JPH0635147Y2 - Photo detector - Google Patents

Photo detector

Info

Publication number
JPH0635147Y2
JPH0635147Y2 JP6577089U JP6577089U JPH0635147Y2 JP H0635147 Y2 JPH0635147 Y2 JP H0635147Y2 JP 6577089 U JP6577089 U JP 6577089U JP 6577089 U JP6577089 U JP 6577089U JP H0635147 Y2 JPH0635147 Y2 JP H0635147Y2
Authority
JP
Japan
Prior art keywords
light
incident
photodetector
monitor
incident light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6577089U
Other languages
Japanese (ja)
Other versions
JPH036529U (en
Inventor
順吉 城野
馨 伊藤
智幸 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP6577089U priority Critical patent/JPH0635147Y2/en
Publication of JPH036529U publication Critical patent/JPH036529U/ja
Application granted granted Critical
Publication of JPH0635147Y2 publication Critical patent/JPH0635147Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、入射光を透過光とモニタ光に分岐し、モニタ
光の光パワーを検出することによって入射光又は透過光
の光パワーをモニタすることができる光検出器に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention monitors incident light or transmitted light power by splitting incident light into transmitted light and monitor light and detecting the optical power of the monitor light. The present invention relates to a photodetector that can be used.

[従来の技術] 第5図は、従来の光検出器の一例を示す模式的な構造図
である。この検出器は、入射光を透過光とモニタ光に分
岐する分岐手段としてビームスプリッタ1を有してお
り、モニタ光をホトダイオード2によって検出して電気
信号として外部に出力するようになっている。そして図
示のように、外部への出力を光パワーメータの指示器3
に入力し、モニタ光の光パワーを測定すれば、入射パワ
ーの変動をモニタすることができる。従来の光検出器に
おけるビームスプリッタ1は、入射光としてS偏光とP
偏光を入射すると、透過光とモニタ光の分岐比がS偏光
とP偏光とで異なるという性質があった。
[Prior Art] FIG. 5 is a schematic structural diagram showing an example of a conventional photodetector. This detector has a beam splitter 1 as a branching unit that splits incident light into transmitted light and monitor light, and detects the monitor light by a photodiode 2 and outputs it as an electric signal to the outside. Then, as shown in the figure, the output to the outside is indicated by the indicator 3 of the optical power meter.
Then, if the optical power of the monitor light is measured, the fluctuation of the incident power can be monitored. The beam splitter 1 in the conventional photodetector uses S-polarized light and P-polarized light as incident light.
When polarized light is incident, there is a property that the branching ratio of transmitted light and monitor light is different between S-polarized light and P-polarized light.

また、第6図は、従来の光検出器の他の一例を示す模式
的な構造図である。ここでは、入射光と透過光とモニタ
光はいずれも光ファイバで導かれ、光の分岐手段として
はファイバカプラ4が用いられている。この場合におい
ても、S偏光とP偏光とではカップリングロス、即ち透
過光とモニタ光の分岐比が異なることが知られている。
FIG. 6 is a schematic structural diagram showing another example of the conventional photodetector. Here, the incident light, the transmitted light, and the monitor light are all guided by an optical fiber, and the fiber coupler 4 is used as a light branching means. Even in this case, it is known that the coupling loss between S-polarized light and P-polarized light, that is, the branching ratio of transmitted light and monitor light is different.

[考案が解決しようとする課題] このように、従来の光検出器によれば、分岐手段として
ビームスプリッタ1やファイバカプラ4を用いていたの
で、例えば入射光が偏光しており、かつその偏光状態が
時間的に変化するような場合には、たとえ入射光の光パ
ワーが一定であっても透過光とモニタ光の分岐比が変動
してしまい、このため入射光あるいは透過光の光パワー
モニタとしては使えなくなってしまうという問題があっ
た。特に、第4図(b)のように、センサ1の入力をモ
ニタ入力に、センサ2の入力を測定入力にそれぞれ入力
し、センサ2の入力からモニタ入力の変動分を差し引く
ことにより光源のパワー変動をキャンセルして高精度な
測定をする光パワーメータにおいては、光源のパワーが
一定であってもセンサ1の分岐比が変動するとセンサ1
の入力とセンサ2の入力とが相反する方向に変動するた
め、分岐比の変動の2倍の誤差が生じてしまう。
[Problems to be Solved by the Invention] As described above, according to the conventional photodetector, since the beam splitter 1 and the fiber coupler 4 are used as the branching means, for example, the incident light is polarized and its polarized light is used. If the state changes with time, the branching ratio of the transmitted light and the monitor light will change even if the optical power of the incident light is constant. As a result, there was a problem that it could not be used. In particular, as shown in FIG. 4 (b), the input of the sensor 1 is input to the monitor input, the input of the sensor 2 is input to the measurement input, and the fluctuation of the monitor input is subtracted from the input of the sensor 2 to reduce the power of the light source. In an optical power meter that cancels fluctuations and performs high-accuracy measurement, if the branching ratio of the sensor 1 fluctuates even if the power of the light source is constant, the sensor 1
And the input of the sensor 2 fluctuate in opposite directions, so that an error of twice the fluctuation of the branch ratio occurs.

本考案の目的は、入射光の偏光状態が変化しても、透過
光とモニタ光とのパワー比が一定となる光検出器を提供
することにある。
An object of the present invention is to provide a photodetector whose power ratio between transmitted light and monitor light is constant even if the polarization state of incident light changes.

[課題を解決するための手段] 本考案の光検出器は、入射光を分岐手段で透過光とモニ
タ光に分岐し、モニタ光の光パワーを検出することによ
って入射光又は透過光の光パワーをモニタする光検出器
において、透過部と全反射ミラー部とを周期的に交互に
配置したハーフミラーを前記分岐手段として設けたこと
を特徴としている。
[Means for Solving the Problems] In the photodetector of the present invention, the incident light is split into the transmitted light and the monitor light by the branching means, and the optical power of the incident light or the transmitted light is detected by detecting the optical power of the monitor light. In the photodetector for monitoring the above, a half mirror in which transmissive portions and total reflection mirror portions are periodically arranged alternately is provided as the branching means.

また、本考案によれば、上記ハーフミラーにおいて透過
部を例えば光学ガラスのような透明部とし、さらに該ハ
ーフミラーに対する入射角を入射光の偏光によって透過
率が変化しない角度範囲内に設定してもよい。
Further, according to the present invention, the transmission part in the half mirror is a transparent part such as optical glass, and the incident angle to the half mirror is set within an angle range in which the transmittance does not change due to polarization of incident light. Good.

[作用] モニタ光は全反射ミラー部によって反射されるため、入
射光の偏光状態によらず、反射率は一定となる。また、
透過光は透過部を単に透過するだけであるから、入射光
の偏光状態によらず、透過率も一定となる。透過光が光
学ガラスのように透明部を透過する場合にも、入射角は
偏光によって透過率が変わらないように設定されている
から、やはり透過率は一定となる。従って、この光検出
器に入射する入射光の偏光状態が変化しても、透過光と
モニタ光のパワー比は一定となる。
[Operation] Since the monitor light is reflected by the total reflection mirror portion, the reflectance becomes constant regardless of the polarization state of the incident light. Also,
Since the transmitted light simply passes through the transmissive portion, the transmittance becomes constant regardless of the polarization state of the incident light. Even when the transmitted light is transmitted through the transparent portion like the optical glass, the incident angle is set so that the transmittance does not change depending on the polarized light, so that the transmittance is still constant. Therefore, even if the polarization state of the incident light entering the photodetector changes, the power ratio between the transmitted light and the monitor light remains constant.

[実施例] 本考案の一実施例を第1図〜第4図によって説明する。[Embodiment] An embodiment of the present invention will be described with reference to FIGS.

第1図に示すように、この光検出器10は、ケース11のの
内部に入射光12の分岐手段としてハーフミラー13を有し
ている。ハーフミラー13は、第2図に示すように透明体
であるガラス14の表面に全反射ミラー部15を入射光12の
ビーム径よりも十分小さなピッチの格子状に蒸着したも
のであり、ガラス14の表面が露出した透過部としての透
明部16と全反射ミラー部15とは所定の面積比で周期的に
交互に配置されている。
As shown in FIG. 1, the photodetector 10 has a half mirror 13 inside the case 11 as a branching means of the incident light 12. As shown in FIG. 2, the half mirror 13 is formed by vapor-depositing a total reflection mirror portion 15 on a surface of a glass 14 which is a transparent body in a grid pattern having a pitch sufficiently smaller than the beam diameter of the incident light 12. The transparent portions 16 as transparent portions and the total reflection mirror portions 15 whose surfaces are exposed are periodically and alternately arranged at a predetermined area ratio.

このハーフミラー13によれば、モニタ光は全反射ミラー
部15で反射されるため、入射光の偏光状態によらず、反
射率は一定となる。また、このハーフミラー13に対し
て、入射光10°以下の入射角θ、例えば、7°で入射す
るように構成されている。本実施例の透明部16はガラス
14なので、第3図のグラフからも分かるように、例えば
10°程度以下の入射角θで光が入射するようにしておけ
ば、透明部16を透過した光の透過率が入射光の偏光状態
によって左右されることはない。また、入射光12のビー
ム径に対し、十分小さなピッチで透明部16と全反射ミラ
ー部15とを配置しているので、分岐比は平均化され、入
射光12の位置がずれても分岐比はほぼ一定の値となる。
According to the half mirror 13, the monitor light is reflected by the total reflection mirror unit 15, so that the reflectance is constant regardless of the polarization state of the incident light. Further, the half mirror 13 is configured to be incident at an incident angle θ of 10 ° or less, for example, 7 °. The transparent portion 16 of this embodiment is made of glass.
Since it is 14, as can be seen from the graph in Fig. 3, for example,
If the light is incident at an incident angle θ of about 10 ° or less, the transmittance of the light transmitted through the transparent portion 16 is not influenced by the polarization state of the incident light. Further, since the transparent portion 16 and the total reflection mirror portion 15 are arranged at a sufficiently small pitch with respect to the beam diameter of the incident light 12, the branching ratio is averaged, and even if the position of the incident light 12 shifts, the branching ratio. Is an almost constant value.

なお、本実施例では、ガラス14の表面に複数の全反射ミ
ラー部15を交互に設けてハーフミラー13を構成したが、
多数の全反射ミラー部15が互いに所定間隔をおいて配置
され、全反射ミラー部15どうしの空間が入射光の透過部
となるようにしてもよい。このようにすれば、入射光の
入射角及び偏光状態に関係なく透過光の透過率は一定に
なる。
In this embodiment, the half mirror 13 is formed by alternately providing a plurality of total reflection mirror portions 15 on the surface of the glass 14.
A large number of total reflection mirror portions 15 may be arranged at a predetermined interval from each other, and the space between the total reflection mirror portions 15 may be a transmission portion for incident light. By doing so, the transmittance of the transmitted light becomes constant regardless of the incident angle of the incident light and the polarization state.

次に、ハーフミラー13からのモニタ光はホトダイオード
17に入射するようになっており、ホトダイオード17から
出力される電気信号は外部に出力されるようになってい
る。
Next, the monitor light from the half mirror 13 is a photodiode.
The electric signal output from the photodiode 17 is output to the outside.

そして、本実施例においては、光検出器10に光パワーメ
ータの指示器18が接続されており、前記ホトダイオード
17からの電気信号によってモニタ光の光パワーを測定
し、これによって入射光乃至透過光の光パワーの変動を
モニタできるようになっている。
Then, in the present embodiment, the indicator 18 of the optical power meter is connected to the photodetector 10, and the photodiode
The optical power of the monitor light is measured by the electric signal from 17, and the variation of the optical power of the incident light or the transmitted light can be monitored by this.

以上の構成になる光検出器10において、偏光状態が時間
的に変動する入射光が入射されたとする。この場合、モ
ニタ光は全反射ミラー部15によって反射されるので、入
射光の偏光状態によらず、反射率は一定となる。また、
透過光は所定角度以下の入射角で入射するので、S偏光
とP偏光の双方に関して透過率は一定となり、入射光の
偏光状態によらず透過率も一定となる。このため、この
光検出器10においては、入射光の偏光状態が変動して
も、透過光とモニタ光のパワー比は常に一定となる。従
って、モニタ光をホトダイオード17で検出し、その電気
信号を光パワーメータの指示器18でモニタすれば、入射
光のレベル変動、即ち出射光のレベル変動を正確にモニ
タすることができる。
In the photodetector 10 having the above configuration, it is assumed that incident light whose polarization state temporally changes is incident. In this case, since the monitor light is reflected by the total reflection mirror unit 15, the reflectance becomes constant regardless of the polarization state of the incident light. Also,
Since the transmitted light is incident at an incident angle of a predetermined angle or less, the transmittance is constant for both S-polarized light and P-polarized light, and the transmittance is constant regardless of the polarization state of the incident light. Therefore, in this photodetector 10, the power ratio between the transmitted light and the monitor light is always constant even if the polarization state of the incident light changes. Therefore, if the monitor light is detected by the photodiode 17 and the electric signal thereof is monitored by the indicator 18 of the optical power meter, the level fluctuation of the incident light, that is, the level fluctuation of the emitted light can be accurately monitored.

第4図(a)は、前記光検出器10の他の使用例を示すも
のである。光検出器10の透過光をフィルタ等の試験用の
光学デバイス19を透過させてセンサ20に入力させ、セン
サ20の出力は指示器18に入力させる。ここで、光検出器
10における透過光とモニタ光の分岐比は常に一定なの
で、モニタ光を検出するホトダイオード17の出力とセン
サ20の出力の差から入射光のパワーの変動分を算出し、
上記センサ20の出力から上記変動分を差し引けば、入射
光のパワー変動にかかわらず前記光学デバイス19の光学
性能を安定してみることができる。
FIG. 4A shows another example of use of the photodetector 10. Light transmitted through the photodetector 10 is transmitted through a test optical device 19 such as a filter to be input to the sensor 20, and the output of the sensor 20 is input to the indicator 18. Where the photodetector
Since the branching ratio between the transmitted light and the monitor light in 10 is always constant, the power fluctuation of the incident light is calculated from the difference between the output of the photodiode 17 that detects the monitor light and the output of the sensor 20,
By subtracting the fluctuation amount from the output of the sensor 20, the optical performance of the optical device 19 can be stably observed regardless of the power fluctuation of the incident light.

[考案の効果] 本考案の光検出器によれば、入射光の分岐手段として偏
光特性のないハーフミラーを用いたもので、入射光の偏
光状態が時間的に変化しても透過光とモニタ光の分岐比
が一定であるため、入射光あるいは透過光の光パワーを
正確にモニタできるという効果がある。
[Advantage of the Invention] According to the photodetector of the present invention, a half mirror having no polarization characteristic is used as a branching unit for incident light, and the transmitted light and the monitor are monitored even if the polarization state of the incident light changes with time. Since the branching ratio of light is constant, there is an effect that the optical power of incident light or transmitted light can be accurately monitored.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を示す模式構造図、第2図は
ハーフミラーの正面図、第3図はS偏光及びP偏光の入
射角による透過率を示すグラフ、第4図(a)及び
(b)は同実施例の他の利用態様を示す模式構造図、第
5図は従来の光検出器の一例を示す模式構造図、第6図
は従来の光検出器の他の例を示す模式構造図である。 10……光検出器、 13……分岐手段としてのハーフミラー、 15……全反射ミラー部、 16……透過部としての透明部。
FIG. 1 is a schematic structural view showing an embodiment of the present invention, FIG. 2 is a front view of a half mirror, FIG. 3 is a graph showing transmittances of S-polarized light and P-polarized light according to incident angles, and FIG. ) And (b) are schematic structural views showing another usage mode of the same embodiment, FIG. 5 is a schematic structural view showing an example of a conventional photodetector, and FIG. 6 is another example of a conventional photodetector. It is a schematic structure diagram showing. 10 ... Photodetector, 13 ... Half mirror as branching means, 15 ... Total reflection mirror section, 16 ... Transparent section as transmission section.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】入射光を分岐手段で透過光とモニタ光に分
岐し、モニタ光の光パワーを検出することによって入射
光または透過光の光パワーをモニタする光検出器におい
て、透過部と全反射ミラー部とを周期的に交互に配置し
たハーフミラーを前記分岐手段として設けたことを特徴
とする光検出器。
1. A photodetector for monitoring the optical power of incident light or transmitted light by dividing incident light into transmitted light and monitor light by a branching means and detecting the optical power of the monitor light. A photodetector comprising a half mirror in which reflecting mirrors are alternately arranged periodically as the branching means.
【請求項2】入射光を分岐手段で透過光とモニタ光に分
岐し、モニタ光の光パワーを検出することによって入射
光又は透過光の光パワーをモニタする光検出器におい
て、透過部と全反射ミラー部とを周期的に交互に配置し
たハーフミラーを前記分岐手段として設け、該ハーフミ
ラーに対する入射角を入射光の偏光によって透過率が変
化しない角度範囲内に設定したことを特徴とする光検出
器。
2. A photodetector for monitoring the optical power of incident light or transmitted light by dividing the incident light into transmitted light and monitor light by a branching means and detecting the optical power of the monitor light. A half mirror in which reflection mirror sections are periodically arranged alternately is provided as the branching means, and an incident angle with respect to the half mirror is set within an angular range in which the transmittance does not change due to polarization of incident light. Detector.
JP6577089U 1989-06-07 1989-06-07 Photo detector Expired - Lifetime JPH0635147Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6577089U JPH0635147Y2 (en) 1989-06-07 1989-06-07 Photo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6577089U JPH0635147Y2 (en) 1989-06-07 1989-06-07 Photo detector

Publications (2)

Publication Number Publication Date
JPH036529U JPH036529U (en) 1991-01-22
JPH0635147Y2 true JPH0635147Y2 (en) 1994-09-14

Family

ID=31597896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6577089U Expired - Lifetime JPH0635147Y2 (en) 1989-06-07 1989-06-07 Photo detector

Country Status (1)

Country Link
JP (1) JPH0635147Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111355A1 (en) * 1999-12-24 2001-06-27 F. Hoffmann-La Roche Ag A method and a device for measuring the intensity of a light beam and a method for regulating a light source

Also Published As

Publication number Publication date
JPH036529U (en) 1991-01-22

Similar Documents

Publication Publication Date Title
JP3677314B2 (en) Method and apparatus for optically determining physical quantities
JP4316691B2 (en) Device for measuring excursion
US4642458A (en) Polarimetric fibre sensor
US5220397A (en) Method and apparatus for angle measurement based on the internal reflection effect
JPH0635147Y2 (en) Photo detector
EP2336714B1 (en) Interferometer
EP0190184A1 (en) Interferometric sensor.
CN105841720B (en) Use the optical fiber white light interference (FBG) demodulator of two parallel reflective faces
JPH0376845B2 (en)
JPS6347603A (en) Optical fiber displacement sensor
JP2669359B2 (en) Distortion measuring method and device
JPH0456250B2 (en)
JPH05264687A (en) Optical magnetic field sensor
JPH0258677B2 (en)
JPH03273138A (en) Optical liquid quality measuring instrument
GB2389896A (en) Interferometer for measurement of angular displacement
JPS6111635A (en) Liquid sensor
JPS6147514A (en) Reflective type optical fiber sensor
JPH0430583Y2 (en)
JPS61196103A (en) Displacement meter
JP2990309B2 (en) Optical member for measuring correction coefficient of differential interferometer
JPS63273044A (en) Refractive index detecting sensor
JPH0346052B2 (en)
SU1204979A1 (en) Piezooptical transducer
JPS6347602A (en) Wave guide type optical displacement sensor