JPH0635840B2 - CO reheat gas turbine combined cycle power generation method - Google Patents

CO reheat gas turbine combined cycle power generation method

Info

Publication number
JPH0635840B2
JPH0635840B2 JP1235242A JP23524289A JPH0635840B2 JP H0635840 B2 JPH0635840 B2 JP H0635840B2 JP 1235242 A JP1235242 A JP 1235242A JP 23524289 A JP23524289 A JP 23524289A JP H0635840 B2 JPH0635840 B2 JP H0635840B2
Authority
JP
Japan
Prior art keywords
gas
turbine
carbon dioxide
dioxide gas
reheat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1235242A
Other languages
Japanese (ja)
Other versions
JPH03100331A (en
Inventor
啓弘 田所
茂 安川
一雄 竹矢
元 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Mitsubishi Heavy Industries Ltd
Japan Atomic Energy Agency
Original Assignee
Toshiba Corp
Japan Atomic Energy Research Institute
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Japan Atomic Energy Research Institute, Mitsubishi Heavy Industries Ltd filed Critical Toshiba Corp
Priority to JP1235242A priority Critical patent/JPH0635840B2/en
Publication of JPH03100331A publication Critical patent/JPH03100331A/en
Publication of JPH0635840B2 publication Critical patent/JPH0635840B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はCOレヒートガスタービン・コンバインドサイ
クルによる発電方法に関する。
TECHNICAL FIELD The present invention relates to a power generation method using a CO reheat gas turbine combined cycle.

(従来の技術) ガスタービンによる発電方法として、例えば、燃焼酸化
剤として空気、燃料として石油類、石炭類、天然ガス等
の化石燃料を使用して作動流体である蒸気を発生させ、
この蒸気を利用して蒸気タービンで発電する方法が知ら
れている。この場合、プラントの熱効率は例えば発電端
で約43%程度になっている。
(Prior Art) As a power generation method by a gas turbine, for example, air is used as a combustion oxidant, petroleum, coal, fossil fuel such as natural gas is used as a fuel to generate steam as a working fluid,
A method is known in which this steam is used to generate power in a steam turbine. In this case, the thermal efficiency of the plant is about 43% at the power generation end, for example.

(発明が解決しようとする課題) しかし、前記発電方法では、燃焼酸化剤として空気を使
用しているため、環境汚染物質としての窒素酸化物であ
るNOが発生して、これが燃焼排ガスとして大気中に放
出され、また燃料として化石燃料を使用しているため、
硫黄酸化物であるSOが発生して、これが燃焼排ガスと
して同様に大気中に放出されて、大気汚染の原因となる
欠点があった。またNOを除去するための脱硝設備や、
SOを除去するための脱硫設備が必要で設備コストがか
かる欠点があった。
(Problems to be Solved by the Invention) However, in the above-described power generation method, since air is used as the combustion oxidizer, NO X , which is a nitrogen oxide as an environmental pollutant, is generated, and this is used as combustion exhaust gas in the atmosphere. Since it is released inside and uses fossil fuels as fuel,
There is a drawback that SO X , which is a sulfur oxide, is generated, and this is also released into the atmosphere as combustion exhaust gas, which causes air pollution. Also, denitration equipment to remove NO X ,
There is a drawback that a desulfurization facility for removing SO X is required and the facility cost is high.

また、オープンサイクルでは地球の温室効果の原因とな
る二酸化炭素ガス(CO)も燃焼排ガスとして大気中に
排出される欠点があった。
In the open cycle, carbon dioxide gas (CO 2 ) that causes the earth's greenhouse effect is also discharged into the atmosphere as combustion exhaust gas.

本発明は上記従来技術の問題点を解決するためになされ
たもので、その目的とするところは、窒素酸化物である
NOや硫黄酸化物であるSO等の大気汚染物質が発生せ
ず、また温室効果の原因となる二酸化炭素ガス(CO
を大気中に放出せずに有効利用を図ることが出来るCO
レヒートガスタービン・コンバインドサイクルによる発
電方法を提供することである。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and the object thereof is a nitrogen oxide.
Carbon dioxide gas (CO 2 ) that does not generate air pollutants such as NO X and SO X , which is a sulfur oxide, and causes the greenhouse effect
CO that can be effectively used without releasing CO into the atmosphere
An object of the present invention is to provide a power generation method using a reheat gas turbine combined cycle.

(課題を解決するための手段) 上記目的を達成する本発明のCOレヒートガスタービン
・コンバインドサイクルによる発電方法では、酸素ガス
(O2)を燃焼酸化剤に用いて一酸化炭素ガス(CO)を燃焼
させて二酸化炭素ガス(CO)を生成し、前記二酸化炭
素ガス(CO)を作動流体として循環させて利用してC
Oレヒートガスタービンで発電することを特徴としてい
る。
(Means for Solving the Problems) In the power generation method by the CO reheat gas turbine combined cycle of the present invention which achieves the above object, oxygen gas (O 2 ) is used as a combustion oxidant and carbon monoxide gas (CO) is used. the by burning to produce carbon dioxide gas (CO 2), C utilized by circulating the carbon dioxide gas (CO 2) as the working fluid
It is characterized by generating electricity with an O reheat gas turbine.

また、酸素ガス(O2)を燃焼酸化剤に用いて一酸化炭素
ガス(CO)を燃焼させて二酸化炭素ガス(CO)を生成
し、前記二酸化炭素ガス(CO)を作動流体として利用
してCOレヒートガスタービンで発電した後、前記二酸
化炭素ガスの排熱を利用して蒸気タービンで発電し、こ
の後前記二酸化炭素ガスの一部を前記燃焼生成ガスの生
成に再利用するために循環させる一方、残部を化学プラ
ント用原材料として利用することを特徴としている。
Further, by using oxygen gas (O 2 ) as a combustion oxidant, carbon monoxide gas (CO) is burned to generate carbon dioxide gas (CO 2 ), and the carbon dioxide gas (CO 2 ) is used as a working fluid. In order to generate power by the CO reheat gas turbine and then generate power by the steam turbine by using the exhaust heat of the carbon dioxide gas, and then reuse a part of the carbon dioxide gas for generating the combustion product gas. It is characterized by using the balance as a raw material for a chemical plant while circulating the same.

(作用) 上記手段によれば、窒素酸化物NOの発生源である空気
を燃焼酸化剤として用いる代わりに酸素ガス(O2)を使
用し、また硫黄酸化物SOXの発生源である化石燃料の代
わりに一酸化炭素ガス(CO)を使用して、大気汚染をな
くす一方、二酸化炭素ガス(CO)を循環させ、また一
部を化学プラント用原材料として使用することにより大
気中への放出をなくしている。
(Operation) According to the above means, oxygen gas (O 2 ) is used instead of using air, which is a generation source of nitrogen oxide NO X , as a combustion oxidant, and fossil that is a generation source of sulfur oxide SO X. Carbon monoxide gas (CO) is used instead of fuel to eliminate air pollution, while carbon dioxide gas (CO 2 ) is circulated, and part of it is used as a raw material for chemical plants. Eliminating emissions.

(実施例) 以下本発明の実施例について説明する。(Examples) Examples of the present invention will be described below.

第1図は本発明のCOレヒートガスタービン・コンバイ
ンドサイクルによる発電方法を実施するための装置のシ
ステム構成を示す説明図である。図中符号1はCOレヒ
ートガスタービン、2は排熱回収蒸気発生器、3は蒸気
タービンである。
FIG. 1 is an explanatory diagram showing a system configuration of an apparatus for carrying out a power generation method by a CO reheat gas turbine combined cycle of the present invention. In the figure, reference numeral 1 is a CO reheat gas turbine, 2 is an exhaust heat recovery steam generator, and 3 is a steam turbine.

前記COレヒートガスタービン1は、一酸化炭素ガス
(CO)を燃焼酸化剤である酸素ガス(O2)で燃焼して二
酸化炭素ガス(CO)を生成する燃焼器4と、この燃焼
器4からの二酸化炭素ガスを作動流体として発電する高
圧タービン5と、この高圧タービン5から排出された二
酸化炭素ガスを作動流体として発電する中圧タービン6
と、この中圧タービン6から排出された二酸化炭素ガス
を混ぜて一酸化炭素ガス(CO)を酸素ガス(O2)で燃焼
して二酸化炭素ガス(CO)を生成する再燃焼器7と、
この再燃焼器7からの二酸化炭素ガスを作動流体として
発電する低圧タービン8とから構成されている。
The CO reheat gas turbine 1 includes a combustor 4 that combusts carbon monoxide gas (CO) with oxygen gas (O 2 ) that is a combustion oxidant to generate carbon dioxide gas (CO 2 ), and this combustor. High pressure turbine 5 for generating electric power by using carbon dioxide gas from 4 as a working fluid, and medium pressure turbine 6 for generating electric power by using carbon dioxide gas discharged from the high pressure turbine 5 as a working fluid.
If a re-combustor 7 to produce carbon dioxide gas (CO 2) by burning carbon monoxide gas (CO) and oxygen gas mixed with carbon dioxide gas discharged this in from pressure turbine 6 (O 2) ,
It is composed of a low pressure turbine 8 for generating electric power using the carbon dioxide gas from the recombustor 7 as a working fluid.

また前記排熱回収蒸気発生装置2は、前記蒸気タービン
3の作動流体である蒸気を発生するために前記低圧ター
ビン8から排出された二酸化炭素ガスから排熱を回収す
る一方、前記低圧タービン8から排出された若干量の残
存一酸化炭素ガスと酸素ガスを最適の反応温度領域で酸
化触媒により反応させて二酸化炭素ガスにするものであ
る。
Further, the exhaust heat recovery steam generator 2 recovers exhaust heat from the carbon dioxide gas exhausted from the low pressure turbine 8 in order to generate steam which is a working fluid of the steam turbine 3, while A small amount of residual carbon monoxide gas and oxygen gas discharged are reacted with an oxidation catalyst in an optimum reaction temperature region to produce carbon dioxide gas.

また前記蒸気タービン3は、前記排熱回収蒸気発生器2
において前記低圧タービン8から排出された二酸化炭素
ガスと熱交換して得た過熱蒸気を作動流体として発電す
る第1タービン9と第2タービン10とから構成されて
いる。
Further, the steam turbine 3 is provided with the exhaust heat recovery steam generator 2
In the above, the first turbine 9 and the second turbine 10 are configured to generate electric power by using superheated steam obtained by exchanging heat with the carbon dioxide gas discharged from the low pressure turbine 8 as a working fluid.

尚、第1図中11は二酸化炭素ガスが循環するサイクル
配管で、低圧コンプレッサ12、高圧コンプレッサ1
3、アキュムレータ14、前置冷却器15、中間冷却器
16が配置されている。また17は蒸気が循環するサイ
クル配管で、復水器18、給水ポンプ19等が配置され
ている。
Reference numeral 11 in FIG. 1 denotes a cycle pipe through which carbon dioxide gas circulates, and includes a low pressure compressor 12 and a high pressure compressor 1.
3, an accumulator 14, a precooler 15, and an intercooler 16 are arranged. Further, 17 is a cycle pipe through which steam circulates, and a condenser 18, a water supply pump 19 and the like are arranged.

次に前記装置を利用して本発明のCOレヒートガスター
ビン・コンバインドサイクルによる発電方法の一実施例
を説明する。
Next, an embodiment of a power generation method by the CO reheat gas turbine combined cycle of the present invention using the above apparatus will be described.

燃焼器4、再燃焼器7により生成された二酸化炭素ガス
は高圧タービン4、中圧タービン6、低圧タービン8で
作動流体として利用された後、一部はメタノール製造プ
ロセス等に使用され、残部は再び作動流体として使用さ
れる。
The carbon dioxide gas generated by the combustor 4 and the recombustor 7 is used as a working fluid in the high-pressure turbine 4, the intermediate-pressure turbine 6, and the low-pressure turbine 8, and then part of it is used for the methanol production process and the rest is the rest. It is used again as a working fluid.

サイクル管11を循環する二酸化炭素ガスはまず高圧コ
ンプレッサ10で加圧された後、燃焼器4に送られる。
燃焼器4では前記高圧コンプレッサ10で加圧された二
酸化炭素ガスを混ぜせ加熱し、一酸化炭素ガス(CO)を燃
焼酸化剤である酸素ガス(O2)で燃焼して二酸化炭素ガ
ス(CO)を生成する。
The carbon dioxide gas circulating in the cycle pipe 11 is first pressurized by the high-pressure compressor 10 and then sent to the combustor 4.
In the combustor 4, the carbon dioxide gas pressurized by the high-pressure compressor 10 is mixed and heated, and the carbon monoxide gas (CO) is burned with the oxygen gas (O 2 ) which is a combustion oxidant to generate carbon dioxide gas (CO 2 ). 2 ) is generated.

そして燃焼器4を出た二酸化炭素ガスは高温、高圧状態
の作動流体として高圧タービン5に送られて膨張し、タ
ービン5を回転して発電を行う(発電量60MW程
度)。
Then, the carbon dioxide gas discharged from the combustor 4 is sent to the high pressure turbine 5 as a working fluid in a high temperature and high pressure state and expanded, and the turbine 5 is rotated to generate power (a power generation amount of about 60 MW).

そして高圧タービン5を出た二酸化炭素ガスは再度作動
流体として中圧タービン6に送られて膨張し、タービン
6を回転して発電を行う(発電量53MW程度)。中圧
タービン6を出た二酸化炭素ガスは再燃焼器7に送ら
れ、再燃焼器7で新たに生成される二酸化炭素ガスと混
合されて加熱された後、作動流体として低圧タービン8
に送られて膨張し、タービン8を回転して発電を行う
(発電量184MW程度)。
Then, the carbon dioxide gas discharged from the high-pressure turbine 5 is again sent as a working fluid to the intermediate-pressure turbine 6 to be expanded, and the turbine 6 is rotated to generate power (a power generation amount of about 53 MW). The carbon dioxide gas discharged from the intermediate pressure turbine 6 is sent to the recombustor 7, mixed with carbon dioxide gas newly generated in the recombustor 7 and heated, and then the low pressure turbine 8 as a working fluid.
And is expanded to rotate the turbine 8 to generate power (a power generation amount of about 184 MW).

低圧タービン8を出た作動流体である二酸化炭素ガスは
排熱回収蒸気発生器2に送られ、ここでサイクル管11
を循環する飽和水を加熱して熱交換する。この排熱回収
蒸気発生器2では、二酸化炭素ガスと飽和水との間で熱
交換する他に、作動流体中に含まれる若干の残存の一酸
化炭素ガスと酸素ガスを最適反応温度領域において酸化
触媒により反応して二酸化炭素ガスとする。
Carbon dioxide gas, which is the working fluid that has exited the low-pressure turbine 8, is sent to the exhaust heat recovery steam generator 2, where the cycle pipe 11
The saturated water circulating in the tank is heated to exchange heat. In this exhaust heat recovery steam generator 2, in addition to heat exchange between carbon dioxide gas and saturated water, some residual carbon monoxide gas and oxygen gas contained in the working fluid are oxidized in the optimum reaction temperature region. It reacts with a catalyst to produce carbon dioxide gas.

前記排熱回収蒸気発生器2を出た二酸化炭素ガスは10
0%と純度が高いため、一部はメタノール製造プロセス
等に利用され、残部は前置冷却器15で例えば冷却され
た後、COレヒートガスタービン1によって回転駆動す
る低圧コンプレッサ12で加圧される。低圧コンプレッ
サ12で加圧された二酸化炭素ガスは中間冷却器16で
冷却された後、同じくCOレヒートガスタービン1で回
転駆動する高圧コンプレッサ13に送られる。
The carbon dioxide gas leaving the exhaust heat recovery steam generator 2 is 10
Since it has a high purity of 0%, a part of it is used in a methanol manufacturing process and the like, and the rest is cooled by the precooler 15, for example, and then pressurized by the low pressure compressor 12 that is rotationally driven by the CO reheat gas turbine 1. It The carbon dioxide gas pressurized by the low-pressure compressor 12 is cooled by the intercooler 16 and then sent to the high-pressure compressor 13 which is also rotationally driven by the CO reheat gas turbine 1.

そして前述の如く高圧コンプレッサ13で加圧された
後、燃焼器4に送り込まれ、再び作動流体として利用さ
れる。
After being pressurized by the high-pressure compressor 13 as described above, it is sent to the combustor 4 and used again as a working fluid.

一方、前記排熱回収蒸気発生装置2で加熱された過熱蒸
気は作動流体として第1タービン9に送られて膨張し、
タービン9を回転して発電を行い(発電量14MW程
度)、そして再び前記排熱回収蒸気発生器2で加熱され
てから第2タービン10に送られて膨張し、タービン1
0を回転して発電(発電量41MW程度)を行う。
On the other hand, the superheated steam heated by the exhaust heat recovery steam generator 2 is sent to the first turbine 9 as a working fluid and expanded,
The turbine 9 is rotated to generate electric power (a power generation amount of about 14 MW), and is heated again by the exhaust heat recovery steam generator 2 and then sent to the second turbine 10 to be expanded and the turbine 1
0 is rotated to generate power (power generation amount of about 41 MW).

第2タービン10から出た蒸気は復水器18で復水して
飽和水となり、給水ポンプ19により排熱回収蒸気発生
器3に送られ、ここで二酸化炭素ガスと熱交換して蒸気
になり、再び作動流体として第1タービン9、第2ター
ビン10に送られる。
The steam discharged from the second turbine 10 is condensed in the condenser 18 to become saturated water, and is sent to the exhaust heat recovery steam generator 3 by the water supply pump 19, where it is heat-exchanged with carbon dioxide gas to become steam. , And is again sent as working fluid to the first turbine 9 and the second turbine 10.

以上のようにしてCOレヒートガスタービン1及び蒸気
タービン3で発電が行われる。ここでCOレヒートガス
タービン1の性能は高圧タービン5、低圧タービン8に
おける入口ガス温度及びサイクル圧力、即ち高圧コンプ
レッサ13の出口圧力によって影響を受ける。またサイ
クル圧力を高圧コンプレッサ13と低圧コンプレッサ1
2でどのような圧力比で配分するかによって影響を受け
る。
As described above, the CO reheat gas turbine 1 and the steam turbine 3 generate power. Here, the performance of the CO reheat gas turbine 1 is affected by the inlet gas temperature and the cycle pressure in the high pressure turbine 5 and the low pressure turbine 8, that is, the outlet pressure of the high pressure compressor 13. In addition, the cycle pressure is controlled by the high pressure compressor 13 and the low pressure compressor 1.
It is affected by what pressure ratio is distributed in 2.

例えば高圧タービン5の入口ガス温度1300℃に設定し、
また低圧タービン8の入口ガス温度を1150℃に設定し
て、サイクル圧力をパラメータにすると第2図に示す性
能が得られる。
For example, set the inlet gas temperature of the high-pressure turbine 5 to 1300 ° C,
When the inlet gas temperature of the low-pressure turbine 8 is set to 1150 ° C. and the cycle pressure is used as a parameter, the performance shown in FIG. 2 is obtained.

同図から有らかな如く、サイクル圧力を高くし、低圧コ
ンプレッサ12の圧力比を低くしたほうが熱効率、比出
力ともに高くなる。例えばサイクル圧力を80ata に設
定し、また高圧コンプレッサ13の圧力比を12.92 、低
圧コンプレッサ12の圧力比6.0 とすると、熱効率はC
Oレヒートガスタービン1単独で48.6%となり、またC
Oレヒートガスタービン1と蒸気タービン3とを合わせ
たコンバインド発電プラントで61.0%にもなる。
As is obvious from the figure, both the thermal efficiency and the specific output are higher when the cycle pressure is increased and the pressure ratio of the low pressure compressor 12 is decreased. For example, if the cycle pressure is set to 80ata, the pressure ratio of the high-pressure compressor 13 is 12.92, and the pressure ratio of the low-pressure compressor 12 is 6.0, the thermal efficiency is C
O Reheat gas turbine 1 alone accounted for 48.6%, and C
O Combined power plant that combines the reheat gas turbine 1 and steam turbine 3 will reach 61.0%.

この場合における各機器の設計主要目は例えば次の通り
である。
The main design items of each device in this case are as follows, for example.

発電端G出力……250 MW COレヒートガスタービン1出力……199 MW 蒸気タービン3出力……54MW 燃焼器4の一酸化炭素ガス供給量……92t/h 燃焼器4の酸素ガス供給量……52.6t/h 再燃焼器7の一酸化炭素ガス供給量……62t/h 再燃焼器7の酸素ガス供給量……35.4t/h 一酸化炭素ガス発熱量……2287kcal/kg 低圧コンプレッサ12の 二酸化炭素ガス循環量……240kg/s 中圧タービン6の入口圧力……33.6ata 低圧タービン8の入口圧力……13.9ata 低圧コンプレッサ12の入口温度……40℃ 低圧コンプレッサ12の出口温度…… 201℃ 高圧コンプレッサ13の入口温度……60℃ 高圧コンプレッサ13の出口温度…… 354℃ 中圧タービン6の入口温度…… 955℃ 中圧タービン6の出口温度…… 750℃ 低圧タービン8の出口温度…… 580℃ 排熱回収蒸気発生装置2の 二酸化炭素ガス循環量…… 301kg/s 排熱回収蒸気発生器2の出口温度…… 102℃ (発明の効果) 以上説明したように本発明によれば、燃料が一酸化炭素
ガス、酸素ガスを燃焼酸化剤として二酸化炭素ガスを生
成し、この二酸化炭素ガスを作動流体としているので、
窒素酸化物であるNOや硫黄酸化物であるSO等の大気
汚染物質が発生せず、また温室効果の原因となる二酸化
炭素ガス(CO)を大気中に放出せずに循環させて使用
しているので何ら支障が生じない。
Output G output: 250 MW CO reheat gas turbine 1 output: 199 MW steam turbine 3 output: 54 MW Combustor 4 carbon monoxide gas supply rate: 92 t / h Combustor 4 oxygen gas supply rate: … 52.6t / h Carbon monoxide gas supply rate for recombustor 7 …… 62t / h Oxygen gas supply rate for recombustor… 35.4t / h Carbon monoxide gas calorific value …… 2287kcal / kg Low-pressure compressor 12 CO2 gas circulation rate …… 240kg / s Inlet pressure of medium pressure turbine …… 33.6ata Inlet pressure of low pressure turbine ………… 13.9ata Inlet temperature of low pressure compressor …… 40 ℃ Outlet temperature of low pressure compressor12 …… 201 ℃ High temperature compressor 13 inlet temperature …… 60 ℃ High pressure compressor 13 outlet temperature …… 354 ℃ Medium pressure turbine 6 inlet temperature 955 ℃ Medium pressure turbine 6 outlet temperature 750 ℃ Low pressure turbine 8 outlet temperature ...... 580 ℃ Exhaust heat recovery steam generator 2 Carbon dioxide gas circulation rate ・ ・ ・ 301kg / s Outlet temperature of exhaust heat recovery steam generator 2 ・ ・ ・ 102 ℃ (Effect of the invention) As described above, according to the present invention, the fuel is carbon monoxide gas and oxygen gas. As a combustion oxidant, carbon dioxide gas is generated, and since this carbon dioxide gas is used as a working fluid,
Air pollutants such as NO X which is a nitrogen oxide and SO X which is a sulfur oxide are not generated, and carbon dioxide gas (CO 2 ) which causes the greenhouse effect is circulated without being released into the atmosphere. Since it is used, it does not cause any problems.

また、熱効率が60%以上と高く、また比出力が大きい
ので単機の大容量化に適している。また作動流体として
二酸化炭素ガスを使用しているため、高温部の酸化腐食
に対する影響は高温空気の場合よりも非常に少ない。
Further, the thermal efficiency is as high as 60% or more and the specific output is large, which is suitable for increasing the capacity of a single machine. Further, since carbon dioxide gas is used as the working fluid, the influence on the oxidative corrosion of the high temperature portion is much smaller than that of the high temperature air.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の発電方法を実施するための装置の概略
説明図であり、また第2図はCOレヒートガスタービン
・コンバインドサイクルの性能を示すグラフである。 1はCOレヒートガスタービン、 2は蒸気タービン、3は排熱回収蒸気発生器、 4は燃焼器、5は高圧タービン、 6は中圧タービン、7は再燃焼器、 8は低圧タービン、9は第1タービン、 10は第2タービン、11はサイクル配管、 12は低圧コンプレッサ、 13は高圧コンプレッサ、 14はアキュムレータ、15は前置冷却器、 16は中間冷却器、17はサイクル配管、 18は復水器、19は給水ポンプである。
FIG. 1 is a schematic explanatory view of an apparatus for carrying out the power generation method of the present invention, and FIG. 2 is a graph showing the performance of a CO reheat gas turbine combined cycle. 1 is a CO reheat gas turbine, 2 is a steam turbine, 3 is an exhaust heat recovery steam generator, 4 is a combustor, 5 is a high pressure turbine, 6 is a medium pressure turbine, 7 is a recombustor, 8 is a low pressure turbine, 9 Is a first turbine, 10 is a second turbine, 11 is a cycle pipe, 12 is a low pressure compressor, 13 is a high pressure compressor, 14 is an accumulator, 15 is a precooler, 16 is an intercooler, 17 is cycle pipe, 18 is The condenser, 19 is a water supply pump.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02C 6/18 A 7910−3G (72)発明者 安川 茂 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 (72)発明者 竹矢 一雄 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 安井 元 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社 東芝 京浜事業所内 (56)参考文献 特開 昭63−32127(JP,A) 特開 昭63−50627(JP,A) 特開 昭63−57825(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location F02C 6/18 A 7910-3G (72) Inventor Shigeru Yasukawa Shirahone, Shirahane, Tokai-mura, Ibaraki Prefecture No. 2 No. 4 Japan Atomic Energy Research Institute Tokai Research Institute (72) Inventor Kazuo Takeya 2-1-1, Niihama, Arai-cho, Takasago, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. Takasago Research Institute (72) Inventor Moto Yasui Tsurumi-ku, Yokohama-shi 2-4, Suehirocho Toshiba Corporation Keihin Plant (56) References JP 63-32127 (JP, A) JP 63-50627 (JP, A) JP 63-57825 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】酸素ガス(O2)を燃焼酸化剤に用いて一酸
化炭素ガス(CO)を燃焼させて二酸化炭素ガス(CO)を
生成し、前記二酸化炭素ガス(CO)を作動流体として
循環させて利用してCOレヒートガスタービンで発電す
ることを特徴とするCOレヒートガスタービン・コンバ
インドサイクルによる発電方法。
[Claim 1] Oxygen (O 2) gas was allowed to burn carbon monoxide (CO) by using the combustion oxidant and produce carbon dioxide gas (CO 2), operating the carbon dioxide gas (CO 2) A power generation method using a CO reheat gas turbine combined cycle, which is circulated and used as a fluid to generate power in a CO reheat gas turbine.
【請求項2】酸素ガス(O2)を燃焼酸化剤に用いて一酸
化炭素ガス(CO)を燃焼させて二酸化炭素ガス(CO)を
生成し、前記二酸化炭素ガス(CO)を作動流体として
利用してCOレヒートガスタービンで発電した後、前記
二酸化炭素ガスの排熱を利用して蒸気タービンで発電
し、この後前記二酸化炭素ガスの一部を前記燃焼生成ガ
スの生成に再利用するために循環させる一方、残部を化
学プラント用原材料として利用することを特徴とするC
Oレヒートガスタービン・コンバインドサイクルによる
発電方法。
2. Carbon dioxide gas (CO 2 ) is produced by burning carbon monoxide gas (CO) using oxygen gas (O 2 ) as a combustion oxidant, and the carbon dioxide gas (CO 2 ) is activated. After being used as a fluid to generate power in a CO reheat gas turbine, the exhaust heat of the carbon dioxide gas is used to generate power in a steam turbine, after which a part of the carbon dioxide gas is regenerated to produce the combustion product gas. C which is circulated for use while the rest is used as a raw material for chemical plants
O Reheat gas turbine combined cycle power generation method.
JP1235242A 1989-09-11 1989-09-11 CO reheat gas turbine combined cycle power generation method Expired - Lifetime JPH0635840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1235242A JPH0635840B2 (en) 1989-09-11 1989-09-11 CO reheat gas turbine combined cycle power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1235242A JPH0635840B2 (en) 1989-09-11 1989-09-11 CO reheat gas turbine combined cycle power generation method

Publications (2)

Publication Number Publication Date
JPH03100331A JPH03100331A (en) 1991-04-25
JPH0635840B2 true JPH0635840B2 (en) 1994-05-11

Family

ID=16983182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1235242A Expired - Lifetime JPH0635840B2 (en) 1989-09-11 1989-09-11 CO reheat gas turbine combined cycle power generation method

Country Status (1)

Country Link
JP (1) JPH0635840B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2064242B1 (en) * 1992-12-02 1997-09-01 Ingenieria Y Promocion Ind S A SYSTEM OF REGULATION OF GASES OF EXHAUST OF GAS TURBINES IN A RECOVERY BOILER AND CORRESPONDING BOILER.
US8539749B1 (en) * 2012-04-12 2013-09-24 General Electric Company Systems and apparatus relating to reheat combustion turbine engines with exhaust gas recirculation
US10100741B2 (en) 2012-11-02 2018-10-16 General Electric Company System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US10036317B2 (en) * 2013-03-05 2018-07-31 Industrial Turbine Company (Uk) Limited Capacity control of turbine by the use of a reheat combustor in multi shaft engine
US9624829B2 (en) 2013-03-05 2017-04-18 Industrial Turbine Company (Uk) Limited Cogen heat load matching through reheat and capacity match
JP2016056685A (en) * 2014-09-05 2016-04-21 株式会社東芝 Gas turbine equipment

Also Published As

Publication number Publication date
JPH03100331A (en) 1991-04-25

Similar Documents

Publication Publication Date Title
US5224334A (en) Low NOx cogeneration process and system
US20210009428A1 (en) Carbon dioxide reduction system and carbon dioxide reduction method
US4212160A (en) Combined cycle power plant using low Btu gas
US20030097840A1 (en) Koh flue gas recirculation power plant with waste heat and byproduct recovery
JPH10505145A (en) Power generation system with reduced pollution and gas generator therefor
CN101200655A (en) Systems and methods using an unmixed fuel processor
JP2000120447A (en) Thermal power plant
US5022226A (en) Low NOx cogeneration process and system
CN102388265A (en) Method and apparatus for generating electrical power
JP2948351B2 (en) Turbine plant
JPH0845523A (en) Fuel cell/gas turbine combined generation system
JPH0635840B2 (en) CO reheat gas turbine combined cycle power generation method
Jansen et al. CO2 reduction potential of future coal gasification based power generation technologies
Rao et al. Power plant system configurations for the 21st century
JP2578210B2 (en) Integrated coal gasification combined cycle power plant
De Ruyck Efficient CO2 capture through a combined steam and CO2 gas turbine cycle
JPH07119491A (en) Lng reformed gas combustion gas turbine composite generating plant
CN210087420U (en) Biomass gasification organic Rankine cycle system
JPH03258902A (en) Electric power plant
JP2575888B2 (en) Power plant
JPH04334729A (en) Power generating method
JPH03145523A (en) Thermoelectric power plant and themoelectric power generating method
JP2003054927A (en) System and method of recovering carbon dioxide
KR102176087B1 (en) Steam power generation system with two-stage boiler and boiler used therein
JPH0491324A (en) Carbon dioxide recovering type thermal power generation system