν, cm-1): 2958, 2864, 1358, 1140, 883, 754, 6
93 X線マイクロアナライザ−分析: S/Ni=4.39 吸収極大波長 870-880nm ビス(4-tert- ブチルジチオベンジル)- ニッケル[2
7] 収率 5.1% IR (ν, cm-1): 2957, 2862, 1356, 1195, 1141, 884,
755, 693 X線マイクロアナライザ−分析: S/Ni=4.24 吸収極大波長 870-880nm ビス(4-n-アミルジチオベンジル)- ニッケル[28] 収率 13.8% IR (ν, cm-1): 2922, 2855, 1359, 1141, 884, 754, 6
94 X線マイクロアナライザ−分析: S/Ni=4.18 吸収極大波長 875-885nm ビス(4-n-ヘキシルジチオベンジル)- ニッケル[29] 収率 13.5% IR (ν, cm-1): 2920, 2851, 1358, 1140, 883, 752, 6
92 X線マイクロアナライザ−分析: S/Ni=4.09 吸収極大波長 875-885nm ビス(4-n-ヘプチルジチオベンジル)- ニッケル[30] 収率 12.1% IR (ν, cm-1): 2921, 2852, 1360, 1142, 885, 753, 6
94 X線マイクロアナライザ−分析: S/Ni=4.35 吸収極大波長 870-880nm ビス(4-n-オクチルジチオベンジル)- ニッケル[31] 収率 11.4% IR (ν, cm-1): 2922, 2851, 1359, 1141, 884, 751, 6
92 X線マイクロアナライザ−分析: S/Ni=4.27 吸収極大波長 850-860nm ビス(2,5-ジメチルジチオベンジル)- ニッケル[32] 収率 14.3% IR (ν, cm-1): 1363, 1147, 1114, 856, 754, 692 X線マイクロアナライザ−分析: S/Ni=4.06 吸収極大波長 825-835nm ビス(3,5-ジメチルジチオベンジル)- ニッケル[33] 収率 3.3% IR (ν, cm-1): 1357, 1142, 1029, 867, 757, 686 X線マイクロアナライザ−分析: S/Ni=4.03 吸収極大波長 850-860nm ビス(3,4-ジメチルジチオベンジル)- ニッケル[34] 収率 13.5% IR (ν, cm-1): 1343, 1140, 1021, 860, 751, 695 X線マイクロアナライザ−分析: S/Ni=4.07 吸収極大波長 880-890nm ビス(2,4,6-トリメチルジチオベンジル)- ニッケル
[35] 収率 3.2% IR (ν, cm-1): 1345, 870, 754, 695 X線マイクロアナライザ−分析: S/Ni=4.16 吸収極大波長 870-880nm ビス(2,3,4,5-テトラメチルジチオベンジル)- ニッケ
ル[36] 収率 11.2% IR (ν, cm-1): 2866, 1362, 1190, 880, 759, 694 X線マイクロアナライザ−分析: S/Ni=4.02 吸収極大波長 850-860nm ビス(4-メトキシジチオベンジル)- ニッケル[37] 収率 1.1% IR (ν, cm-1): 1360, 1220, 752, 693 X線マイクロアナライザ−分析: S/Ni=4.36 吸収極大波長 850-860nm ビス(2,5-ジメトキシジチオベンジル)- ニッケル[3
8] 収率 18.6% IR (ν, cm-1): 2929, 1361, 1221, 1113, 939, 760, 6
96 X線マイクロアナライザ−分析: S/Ni=4.26 吸収極大波長 870-880nm ビス(4-フェニルジチオベンジル)- ニッケル[39] 収率 5.7% IR (ν, cm-1): 1477, 1357, 1138, 879, 757, 693 X線マイクロアナライザ−分析: S/Ni=4.49 吸収極大波長 830-840nm ビス(4-フェノキシジチオベンジル)- ニッケル[40] 収率 22.1% IR (ν, cm-1): 1486, 1358, 1236, 1137, 868, 750, 6
92 X線マイクロアナライザ−分析: S/Ni=4.28 吸収極大波長 835-845nm ビス(4-シクロヘキシルジチオベンジル)- ニッケル
[41] 収率 17.6% IR (ν, cm-1): 2919, 2848, 1357, 1140, 885, 754, 6
93 X線マイクロアナライザ−分析: S/Ni=4.42 吸収極大波長 845-855nm ビス(4-クロロジチオベンジル)- ニッケル[42] 収率 5.6% IR (ν, cm-1): 1357, 1140, 1093, 884, 755, 695 X線マイクロアナライザ−分析: S/Ni=3.96 吸収極大波長 865-875nm
The complexes obtained in [Examples 19-40] were analyzed by IR spectrum and X-ray microanalyzer analysis.
Confirmed generation. Further, the obtained complex was dissolved in methylene chloride, dropped on Whatman filter paper, dried, and the near infrared absorption spectrum was measured with a JASCO UVIDEC-590 type near infrared recording spectrophotometer. Bis (4-methyldithiobenzyl) -nickel [21] Yield: 12.2% IR (ν, cm -1 ): 1356, 1140, 884, 755, 695 X-ray microanalyzer-Analysis: S / Ni = 4.09 absorption maximum Wavelength: 840-850nm Bis (4-ethyldithiobenzyl) -nickel [22] Yield 13.4% IR (ν, cm -1 ): 2950, 2864, 1358, 1140, 883, 755, 6
95 X-ray microanalyzer-analysis: S / Ni = 4.38 absorption maximum wavelength 825-835nm Bis (4-n-propyldithiobenzyl) -nickel [23] Yield 6.7% IR (ν, cm -1 ): 2954, 2859 , 1357, 1140, 883, 754, 6
92 X-ray microanalyzer-analysis: S / Ni = 4.39 absorption maximum wavelength 825-835nm bis (4-iso-propyldithiobenzyl) -nickel [2
4] Yield 11.4% IR (ν, cm -1 ): 2956, 2864, 1359, 1142, 884, 756, 6
93 X-ray microanalyzer-analysis: S / Ni = 4.12 absorption maximum wavelength 860-880nm Bis (4-n-butyldithiobenzyl) -nickel [25] Yield 28.5% IR (ν, cm -1 ): 2951, 2856 , 1359, 1141, 884, 753, 6
94 X-ray microanalyzer-analysis: S / Ni = 4.39 absorption maximum wavelength 830-845nm Bis (4-sec-butyldithiobenzyl) -nickel [26] Yield 5.9% IR (ν, cm -1 ): 2958, 2864 , 1358, 1140, 883, 754, 6
93 X-ray Microanalyzer-Analysis: S / Ni = 4.39 Absorption maximum wavelength 870-880nm Bis (4-tert-butyldithiobenzyl) -nickel [2
7] Yield 5.1% IR (ν, cm -1 ): 2957, 2862, 1356, 1195, 1141, 884,
755, 693 X-ray microanalyzer-analysis: S / Ni = 4.24 absorption maximum wavelength 870-880nm Bis (4-n-amyldithiobenzyl) -nickel [28] Yield 13.8% IR (ν, cm -1 ): 2922 , 2855, 1359, 1141, 884, 754, 6
94 X-ray microanalyzer-Analysis: S / Ni = 4.18 Absorption maximum wavelength 875-885nm Bis (4-n-hexyldithiobenzyl) -nickel [29] Yield 13.5% IR (ν, cm -1 ): 2920, 2851 , 1358, 1140, 883, 752, 6
92 X-ray microanalyzer-analysis: S / Ni = 4.09 absorption maximum wavelength 875-885nm Bis (4-n-heptyldithiobenzyl) -nickel [30] Yield 12.1% IR (ν, cm -1 ): 2921, 2852 , 1360, 1142, 885, 753, 6
94 X-ray microanalyzer-analysis: S / Ni = 4.35 absorption maximum wavelength 870-880nm Bis (4-n-octyldithiobenzyl) -nickel [31] Yield 11.4% IR (ν, cm -1 ): 2922, 2851 , 1359, 1141, 884, 751, 6
92 X-ray microanalyzer-analysis: S / Ni = 4.27 absorption maximum wavelength 850-860nm Bis (2,5-dimethyldithiobenzyl) -nickel [32] Yield 14.3% IR (ν, cm -1 ): 1363, 1147 , 1114, 856, 754, 692 X-ray microanalyzer-Analysis: S / Ni = 4.06 absorption maximum wavelength 825-835nm Bis (3,5-dimethyldithiobenzyl) -nickel [33] Yield 3.3% IR (ν, cm -1 ): 1357, 1142, 1029, 867, 757, 686 X-ray microanalyzer-Analysis: S / Ni = 4.03 absorption maximum wavelength 850-860nm Bis (3,4-dimethyldithiobenzyl) -nickel [34] Yield 13.5% IR (ν, cm -1 ): 1343, 1140, 1021, 860, 751, 695 X-ray microanalyzer-Analysis: S / Ni = 4.07 Absorption maximum wavelength 880-890nm Bis (2,4,6-trimethyldithio) Benzyl) -Nickel [35] Yield 3.2% IR (ν, cm -1 ): 1345, 870, 754, 695 X-ray microanalyzer-Analysis: S / Ni = 4.16 Absorption maximum wavelength 870-880nm Bis (2,3 , 4,5-Tetramethyldithio Njiru) - Nickel [36] Yield 11.2% IR (ν, cm -1 ): 2866, 1362, 1190, 880, 759, 694 X -ray microanalyzer - Analysis: S / Ni = 4.02 absorption maximum wavelength 850-860nm bis (4-Methoxydithiobenzyl) -nickel [37] Yield 1.1% IR (ν, cm -1 ): 1360, 1220, 752, 693 X-ray microanalyzer-Analysis: S / Ni = 4.36 Absorption maximum wavelength 850-860nm Bis (2,5-dimethoxydithiobenzyl) -nickel [3
8] Yield 18.6% IR (ν, cm -1 ): 2929, 1361, 1221, 1113, 939, 760, 6
96 X-ray microanalyzer-analysis: S / Ni = 4.26 absorption maximum wavelength 870-880nm Bis (4-phenyldithiobenzyl) -nickel [39] Yield 5.7% IR (ν, cm -1 ): 1477, 1357, 1138 , 879, 757, 693 X-ray microanalyzer-analysis: S / Ni = 4.49 absorption maximum wavelength 830-840nm bis (4-phenoxydithiobenzyl) -nickel [40] yield 22.1% IR (ν, cm -1 ): 1486, 1358, 1236, 1137, 868, 750, 6
92 X-ray microanalyzer-analysis: S / Ni = 4.28 absorption maximum wavelength 835-845nm Bis (4-cyclohexyldithiobenzyl) -nickel [41] Yield 17.6% IR (ν, cm -1 ): 2919, 2848, 1357 , 1140, 885, 754, 6
93 X-ray microanalyzer-analysis: S / Ni = 4.42 absorption maximum wavelength 845-855nm Bis (4-chlorodithiobenzyl) -nickel [42] Yield 5.6% IR (ν, cm -1 ): 1357, 1140, 1093 , 884, 755, 695 X-ray microanalyzer-Analysis: S / Ni = 3.96 absorption maximum wavelength 865-875nm

【0058】[実施例41]下記配合の電子供与性無色染
料分散液(A液)と電子受容性酸性分散液(B液)およ
びビス(4-エチルジチオベンジル)−ニッケルを含有さ
せた光吸収性増感剤分散液(C液)を、各々サンドグラ
インダ−で1時間湿式摩砕した。次に、A液 7.3部、B
液30部、C液20部に、シリカの25%水分散液25部と10%
PVA水溶液10部を混合し、塗布液とした。この塗布液
を、坪量60g/m2 の上質紙上に、メイヤ−バ−を用い
て、 5g/m2 塗布乾燥し光記録体を得た。 A液:電子供与性無色染料分散液 ODB 2.0 部 10%PVA水溶液 3.4 部 水 1.9 部 *ODB=3-ジエチルアミノ-6- メチル-7- アニリノフ
ルオラン B液:電子受容性酸性分散液 ビスフェノ−ルA 6.0 部 10%PVA水溶液 15.0 部 水 9.0 部 C液:光吸収性増感剤分散液 パラベンジルビフェニル(PBB)49部に、ビス(4-エ
チルジチオベンジル)−ニッケル 1部を加え、100 〜15
0 ℃に加熱して、溶融混合した。サンドグラインダ−で
粉砕し、光吸収性増感剤とした。 光吸収性増感剤 4.0 部 10%PVA水溶液 10.0 部 水 6.0 部 こうして作成した光記録体に、半導体レ−ザ−ヘッドと
集光レンズを組み合わせた装置で、レ−ザ−光を照射し
たところ、印字することができた。また、この光記録体
の反射率を、東洋精機TYPE-D型ハンタ−反射率計により
測定したところ、73.01%であった。
[Example 41] Light absorption containing an electron-donating colorless dye dispersion (solution A), an electron-accepting acidic dispersion (solution B) and bis (4-ethyldithiobenzyl) -nickel having the following formulations The sex sensitizer dispersion liquid (C liquid) was wet-milled with a sand grinder for 1 hour. Next, Liquid A 7.3 parts, B
Liquid 30 parts, liquid C 20 parts, silica 25% aqueous dispersion 25 parts and 10%
A coating solution was prepared by mixing 10 parts of a PVA aqueous solution. This coating liquid was coated on a wood free paper having a basis weight of 60 g / m 2 at 5 g / m 2 using a Mayer bar and dried to obtain an optical recording material. Liquid A: Electron-donating colorless dye dispersion ODB 2.0 parts 10% PVA aqueous solution 3.4 parts Water 1.9 parts * ODB = 3-diethylamino-6-methyl-7-anilinofluorane Liquid B: electron-accepting acidic dispersion bispheno- Le A 6.0 parts 10% PVA aqueous solution 15.0 parts Water 9.0 parts C liquid: light absorbing sensitizer dispersion liquid To 49 parts of parabenzyl biphenyl (PBB), 1 part of bis (4-ethyldithiobenzyl) -nickel was added, ~ 15
The mixture was heated to 0 ° C. and melt-mixed. It was crushed with a sand grinder to obtain a light absorbing sensitizer. Light absorptive sensitizer 4.0 parts 10% PVA aqueous solution 10.0 parts Water 6.0 parts Laser irradiation is applied to the optical recording medium thus prepared with a device combining a semiconductor laser head and a condenser lens. , Was able to print. The reflectance of this optical recording material was measured with a Toyo Seiki TYPE-D type Hunter-reflectometer, and it was 73.01%.

【0059】[比較例1]従来知られているジチオベン
ジルニッケル錯体を塩化メチレンに溶解し、前述の実施
例19〜41と同様に、Whatman 濾紙に滴下し、乾燥後、近
赤外吸収スペクトルを測定した。 ビス(ジチオベンジル)ニッケル 吸収極大波長 850-870nm ビス(4,4'- ジメチルジチオベンジル)ニッケル 吸収極大波長 875-890nm ビス(4-ジメチルアミノジチオベンジル)ニッケル 吸収極大波長 1060-1070nm ビス(4-ジエチルアミノジチオベンジル)ニッケル 吸収極大波長 1100-1120nm
[Comparative Example 1] A conventionally known dithiobenzylnickel complex was dissolved in methylene chloride, dropped on Whatman filter paper in the same manner as in Examples 19 to 41, and dried to obtain a near infrared absorption spectrum. It was measured. Bis (dithiobenzyl) nickel absorption maximum wavelength 850-870nm Bis (4,4'-dimethyldithiobenzyl) nickel absorption maximum wavelength 875-890nm Bis (4-dimethylaminodithiobenzyl) nickel absorption maximum wavelength 1060-1070nm Bis (4- Diethylaminodithiobenzyl) nickel absorption maximum wavelength 1100-1120nm

【0060】[比較例2]ビス(ジチオベンジル)ニッ
ケルを用いて、[実施例41]と同様な方法で光記録体を
作成した。この光記録体の反射率を測定したところ、7
1.88%であった。
[Comparative Example 2] An optical recording medium was prepared in the same manner as in [Example 41] using bis (dithiobenzyl) nickel. When the reflectance of this optical recording material was measured, it was 7
It was 1.88%.

【0061】[実施例42]ビス(4-エチルジチオベンジ
ル)−ニッケル(0.05部)とポリスチレンペレット(商
品名:エスチレン(新日鉄化学製) 99.95部)を混合
し、押し出し機でビスジチオベンジルニッケル錯体を含
有したペレットを製造した。得られたペレットを成型機
で成型し、厚さ 2.0mmの樹脂板を得た。
[Example 42] Bis (4-ethyldithiobenzyl) -nickel (0.05 parts) and polystyrene pellets (trade name: Estyrene (manufactured by Nippon Steel Chemical Co., Ltd., 99.95 parts)) were mixed, and a bisdithiobenzylnickel complex was prepared using an extruder. Was produced. The obtained pellets were molded with a molding machine to obtain a 2.0 mm thick resin plate.

【0062】[実施例43]ビス(4-エチルジチオベンジ
ル)−ニッケル(0.05部)とポリカ−ボネ−トペレット
(商品名:タフロン(出光石油化学製) 99.95 部)を
混合し、押し出し機でビスジチオベンジルニッケル錯体
を含有したペレットを製造した。得られたペレットを成
型機で成型し、厚さ 2.0mmの樹脂板を得た。
[Example 43] Bis (4-ethyldithiobenzyl) -nickel (0.05 parts) and polycarbonate pellets (trade name: Taflon (manufactured by Idemitsu Petrochemical) 99.95 parts) were mixed and bis-screwed by an extruder. Pellets containing the dithiobenzyl nickel complex were prepared. The obtained pellets were molded with a molding machine to obtain a 2.0 mm thick resin plate.

【0063】[実施例44]ビス(4-エチルジチオベンジ
ル)−ニッケル(0.02部)をメタクリル酸メチルモノマ
−(99.98 部)に溶解した。この反応液に、2,2'- アゾ
ビスイソブチロニトリル(1部)を加え70℃で1時間処
理し、シロップを得た。このシロップを、常法に従っ
て、2枚のガラス板で作った鋳型に注入し、70℃で3時
間処理し、引き続いて 100℃で1時間処理後、冷却し鋳
型より剥離して、厚さ約 2.6mmの樹脂板を得た。
Example 44 Bis (4-ethyldithiobenzyl) -nickel (0.02 parts) was dissolved in methyl methacrylate monomer (99.98 parts). To this reaction solution, 2,2'-azobisisobutyronitrile (1 part) was added and treated at 70 ° C for 1 hour to obtain a syrup. This syrup was poured into a mold made of two glass plates according to the usual method, treated at 70 ° C for 3 hours, then treated at 100 ° C for 1 hour, cooled, and then peeled off from the mold. A 2.6 mm resin plate was obtained.

【0064】[実施例45]ビス(4-n-プロピルジチオベ
ンジル)- ニッケル(0.01部)をシリコ−ンハ−ドコ−
ト剤(商品名:Si-801A (大八化学工業所製)(200
部))に溶解させ、近赤外線吸収性ハ−ドコ−ト組成物
とした。この組成物をポリエステルフィルム(商品名:
AKクリヤフィルム(きもと製))にメイヤ−バ−で塗布
し、風乾後、オ−ブンで 150℃で2分間加熱処理をし
て、近赤外線吸収性フィルムを得た。
Example 45 Bis (4-n-propyldithiobenzyl) -nickel (0.01 parts) was added to a silicone hardcode.
Agent (trade name: Si-801A (manufactured by Daihachi Chemical Industry Co., Ltd.) (200
Part)) and dissolved into a near-infrared absorbing hard coat composition. A polyester film (trade name:
AK clear film (manufactured by Kimoto) was coated with a Mayer bar, air-dried, and then heat-treated in an oven at 150 ° C. for 2 minutes to obtain a near-infrared absorbing film.

【0065】[実施例46]紫外線硬化樹脂(商品名:UVE
KOL-S20( UCB社製) (200部))に、ビス(4-エチルジ
チオベンジル)−ニッケル(0.01部)を溶解し、ガラス
複合体用の近赤外線吸収性中間層溶液を調整し、この中
間層溶液を1.5mm のスペ−サ−を組み込んだ2枚のガラ
ス板の間に注入して、400Wの水銀灯で30分間照射し、硬
化させてガラス複合体を得た。
[Example 46] UV curable resin (trade name: UVE
KOL-S20 (manufactured by UCB) (200 parts) was dissolved with bis (4-ethyldithiobenzyl) -nickel (0.01 parts) to prepare a near infrared absorbing intermediate layer solution for a glass composite. The intermediate layer solution was poured between two glass plates incorporating a 1.5 mm spacer and irradiated with a 400 W mercury lamp for 30 minutes to be cured to obtain a glass composite.

【0066】[0066]

【発明の効果】本発明の錯体は、紙に塗布した状態にお
いて、例えば、本発明のビス(4-エチルジチオベンジ
ル)- ニッケル、ビス(4-n-プロピルジチオベンジル)
- ニッケル、ビス(3,5-ジメチルジチオベンジル)- ニ
ッケルなどでは、その吸収極大波長を 830nm附近に有し
ており、半導体レ−ザ−( 830nm) の感受性材料として
従来のものより優れている。また、白色度に関しても、
従来のものより優れており、光記録体用の近赤外線吸収
剤、もしくは近赤外線吸収材料として非常に有望な化合
物である。
The complex of the present invention is, for example, bis (4-ethyldithiobenzyl) -nickel or bis (4-n-propyldithiobenzyl) of the present invention when applied to paper.
-Nickel, bis (3,5-dimethyldithiobenzyl)-Nickel, etc., has an absorption maximum wavelength near 830 nm, which is superior to conventional materials as a sensitive material for semiconductor lasers (830 nm). . Also regarding whiteness,
It is superior to conventional ones and is a very promising compound as a near-infrared absorbing agent or a near-infrared absorbing material for optical recording materials.

【0067】また、本発明の錯体は、透明樹脂に含有さ
せて近赤外線吸収性樹脂成型体に、ハ−ドコ−ト剤に含
有させることにより近赤外線吸収性ハ−ドコ−ト層を設
けた近赤外線吸収体に、あるいは紫外線硬化樹脂に含有
させることにより近赤外線吸収性ガラス複合体とするこ
ともできる。これらの近赤外線吸収体は、 800〜950nm
に特徴的な吸収を有しており、光記録体としての用途以
外に、例えば、近赤外線カットフィルタ−、受光素子の
フィルタ−、半導体レ−ザ−用の保護メガネ、ゴ−グ
ル、目を熱線から守るメガネ、サングラス、熱線遮蔽フ
ィルム、農業用フィルム、温室用材料、光ディスクなど
へ適用することもできる。また、一重項酸素のクエンチ
ャ−として優れていることを利用して、酸化防止剤、耐
候剤、色素の褪色防止剤としても有効である。
The complex of the present invention is incorporated into a transparent resin to form a near-infrared absorbing resin molding, and a near-infrared absorbing hard coat layer is provided by incorporating the complex into a hard coating agent. A near-infrared absorbing glass composite can be obtained by incorporating it into the near-infrared absorbing material or an ultraviolet curable resin. These near infrared absorbers are 800-950nm
In addition to its use as an optical recording medium, it has, for example, a near-infrared cut filter, a light-receiving element filter, protective glasses for semiconductor lasers, goggles, and eyes. It can also be applied to eyeglasses, sunglasses, heat ray shielding films, agricultural films, greenhouse materials, optical disks, etc. that protect against heat rays. Further, it is also effective as an antioxidant, a weather resistance agent, and an anti-fading agent for dyes by utilizing its excellent quencher for singlet oxygen.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例42および実施例43で得られた近赤外線
吸収性樹脂成型体の透過スペクトル
FIG. 1 is a transmission spectrum of a near-infrared absorbing resin molded body obtained in Examples 42 and 43.

【図2】 実施例45で得られた近赤外線吸収性フィルム
の透過スペクトル
FIG. 2 Transmission spectrum of near-infrared absorbing film obtained in Example 45

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C09K 3/00 105 8517−4H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C09K 3/00 105 8517-4H

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 一般式[1]及び/または[2]で表さ
れる新規なビスジチオベンジルニッケル錯体。 【化1】 (式中、R〜Rは、同一または異なるものであっ
て、置換または非置換のアルキル基、シクロアルキル
基、アルコキシ基、アリ−ル基、アリロキシ基、ハロゲ
ン原子、又は水素原子を表し、置換または非置換のアミ
ノ基およびアルコキシアルコキシ基は除く。ただし、R
〜Rすべてが水素原子の場合は除く。)
1. A novel bisdithiobenzyl nickel complex represented by the general formula [1] and / or [2]. [Chemical 1] (In the formula, R 1 to R 5 are the same or different and represent a substituted or unsubstituted alkyl group, cycloalkyl group, alkoxy group, aryl group, aryloxy group, halogen atom, or hydrogen atom. , A substituted or unsubstituted amino group and an alkoxyalkoxy group are excluded, provided that R
Except when 1 to R 5 are all hydrogen atoms. )
【請求項2】 請求項1記載のビスジチオベンジルニッ
ケル錯体を含有する近赤外線吸収材料。
2. A near-infrared absorbing material containing the bisdithiobenzylnickel complex according to claim 1.
【請求項3】 下式[3]〜[20]で表される新規なベ
ンゾイン誘導体。 【化2】 【化3】 【化4】 【化5】 【化6】
3. A novel benzoin derivative represented by the following formulas [3] to [20]. [Chemical 2] [Chemical 3] [Chemical 4] [Chemical 5] [Chemical 6]
【請求項4】 請求項1記載のビスジチオベンジルニッ
ケル錯体、あるいは請求項2記載の近赤外線吸収材料を
含有することを特徴とする光記録体。
4. An optical recording medium comprising the bisdithiobenzylnickel complex according to claim 1 or the near-infrared absorbing material according to claim 2.
【請求項5】 請求項1記載のビスジチオベンジルニッ
ケル錯体、あるいは請求項2記載の近赤外吸収材料を含
有することを特徴とする近赤外線吸収性樹脂ペレット。
5. A near-infrared absorbing resin pellet containing the bisdithiobenzylnickel complex according to claim 1 or the near-infrared absorbing material according to claim 2.
【請求項6】 請求項1記載のビスジチオベンジルニッ
ケル錯体、あるいは請求項2記載の近赤外吸収材料を含
有することを特徴とする近赤外線吸収性樹脂成型体。
6. A near infrared absorptive resin molded product comprising the bisdithiobenzyl nickel complex according to claim 1 or the near infrared absorptive material according to claim 2.
【請求項7】 請求項1記載のビスジチオベンジルニッ
ケル錯体、あるいは請求項2記載の近赤外吸収材料を含
有することを特徴とする近赤外線吸収性ハ−ドコ−ト
剤。
7. A near-infrared absorbing hard coating agent comprising the bisdithiobenzylnickel complex according to claim 1 or the near-infrared absorbing material according to claim 2.
【請求項8】 基材の表面に、請求項7記載の近赤外線
吸収性ハ−ドコ−ト剤を付着せしめ、加熱硬化させるこ
とにより近赤外線吸収性ハ−ドコ−ト層を設けた近赤外
線吸収体。
8. A near infrared ray having a near infrared ray absorbing hard coat layer formed by adhering the near infrared ray absorbing hard coat agent according to claim 7 on the surface of a substrate and curing by heating. Absorber.
【請求項9】 2枚の透明ガラスの間に紫外線硬化樹脂
を挟持したガラス複合体において、紫外線硬化樹脂に請
求項1記載のビスジチオベンジルニッケル錯体、あるい
は請求項2記載の近赤外吸収材料を溶解し、この紫外線
硬化樹脂を紫外線照射により硬化し、ついで加熱処理し
て近赤外線吸収性樹脂層としたことを特徴とする近赤外
線吸収性ガラス複合体。
9. A glass composite in which an ultraviolet curable resin is sandwiched between two transparent glasses, wherein the ultraviolet curable resin comprises the bisdithiobenzyl nickel complex according to claim 1 or the near infrared absorbing material according to claim 2. Is dissolved, and the ultraviolet curable resin is cured by irradiation with ultraviolet rays, and then heat treated to form a near infrared ray absorbing resin layer, which is a near infrared ray absorbing glass composite.
JP5076732A 1992-04-02 1993-04-02 New bisdithiobenzylnickel complex and benzoin derivative Pending JPH0641168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5076732A JPH0641168A (en) 1992-04-02 1993-04-02 New bisdithiobenzylnickel complex and benzoin derivative

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-80646 1992-04-02
JP8064692 1992-04-02
JP5076732A JPH0641168A (en) 1992-04-02 1993-04-02 New bisdithiobenzylnickel complex and benzoin derivative

Publications (1)

Publication Number Publication Date
JPH0641168A true JPH0641168A (en) 1994-02-15

Family

ID=26417866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5076732A Pending JPH0641168A (en) 1992-04-02 1993-04-02 New bisdithiobenzylnickel complex and benzoin derivative

Country Status (1)

Country Link
JP (1) JPH0641168A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665675A (en) * 1994-07-21 1997-09-09 Nippon Paper Industries Co., Ltd. Aminobenzenesulfonamide derivative and recording medium using the same
WO2007018065A1 (en) * 2005-08-10 2007-02-15 Toyo Ink Mfg. Co., Ltd. Near-infrared absorbing material and use thereof
JP2010006766A (en) * 2008-06-27 2010-01-14 Nippon Oil Corp New organometal complex compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665675A (en) * 1994-07-21 1997-09-09 Nippon Paper Industries Co., Ltd. Aminobenzenesulfonamide derivative and recording medium using the same
WO2007018065A1 (en) * 2005-08-10 2007-02-15 Toyo Ink Mfg. Co., Ltd. Near-infrared absorbing material and use thereof
JP2010006766A (en) * 2008-06-27 2010-01-14 Nippon Oil Corp New organometal complex compound

Similar Documents

Publication Publication Date Title
JP2941061B2 (en) Photochromic substituted naphthopyran compounds
US6022496A (en) Chromene compound
JP5325243B2 (en) Naphthopyran annelated at C5-C6, its preparation and compositions containing them and (co) polymer matrix
JP4157239B2 (en) Chromene compounds
ES2343850T3 (en) CHROME COMPOUND AND ARTICLES THAT INCLUDE THE SAME.
CN103354813B (en) Chromene compounds
JP3801386B2 (en) Chromene compounds
JP4424981B2 (en) Chromene compounds
JPH11514669A (en) New photochromic indeno-condensed naphthopyran
JPH07504191A (en) Photochromic naphthopyrans
JPH06510519A (en) Photochromic naphthopyran compounds
JP2003064354A (en) Photochromic material
JP2000516254A (en) New substituted naphthopyrans
EP1054010A1 (en) Chromene compound
WO2003082849A1 (en) Chromene compound
US20150034887A1 (en) Chromene compound
JPH0641168A (en) New bisdithiobenzylnickel complex and benzoin derivative
JP2001192378A (en) Chromene compound
US20020080451A1 (en) Novel naphthopyran compounds, photoresponsive compositions and lenses
EP0564282B1 (en) Bis-dithiobenzilnickel complexes for use in near-infrared absorbing materials and benzoin derivatives as intermediates therefor
JP2015137259A (en) Benzochromene compound, photochromic agent and photochromic optical material
US4882428A (en) Azaporphyrin compounds
JP3526929B2 (en) Perfluorocyclopentene derivative, photochromic material and optical recording medium
JP2004210657A (en) Pyran compound
JP6489461B2 (en) Pentaarylbiimidazole compound and method for producing the compound