JPH06345685A - Production of 1,4-naphthalene dicarboxylic acid - Google Patents

Production of 1,4-naphthalene dicarboxylic acid

Info

Publication number
JPH06345685A
JPH06345685A JP5134344A JP13434493A JPH06345685A JP H06345685 A JPH06345685 A JP H06345685A JP 5134344 A JP5134344 A JP 5134344A JP 13434493 A JP13434493 A JP 13434493A JP H06345685 A JPH06345685 A JP H06345685A
Authority
JP
Japan
Prior art keywords
reaction
solvent
water content
catalyst
catalyst solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5134344A
Other languages
Japanese (ja)
Inventor
Ikuo Ito
育夫 伊藤
Keiichi Yokota
圭一 横田
Toshio Sato
利雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumikin Chemical Co Ltd filed Critical Sumikin Chemical Co Ltd
Priority to JP5134344A priority Critical patent/JPH06345685A/en
Publication of JPH06345685A publication Critical patent/JPH06345685A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce colorless and highly pure 1,4-naphthalene dicarboxylic acid in a good yield in a method for producing the product by oxidizing 1,4- dimethylnaphthalene with molecular oxygen in a catalyst solution containing at least one kind of transition metal and a bromine compound in acetic acid solvent. CONSTITUTION:The oxidation reaction is performed under a condition where the water content W (wt.%) of the catalyst solution and the reaction pressure P (kg/cm<2>G) satisfy the following relationship: (P+1)/W>=3. The deterioration of the yield and the product quality can be prevented by dehydrating the solvent so as to satisfy the above relationship even in a continuous or semi-continuous production operation using recovered acetic acid having a high water content.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は染料などの合成中間体と
して有用な1,4-ナフタレンジカルボン酸の製造方法に関
する。さらに詳しくは、本発明は1,4-ジ低級アルキルナ
フタレンを分子状酸素により液相酸化して1,4-ナフタレ
ンジカルボン酸を製造する方法の改良に関する。
TECHNICAL FIELD The present invention relates to a process for producing 1,4-naphthalenedicarboxylic acid useful as a synthetic intermediate for dyes and the like. More specifically, the present invention relates to an improvement in a method for producing 1,4-naphthalenedicarboxylic acid by liquid phase oxidation of 1,4-di-lower-alkylnaphthalene with molecular oxygen.

【0002】[0002]

【従来の技術】従来、1,4-ナフタレンジカルボン酸 (以
下、1,4-NDCAと略す) は、1−メチル−4−アセチルナ
フタレンをクロム酸酸化する方法 (英国特許第1,173,70
4 号)や、1,4-ジシアノナフタレンを加水分解する方法
で製造されていた。しかし、前者の方法では、6価クロ
ム化合物であるクロム酸を多量に使用するので、この酸
化剤が高価であるという経済上の難点に加えて、排水処
理にも多大の費用を必要とする。後者の方法も、やはり
有毒なシアン化合物を原料とする関係から、排水処理が
煩雑となり、費用もかかる。
2. Description of the Related Art Conventionally, 1,4-naphthalenedicarboxylic acid (hereinafter abbreviated as 1,4-NDCA) is a method for chromic acid oxidation of 1-methyl-4-acetylnaphthalene (UK Patent No. 1,173,70).
No. 4) and 1,4-dicyanonaphthalene were hydrolyzed. However, since the former method uses a large amount of chromic acid, which is a hexavalent chromium compound, in addition to the economical difficulty that this oxidizer is expensive, wastewater treatment also requires a large amount of money. Also in the latter method, wastewater treatment is complicated and costly because the toxic cyanide compound is used as a raw material.

【0003】そのため、工業的に実施可能な方法とし
て、1,4-ジ低級アルキルナフタレンを空気などの分子状
酸素により酸化して1,4-NDCAを製造する方法が開発され
た (例えば、特公昭48−43893 号公報参照) 。
Therefore, as an industrially feasible method, a method has been developed for producing 1,4-NDCA by oxidizing 1,4-di-lower-alkylnaphthalene with molecular oxygen such as air (for example, a special method). (See Japanese Patent Publication No. 48-43893).

【0004】特開昭63−159344号公報には、1,4-ジ低級
アルキルナフタレンを有機カルボン酸溶媒中、コバルト
塩、マンガン塩および臭素化合物触媒の存在下、 120〜
160℃の範囲内の温度で分子状酸素により酸化する1,4-N
DCAの製造方法が記載されている。
JP-A-63-159344 discloses that 1,4-di-lower-alkylnaphthalene is used in an organic carboxylic acid solvent in the presence of a cobalt salt, a manganese salt and a bromine compound catalyst,
1,4-N that oxidizes with molecular oxygen at temperatures in the range of 160 ° C
A method of manufacturing DCA is described.

【0005】[0005]

【発明が解決しようとする課題】1,4-ジ低級アルキルナ
フタレンの分子酸素による酸化反応は、パラキシレンな
どのアルキルベンゼン類や、2,6-ジイソプロピルナフタ
レンなどの2,6-ジ低級アルキルナフタレンを原料とする
同様の分子状酸素による酸化反応とは挙動を異にするた
め、これらの酸化反応に関する知見をそのまま転用する
ことができないことが知られている。
[Problems to be Solved by the Invention] The oxidation reaction of 1,4-di-lower-alkylnaphthalene with molecular oxygen is carried out by using alkylbenzenes such as paraxylene and 2,6-di-lower-alkylnaphthalene such as 2,6-diisopropylnaphthalene. It is known that since the behavior is different from the similar oxidation reaction by the same molecular oxygen used as the raw material, the knowledge about these oxidation reactions cannot be diverted as it is.

【0006】即ち、前述した特開昭63−159344号公報に
も記載されているように、これらアルキルベンゼン類や
2,6-ジ低級アルキルナフタレンの分子状酸化は、一般
に、約170〜230 ℃という高い反応温度で行わる。これ
に対し、1,4-ジ低級アルキルナフタレンの分子状酸素に
よる酸化をこのような高温で行うと、副反応が多くなっ
て、反応収率および生成物の純度が悪化し、生成物は褐
色に着色して、商品価値が著しく低減する。そのため、
特開昭63−159344号公報では、反応温度を 120〜160 ℃
という比較的低温の狭い範囲内に限定して、副反応の抑
制を図っているのである。
That is, as described in the above-mentioned JP-A-63-159344, these alkylbenzenes and
The molecular oxidation of 2,6-di-lower alkylnaphthalene is generally carried out at high reaction temperatures of about 170-230 ° C. On the other hand, when oxidation of 1,4-di-lower alkylnaphthalene with molecular oxygen is performed at such a high temperature, side reactions increase, the reaction yield and the purity of the product deteriorate, and the product becomes brown. The product value is significantly reduced. for that reason,
In JP-A-63-159344, the reaction temperature is 120 to 160 ° C.
That is, the side reaction is suppressed within a narrow range of relatively low temperature.

【0007】しかし、反応温度をこのように 120〜160
℃に限定しただけでは、反応生成物の着色低減や、反応
収率および純度の向上がなお確実には達成されないこと
が認められた。
However, the reaction temperature is thus set at 120 to 160
It has been found that limiting the temperature to only ° C does not yet reliably reduce the coloration of the reaction product or improve the reaction yield and purity.

【0008】本発明の目的は、1,4-ジ低級アルキルナフ
タレンの分子状酸素による酸化反応によって、着色が少
なく高純度の1,4-NDCAを収率よく確実に製造することが
できる方法を提供することである。
An object of the present invention is to provide a method capable of reliably producing 1,4-NDCA of high purity with little coloration by an oxidation reaction of 1,4-di-lower alkylnaphthalene with molecular oxygen. Is to provide.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため検討した結果、1,4-ジ低級アルキルナフ
タレンの酸化は、160 ℃以下という比較的低温で実施す
る必要があるため水に敏感で、一定以上の水分が存在す
ると1,4-ジ低級アルキルナフタレンの酸化反応が著しく
阻害され、副生物の生成が多くなることを知り、本発明
に到達した。
Means for Solving the Problems As a result of studies to solve the above problems, the present inventors have found that the oxidation of 1,4-di-lower alkylnaphthalene needs to be carried out at a relatively low temperature of 160 ° C. or lower. Therefore, they have found that they are sensitive to water, and that when a certain amount of water or more is present, the oxidation reaction of 1,4-di-lower-alkylnaphthalene is significantly inhibited and the production of by-products increases, and the present invention was reached.

【0010】ここに、本発明は、1,4-ジ低級アルキルナ
フタレンを、低級脂肪族カルボン酸を主成分とする溶媒
中に少なくとも1種の遷移金属塩および臭素化合物を含
有する触媒液中で、分子状酸素により酸化して1,4-ナフ
タレンジカルボン酸を製造する方法において、前記酸化
反応を触媒液の水分と反応圧力とが下記(1) 式を満足す
る条件下で行うことを特徴とする、1,4-ナフタレンジカ
ルボン酸の製造方法を要旨とする。
In the present invention, 1,4-di-lower alkylnaphthalene is used in a catalyst solution containing at least one transition metal salt and a bromine compound in a solvent containing a lower aliphatic carboxylic acid as a main component. In the method for producing 1,4-naphthalenedicarboxylic acid by oxidation with molecular oxygen, the oxidation reaction is carried out under the condition that the water content of the catalyst solution and the reaction pressure satisfy the following formula (1): The gist is a method for producing 1,4-naphthalenedicarboxylic acid.

【0011】 (P+1) /W ≧ 3 ・・・・・ (1) ここで、P:反応圧力 (Kg/cm G) W:触媒液の水分 (重量%) 。(P + 1) / W ≧ 3 (1) where P: reaction pressure (Kg / cm 2 G) W: water content (% by weight) of the catalyst liquid.

【0012】本発明の好適態様にあっては、前記酸化反
応を1,4-低級アルキルナフタレンと分子状酸素を反応系
に連続的に供給することにより行い、反応後の溶媒を回
収して、酸化反応中の触媒液の水分と反応圧力とが上記
(1) 式を満足するようにその水分を制御した後、反応系
に再循環させる。
In a preferred embodiment of the present invention, the oxidation reaction is carried out by continuously supplying 1,4-lower alkylnaphthalene and molecular oxygen to the reaction system, and the solvent after the reaction is recovered, The water content of the catalyst solution and the reaction pressure during the oxidation reaction are as described above.
After controlling the water content so as to satisfy the equation (1), it is recycled to the reaction system.

【0013】[0013]

【作用】一般に、アルキルベンゼン類や2,6-ジ低級アル
キルナフタレンを上記と同様な触媒液中で分子状酸素に
より酸化する場合、反応溶媒の燃焼抑制のために意図的
に水分を反応系に添加することも行われており、触媒液
中に存在する水は酸化反応に著しい悪影響を及ぼさない
ことが知られている。そのため、一般にアルキルベンゼ
ン類やアルキルナフタレン類の上記のような液相酸化に
おいては、触媒液の水分を一定以下に抑制しようとする
試みはこれまでになかった。
[Function] Generally, when alkylbenzenes or 2,6-di-lower-alkylnaphthalene is oxidized by molecular oxygen in the same catalyst solution as above, water is intentionally added to the reaction system to suppress combustion of the reaction solvent. It is also known that the water present in the catalyst solution does not significantly affect the oxidation reaction. Therefore, generally, in the liquid phase oxidation of alkylbenzenes and alkylnaphthalenes as described above, there has been no attempt to suppress the water content of the catalyst liquid to a certain level or less.

【0014】しかし、1,4-ジ低級アルキルナフタレンの
分子状酸素による酸化は、これと異なり、水分に敏感で
あり、触媒液中に多量の水が存在すると酸化反応に著し
い悪影響を与え、副反応が増大し、酸化生成物である1,
4-NDCAの収率と品質 (純度、色など) が悪化することが
判明した。この点についてさらに追究した結果、反応圧
力が低いほど、より少量の水分で酸化反応が阻害される
ことが認められた。
However, the oxidation of 1,4-di-lower alkylnaphthalene by molecular oxygen is different from this, and it is sensitive to water, and when a large amount of water is present in the catalyst solution, it has a significant adverse effect on the oxidation reaction. The reaction is increased and oxidation products 1,
It was found that the yield and quality of 4-NDCA (purity, color, etc.) deteriorated. As a result of further investigation on this point, it was found that the lower the reaction pressure, the smaller the amount of water, the more the oxidation reaction is inhibited.

【0015】この知見に基づき、本発明によれば、触媒
液中に含まれる水の量と反応圧力とを上記(1) 式を満た
すように調整する。即ち、触媒液中の水の量に応じて反
応圧力を調整するか、反応圧力に応じて触媒液中の水の
量を調整する。それにより、水による反応への悪影響が
抑制され、副反応が少なくなって収率が向上し、着色の
少ない、より高品位の生成物を得ることができる。
Based on this finding, according to the present invention, the amount of water contained in the catalyst liquid and the reaction pressure are adjusted so as to satisfy the above formula (1). That is, the reaction pressure is adjusted according to the amount of water in the catalyst liquid, or the amount of water in the catalyst liquid is adjusted according to the reaction pressure. As a result, the adverse effect of water on the reaction is suppressed, side reactions are reduced, the yield is improved, and a higher-quality product with less coloring can be obtained.

【0016】触媒液中の水分は、反応溶媒に含まれてい
る水分のほか、触媒として用いる遷移金属塩や臭素化合
物が結晶水を有する場合には、これらの結晶水から反応
系に導入される水分を含む。
In addition to the water contained in the reaction solvent, the water in the catalyst liquid is introduced into the reaction system from the water of crystallization when the transition metal salt or bromine compound used as a catalyst has water of crystallization. Contains water.

【0017】酸化反応の溶媒主成分として用いる低級脂
肪族カルボン酸 (例、酢酸)は比較的高価であるので、
1,4-NDCAの工業的製造においては、反応で使用した溶媒
を回収し、酸化反応に再循環して繰り返し使用するのが
普通である。この場合、次式で1,4-ジメチルナフタレン
の酸化について例示するように、酸化反応により水が生
成するため、回収された溶媒中には水がかなりの量で必
然的に混入する。
Since the lower aliphatic carboxylic acid (eg acetic acid) used as the solvent main component of the oxidation reaction is relatively expensive,
In the industrial production of 1,4-NDCA, it is usual to recover the solvent used in the reaction, recycle it to the oxidation reaction and repeatedly use it. In this case, as illustrated in the following formula for the oxidation of 1,4-dimethylnaphthalene, water is inevitably mixed in the recovered solvent because water is produced by the oxidation reaction.

【0018】 H3C-NAP-CH3 + 3O2 → HOOC-NAP-COOH + 2H2O 溶媒の回収を蒸留によって行った場合でも、回収された
溶媒は3〜10重量%程度の水分を含有し、溶媒の循環回
数が多くなるほど、回収溶媒中の水の量は増大する傾向
にある。これに遷移金属塩の結晶水から持ち込まれる水
分を加味すると、触媒液中の水分はさらに1〜2重量%
程度増大する。
H 3 C-NAP-CH 3 + 3O 2 → HOOC-NAP-COOH + 2H 2 O Even when the solvent is recovered by distillation, the recovered solvent contains about 3 to 10% by weight of water. However, the amount of water in the recovered solvent tends to increase as the number of circulations of the solvent increases. If the water brought in from the water of crystallization of the transition metal salt is added to this, the water content in the catalyst liquid is further 1 to 2% by weight.
Increase.

【0019】本発明では、必要に応じて、溶媒を適宜手
段 (例、単蒸留、精密蒸留、乾燥剤による脱水処理) で
脱水して水分を低減させ、触媒液中の水分と反応圧力を
上記(1) 式を満たすように調整する。
In the present invention, if necessary, the solvent is dehydrated by an appropriate means (eg simple distillation, precision distillation, dehydration treatment with a desiccant) to reduce the water content, and the water content in the catalyst solution and the reaction pressure are adjusted to the above values. Adjust so that equation (1) is satisfied.

【0020】本発明の方法で酸化反応の原料として使用
する1,4-ジ低級アルキルナフタレンの例には、1,4-ジメ
チルナフタレン (以下、1,4-DMN と略す) 、1,4-ジエチ
ルナフタレン、1,4-ジプロピルナフタレンなどが含まれ
るが、1,4-DMN が最も好ましい原料である。以下では、
説明を簡略にするために、原料が1,4-DMN である場合に
ついて説明するが、他の1,4-ジ低級アルキルナフタレン
を使用した場合も同様である。
Examples of 1,4-di-lower alkylnaphthalene used as a raw material for the oxidation reaction in the method of the present invention include 1,4-dimethylnaphthalene (hereinafter abbreviated as 1,4-DMN) and 1,4-dimethylnaphthalene. Diethylnaphthalene, 1,4-dipropylnaphthalene and the like are included, with 1,4-DMN being the most preferred raw material. Below,
For the sake of simplicity, the case where the raw material is 1,4-DMN will be described, but the same applies when another 1,4-di-lower alkylnaphthalene is used.

【0021】1,4-DMN は、コールタール、接触分解油、
ナフサ分解油といった1,4-DMN を含有する留分から精密
蒸留などにより回収されたもの、およびエチルベンゼン
等を出発原料として合成により得られたもの、のいずれ
も使用できる。また、原料の1,4-DMN は特に高純度品を
使用する必要はなく、その酸化反応に直接悪影響を及ぼ
さない不純物 (例えば、他のジ低級アルキルナフタレン
異性体、ジ低級アルキルテトラリン等) を、酸化で得ら
れる1,4-NDCA生成物の品質に影響がない範囲内の量で含
有していてもよい。原料の1,4-DMN の純度は70%以上、
好ましくは90%以上のものを使用すればよい。
1,4-DMN is a coal tar, catalytic cracking oil,
Any of those obtained by precision distillation from a fraction containing 1,4-DMN such as naphtha cracked oil and those obtained by synthesis using ethylbenzene as a starting material can be used. In addition, it is not necessary to use a high-purity 1,4-DMN as a raw material, and impurities (for example, other di-lower alkylnaphthalene isomers, di-lower alkyltetralin, etc.) that do not have a direct adverse effect on the oxidation reaction can be used. It may be contained in an amount within the range that does not affect the quality of the 1,4-NDCA product obtained by oxidation. The purity of the raw material 1,4-DMN is 70% or more,
Preferably, 90% or more may be used.

【0022】溶媒の低級脂肪族カルボン酸としては、酸
化反応条件で液状であれば任意のものが使用できる。例
えば、酢酸、プロピオン酸、クロル酢酸等の1種もしく
は2種以上を使用できる。また、溶媒は、低級脂肪族カ
ルボン酸を50重量%以上含有していれば、クロルベンゼ
ンなどの他の有機溶媒を含有していてもよい。好ましい
溶媒は酢酸である。
As the lower aliphatic carboxylic acid as a solvent, any one can be used as long as it is liquid under the oxidation reaction conditions. For example, one or more of acetic acid, propionic acid, chloroacetic acid and the like can be used. Further, the solvent may contain other organic solvent such as chlorobenzene as long as it contains 50% by weight or more of the lower aliphatic carboxylic acid. The preferred solvent is acetic acid.

【0023】溶媒の使用量は特に制限されないが、原料
(1,4-DMN) 1重量部に対して1重量部以上、特に3重量
部以上を使用することが好ましい。使用量の上限は、工
業的見地から、1,4-DMN 1重量部当たり30重量部以下と
することが適当である。溶媒中の水分は、可及的に少な
いほうが好ましいが、触媒液の水分量が上記(1) 式を満
たす範囲内の量であれば、酸化への悪影響は実質的に避
けられるので、この範囲内の少量の水分の混入は許容で
きる。
The amount of the solvent used is not particularly limited, but the raw materials
It is preferable to use 1 part by weight or more, particularly 3 parts by weight or more, relative to 1 part by weight of (1,4-DMN). From the industrial viewpoint, the upper limit of the amount used is appropriately 30 parts by weight or less per 1 part by weight of 1,4-DMN. The water content in the solvent is preferably as low as possible, but if the water content of the catalyst liquid is within the range that satisfies the above formula (1), adverse effects on oxidation can be substantially avoided, so this range A small amount of water can be mixed in.

【0024】触媒は遷移金属塩と臭素化合物とからな
る。遷移金属塩としては、コバルト、マンガン、セリウ
ム、ニッケル、銅、鉄などの1種もしくは2種以上の遷
移金属の塩が使用される。この遷移金属塩の種類は、酸
化反応条件下で使用する溶媒に溶解するものであれば特
に制限されない。このような塩としては、遷移金属の酢
酸塩、炭酸塩、臭化物、アセチルアセトナート等が挙げ
られる。触媒として好ましい遷移金属塩は、コバルトの
酢酸塩、炭酸塩または臭化物、或いはこれらのコバルト
塩とマンガンの酢酸塩、炭酸塩または臭化物との組合わ
せである。
The catalyst comprises a transition metal salt and a bromine compound. As the transition metal salt, a salt of one or more transition metals such as cobalt, manganese, cerium, nickel, copper and iron is used. The type of this transition metal salt is not particularly limited as long as it is soluble in the solvent used under the oxidation reaction conditions. Examples of such salts include transition metal acetates, carbonates, bromides, and acetylacetonates. Preferred transition metal salts as catalysts are cobalt acetates, carbonates or bromides, or combinations of these cobalt salts with manganese acetates, carbonates or bromides.

【0025】遷移金属塩の使用量は、原料1,4-DMN 1モ
ルに対して遷移金属の合計量が0.01〜1g原子、特に
0.05 〜0.5 g原子となる割合とすることが好ましい。
使用する遷移金属塩が結晶水を持つ場合には、この結晶
水も含めた触媒液中の水分量が上記(1) 式を満たすよう
にする必要がある。
The amount of the transition metal salt used is such that the total amount of the transition metals is 0.01 to 1 g atom, especially 1 mol of 1,4-DMN as the raw material.
The ratio is preferably 0.05 to 0.5 g atom.
When the transition metal salt used has water of crystallization, the amount of water in the catalyst liquid including this water of crystallization needs to satisfy the above formula (1).

【0026】触媒として遷移金属塩とともに使用される
臭素化合物としては、臭化ナトリウム、臭化カリウム、
臭化アンモニウム、臭化水素酸、或いは遷移金属臭化物
等が例示され、やはり1種もしくは2種以上を使用する
ことができる。臭素化合物の使用量は、臭素イオン量が
遷移金属1g原子当たり0.05〜20モル、特に 0.1〜5モ
ルとなる量とすることが好ましい。
The bromine compound used together with the transition metal salt as a catalyst includes sodium bromide, potassium bromide,
Examples thereof include ammonium bromide, hydrobromic acid, transition metal bromides, and the like, and one type or two or more types can also be used. The amount of the bromine compound used is preferably such that the amount of bromine ions is 0.05 to 20 mol, particularly 0.1 to 5 mol, per 1 g atom of the transition metal.

【0027】酸化剤として用いる分子状酸素は、純酸素
や、燃焼排ガスなどの分子状酸素を含有する任意の気体
でよいが、一般には空気を用いる。
The molecular oxygen used as the oxidizing agent may be pure oxygen or any gas containing molecular oxygen such as combustion exhaust gas, but air is generally used.

【0028】反応温度は80〜160 ℃、特に 100〜150 ℃
の範囲内が好ましい。前述したように、1,4-DMN の酸化
は反応温度に敏感であって、前記の特開昭63−159344号
公報でも指摘されているように、他のアルキルベンゼン
類やアルキルナフタレン類の酸化に比べて反応温度を低
くしないと、副反応が多くなり、生成物の純度および着
色ならびに反応収率が悪化する。ただし、単に反応温度
を低くしただけでは、副反応を十分に抑制することはで
きず、褐色の生成物の生成を確実に防止することができ
ず、上記の触媒液中の水の量の調整が必要である。
The reaction temperature is 80 to 160 ° C., especially 100 to 150 ° C.
The range of is preferable. As described above, the oxidation of 1,4-DMN is sensitive to the reaction temperature, and as pointed out in the above-mentioned JP-A-63-159344, the oxidation of other alkylbenzenes and alkylnaphthalenes is not affected. In contrast, if the reaction temperature is not lowered, side reactions will increase and the purity and color of the product and the reaction yield will deteriorate. However, by simply lowering the reaction temperature, it is not possible to sufficiently suppress the side reaction, it is not possible to reliably prevent the production of brown products, the above adjustment of the amount of water in the catalyst liquid is necessary.

【0029】反応圧力は一般に常圧ないし加圧である。
圧力が高いほど、一般に反応収率が向上するので、通常
は加圧下に反応を行う。本発明によれば、圧力は前記の
(1) 式を満足する必要があり、従って、触媒液中の水分
量によって圧力の下限は変動する。圧力の上限は、過大
な圧力は設備投資が高くなり経済的に不利であるため、
一般に30 kg/cm2G、特に15 kg/cm2Gとすることが好まし
く、通常は約10 kg/cm2G程度の圧力で反応を行うのが普
通である。従って、このような上限と、(1) 式で決まる
下限との間で酸化反応を行えばよい。
The reaction pressure is generally atmospheric pressure or increased pressure.
Generally, the higher the pressure, the higher the reaction yield, so the reaction is usually carried out under pressure. According to the invention, the pressure is
It is necessary to satisfy the formula (1), and therefore the lower limit of the pressure varies depending on the amount of water in the catalyst liquid. The upper limit of pressure is that it is economically disadvantageous because excessive capital pressure will increase capital investment.
Generally, it is preferably 30 kg / cm 2 G, particularly preferably 15 kg / cm 2 G, and the reaction is usually carried out at a pressure of about 10 kg / cm 2 G. Therefore, the oxidation reaction may be performed between the upper limit and the lower limit determined by the equation (1).

【0030】反応時間は、触媒量や反応温度等の条件に
よっても異なるが、一般には約 0.1〜30時間、例えば約
0.3〜10時間である。1,4-DMN の酸化反応は、回分式
(原料1,4-DMN と触媒液を反応器に予め装入しておき、
酸素含有ガスのみを連続的に供給する方式) 、半連続式
(触媒液のみを反応器に予め装入しておき、原料1,4-DM
N と酸素含有ガスとを連続的に供給する方式) または連
続式 (原料1,4-DMN と触媒液と酸素含有ガスをいずれも
連続的に供給し、かつ反応液を連続的に抜出す方式) の
いずれの方式でも実施できるが、操業効率の点から好ま
しいのは連続式また半連続式である。
The reaction time varies depending on the conditions such as the amount of catalyst and the reaction temperature, but is generally about 0.1 to 30 hours, for example, about
0.3 to 10 hours. The oxidation reaction of 1,4-DMN is batchwise
(The raw material 1,4-DMN and the catalyst liquid are charged in advance in the reactor,
Semi-continuous type)
(Only the catalyst liquid was charged in advance in the reactor, and the raw material 1,4-DM
A method of continuously supplying N and an oxygen-containing gas) or a continuous method (a method of continuously supplying raw material 1,4-DMN, a catalyst solution and an oxygen-containing gas and continuously withdrawing a reaction solution) Although any of the above methods can be used, the continuous or semi-continuous method is preferable from the viewpoint of operation efficiency.

【0031】以上の反応条件で、触媒液中の水分と反応
圧力が前記(1) 式を満たせば、目的とする1,4-NDCAが高
収率で得られ、その品質 (純度および着色) も良好であ
る。これに対し、触媒液中の水分と反応圧力が前記(1)
式を満たさない場合には、生成物である1,4-NDCAの収率
が低下し、また生成物の純度が低下し、着色度が増大し
て、その品質が著しく悪化する。このような着色は、精
製によって取り除くことは容易ではなく、商品価値が減
ずる。さらに、前記(1) 式からの逸脱が著しいと、酸化
反応が円滑さを欠き、酸素吸収が反応途中で停止すると
いった現象も認められるようになる。
Under the above reaction conditions, if the water content in the catalyst liquid and the reaction pressure satisfy the above formula (1), the desired 1,4-NDCA can be obtained in high yield, and its quality (purity and coloring) can be obtained. Is also good. In contrast, the water content in the catalyst solution and the reaction pressure are
If the formula is not satisfied, the yield of the product 1,4-NDCA is lowered, the purity of the product is lowered, the coloring degree is increased, and the quality thereof is remarkably deteriorated. Such coloring is not easy to remove by refining and the commercial value is reduced. Further, when the deviation from the equation (1) is significant, the phenomenon that the oxidation reaction is not smooth and the oxygen absorption is stopped in the middle of the reaction is also recognized.

【0032】酸化反応終了後、反応液を冷却すると生成
物の1,4-NDCAは析出するので、濾過などの常法により1,
4-NDCAを容易に回収することができる。必要であれば、
回収された1,4-DMN は、酸析、再結晶などの常法により
精製する。1,4-NDCAを分離した後に残る濾液 (酸化反応
の母液) は、反応系に供給した溶媒と触媒のほかに、反
応で生成した水を含有している。従って、この母液を溶
媒および触媒供給源として反応系に再循環することが経
済的に有利であり、工業的な操業ではこの溶媒と触媒の
再循環が一般に採用されている。この場合には、触媒と
溶媒の不足分を補給するだけで、反応を実施することが
できる。
After the completion of the oxidation reaction, when the reaction solution is cooled, 1,4-NDCA of the product is precipitated, so that 1,4NDCA of the product is separated by a conventional method such as filtration.
4-NDCA can be easily recovered. If necessary,
The recovered 1,4-DMN is purified by conventional methods such as acid precipitation and recrystallization. The filtrate (mother liquor of the oxidation reaction) remaining after separating 1,4-NDCA contains water generated by the reaction, in addition to the solvent and catalyst supplied to the reaction system. Therefore, it is economically advantageous to recycle this mother liquor to the reaction system as a solvent and a catalyst supply source, and in the industrial operation, the recirculation of the solvent and the catalyst is generally adopted. In this case, the reaction can be carried out only by supplementing the shortage of the catalyst and the solvent.

【0033】母液の再循環方法としては、溶媒と触媒
とを分離せずにそのまま再循環する方法と、母液から
蒸留などの手段で溶媒を回収した後、残渣から触媒成分
を炭酸塩析出などの手段で回収し、別個に回収された溶
媒と触媒とを反応系に再循環する方法のいずれも可能で
ある。
The mother liquor can be recirculated by directly recirculating the solvent without separating the solvent and the catalyst, or by recovering the solvent from the mother liquor by means such as distillation, and then removing the catalyst component from the residue by carbonate precipitation or the like. Any of the methods in which the solvent and the catalyst recovered by the means and recovered separately are recycled to the reaction system is possible.

【0034】本発明によれば、このような回収された溶
媒を酸化反応に再循環する場合に、適当な脱水手段、例
えば単蒸留、精密蒸留、脱水剤などの手段により溶媒中
の水分を低減させ、この再循環溶媒を供給して調製した
触媒液中の水分が前記(1) 式を満たすようにする。この
ような脱水を行わずに溶媒の再循環を続けると、触媒液
中の水分が(1) 式で規定する限界を超えて増大し、副反
応の増大による悪影響が無視できなくなる。
According to the present invention, when such a recovered solvent is recycled to the oxidation reaction, the water content in the solvent is reduced by a suitable dehydrating means such as simple distillation, precision distillation, dehydrating agent and the like. Then, the water in the catalyst liquid prepared by supplying this recirculating solvent is made to satisfy the above formula (1). If the solvent is continuously recirculated without performing such dehydration, the water content in the catalyst solution increases beyond the limit defined by the equation (1), and the adverse effect due to the increase in side reactions cannot be ignored.

【0035】母液の循環をのようにそのまま行う場合
には、例えば、適当な脱水剤 (例、無水酢酸) で母液を
処理して、その水分を低減させる。の場合には、溶媒
回収のための蒸留で溶媒中の水分は少なくなるが、さら
に必要であれば、精密蒸留や脱水剤による処理を行っ
て、触媒液が(1) 式を満たすまで水分量を低減させる。
When the mother liquor is circulated as it is, for example, the mother liquor is treated with a suitable dehydrating agent (eg, acetic anhydride) to reduce the water content. In the case of, the water content in the solvent is reduced by distillation for solvent recovery, but if necessary, perform precision distillation or treatment with a dehydrating agent until the catalyst solution satisfies the formula (1). To reduce.

【0036】また、酸化反応中に酸化排ガスに同伴され
て反応器から排出される、水蒸気を含有する溶媒蒸気を
コンデンサーで凝縮し、その還流液の一部または全部を
系外に抜き出すことにより、触媒液中の水分を前記(1)
式を満たすように調整することもできる。
Further, the solvent vapor containing water vapor, which is discharged from the reactor by being entrained in the oxidizing exhaust gas during the oxidation reaction, is condensed in a condenser, and a part or all of the refluxed liquid is extracted out of the system, For the water content in the catalyst solution, refer to (1) above.
It can also be adjusted to satisfy the formula.

【0037】本発明の1,4-NDCAの製造方法は、特に、使
用後の溶媒を上記またはの方法で回収し、再循環し
ながら連続式または半連続式操業 (即ち、原料の1,4-DM
N と分子状酸素とを反応系に連続的に供給して反応を行
う) で酸化反応を行う場合に有用である。このような操
業形態では、溶媒の再循環による水分の増大で、触媒液
中の水分は容易に(1) 式の上限を超えてしまい、反応へ
の悪影響が起こっていた。本発明では、回収溶媒を用い
て調製した触媒液中の水分が下記(1) 式を満足するよう
に、回収された溶媒中の水分を適当な脱水手段により制
御した後、反応系に再循環させることで、この悪影響を
避けることができる。
The method for producing 1,4-NDCA according to the present invention is, in particular, such that the solvent after use is recovered by the above method or, and is continuously or semi-continuously operated by recirculating (ie, 1,4 -DM
It is useful when the oxidation reaction is carried out by continuously supplying N and molecular oxygen to the reaction system to carry out the reaction. In such an operating mode, the water content in the catalyst solution easily exceeds the upper limit of the equation (1) due to the increase in water content due to the recirculation of the solvent, which adversely affects the reaction. In the present invention, the water in the recovered solvent is controlled by an appropriate dehydrating means so that the water in the catalyst solution prepared using the recovered solvent satisfies the following formula (1), and then recycled to the reaction system. By doing so, this adverse effect can be avoided.

【0038】即ち、本発明によれば、(1) 式を指標とし
て溶媒回収時の溶媒の脱水の程度および/または反応圧
力を決定することにより、水分による酸化反応への妨害
を確実に防止することができ、高品質の1,4-NDCAを安定
して、高収率で製造することができる。
That is, according to the present invention, the degree of dehydration of the solvent and / or the reaction pressure at the time of solvent recovery is determined by using the formula (1) as an index, thereby reliably preventing the interference of water with the oxidation reaction. Therefore, high-quality 1,4-NDCA can be stably produced in a high yield.

【0039】[0039]

【実施例】実施例1 攪拌機、ガス吹込み管、還流冷却器付き排ガス抜出し
管、原料導入管、および温度計を取り付けた内容積500
mlのチタン製オートクレーブに、水分0.2 重量%の氷酢
酸300 g、酢酸コバルト4水和物3.73g、酢酸マンガン
4水和物3.68g、臭化カリウム1.79gからなる触媒液
(水分0.9 重量%) を仕込んだ。
EXAMPLES Example 1 Internal volume 500 equipped with a stirrer, a gas injection pipe, an exhaust gas extraction pipe with a reflux condenser, a raw material introduction pipe, and a thermometer
A catalyst solution consisting of 300 g of glacial acetic acid with a water content of 0.2% by weight, 3.73 g of cobalt acetate tetrahydrate, 3.68 g of manganese acetate tetrahydrate and 1.79 g of potassium bromide in a titanium autoclave of ml.
(Water content 0.9% by weight) was charged.

【0040】雰囲気を窒素で置換した後、攪拌下に加熱
して140 ℃まで昇温させてから、純度95.3重量%の1,4-
DMN を0.3 g/分の流量で原料導入管を通じて供給し始め
た。1,4-DMN の供給開始から5分後に、空気を排ガス流
量が1.0 リットル/分となるようにガス吹込み管を通じ
て導入し始め、反応系を温度140 ℃、圧力10 Kg/cm2Gに
保ち、4時間で合計70.2gの1,4-DMN を装入した。この
場合、 (P+1)/W=12であった。
After replacing the atmosphere with nitrogen, the mixture was heated with stirring to 140 ° C., and then 1,4-containing 94.3% by weight of 1,4-purity.
DMN was started to be fed through the raw material introduction pipe at a flow rate of 0.3 g / min. Five minutes after starting the supply of 1,4-DMN, air was introduced through the gas injection tube so that the exhaust gas flow rate was 1.0 liter / minute, and the reaction system was heated to 140 ° C and the pressure to 10 Kg / cm 2 G. Hold and charge a total of 70.2 g of 1,4-DMN in 4 hours. In this case, (P + 1) / W = 12.

【0041】1,4-DMN の装入終了後、直ちに空気の導入
を停止し、オートクレーブを冷却した。冷却後、内容物
を取り出して結晶を濾別し、ケーキ (粗製1,4-NDCA) と
濾液とを得た。得られたケーキを同体積の酢酸で洗浄し
た後、水洗し、真空乾燥した。こうして回収された1,4-
NDCAを秤量した後、その一部をメチルエステル化してガ
スクロマトグラフにて分析し、収率および純度を求め
た。得られた結果を表1にまとめて示した。
Immediately after the charging of 1,4-DMN, the introduction of air was stopped and the autoclave was cooled. After cooling, the contents were taken out and the crystals were filtered off to obtain a cake (crude 1,4-NDCA) and a filtrate. The obtained cake was washed with the same volume of acetic acid, washed with water, and dried under vacuum. 1,4-collected in this way
After weighing NDCA, a part of the NDCA was methyl esterified and analyzed by gas chromatography to determine the yield and purity. The results obtained are summarized in Table 1.

【0042】比較例1 実施例1で得られた濾液を蒸留して、水分4.3 重量%の
酢酸を回収した。この回収酢酸を使用した以外は実施例
1と同様の方法で、1,4-DMN の酸化反応を行った。回収
酢酸により調製した触媒液の水分は4.8 重量%、 (P+1)
/W=2.3 であった。得られた1,4-NDCAは純度が低く、色
も褐色であって、酸析精製をしても着色はほとんど除け
なかった。
Comparative Example 1 The filtrate obtained in Example 1 was distilled to recover acetic acid having a water content of 4.3% by weight. The oxidation reaction of 1,4-DMN was carried out in the same manner as in Example 1 except that this recovered acetic acid was used. The water content of the catalyst solution prepared with recovered acetic acid was 4.8% by weight, (P + 1)
/W=2.3. The obtained 1,4-NDCA had a low purity and a brown color, and the coloring could hardly be removed even after the purification by acid precipitation.

【0043】実施例2 実施例1と同様に実施した酸化反応により反応生成物の
ケーキから分離された濾液を蒸留し、水分5.0 重量%の
酢酸を回収した。この回収酢酸を使用し、圧力を30 kg/
cm2Gに高めて1,4-DMN の酸化反応を実施例1と同様に実
施した。但し、圧力の変更に伴って、排ガス流量を3.0
リットル/分、原料供給速度を0.6 g/分、原料装入時間
を2時間にそれぞれ変更した。また、臭化カリウム量を
0.89gに変更した。この場合の触媒液の水分は5.6 重量
%、 (P+1)/W=5.5 であった。表1に示した通り、比較
例1より収率が約20モル%も向上し、生成物の純度や色
も大幅に改善された。
Example 2 The filtrate separated from the cake of the reaction product by the oxidation reaction carried out in the same manner as in Example 1 was distilled to recover acetic acid having a water content of 5.0% by weight. Using this recovered acetic acid, the pressure is 30 kg /
The oxidation reaction of 1,4-DMN was carried out in the same manner as in Example 1 by increasing it to cm 2 G. However, the exhaust gas flow rate will be reduced to 3.0 with the change in pressure.
L / min, raw material supply rate was changed to 0.6 g / min, and raw material charging time was changed to 2 hours. In addition, the amount of potassium bromide
Changed to 0.89g. In this case, the water content of the catalyst solution was 5.6% by weight and (P + 1) /W=5.5. As shown in Table 1, the yield was improved by about 20 mol% as compared with Comparative Example 1, and the purity and color of the product were significantly improved.

【0044】実施例3 実施例1と同様に実施した酸化反応により反応生成物の
ケーキから分離された濾液を精密蒸留し、水分0.3 重量
%の酢酸を回収した。この回収酢酸を使用し、実施例1
と同じ条件下で1,4-DMN の酸化反応を実施した。この場
合の触媒液の水分は1.0 重量%、 (P+1)/W=11であっ
た。表1に示した。
Example 3 The filtrate separated from the cake of the reaction product by the oxidation reaction carried out in the same manner as in Example 1 was subjected to precision distillation to recover acetic acid having a water content of 0.3% by weight. Using this recovered acetic acid, Example 1
The oxidation reaction of 1,4-DMN was carried out under the same conditions as above. In this case, the catalyst liquid had a water content of 1.0% by weight and (P + 1) / W = 11. The results are shown in Table 1.

【0045】実施例4 実施例1と同様に実施した酸化反応により反応生成物の
ケーキから分離された濾液を精密蒸留し、水分2.6 重量
%の酢酸を回収した。この回収酢酸を使用し、実施例1
と同じ条件下で1,4-DMN の酸化反応を実施した。この場
合の触媒液の水分は3.2 重量%、 (P+1)/W=3.4 であっ
た。結果を表1に示した。
Example 4 The filtrate separated from the cake of the reaction product by the oxidation reaction carried out in the same manner as in Example 1 was precision distilled to recover acetic acid having a water content of 2.6% by weight. Using this recovered acetic acid, Example 1
The oxidation reaction of 1,4-DMN was carried out under the same conditions as above. In this case, the water content of the catalyst solution was 3.2% by weight and (P + 1) /W=3.4. The results are shown in Table 1.

【0046】[0046]

【表1】 [Table 1]

【0047】実施例5 攪拌機、ガス吹込み管、還流冷却器付き排ガス抜出し
管、原料導入管、反応液抜き出し管、および温度計を有
する内容積17リットルのチタンライニング製反応釜を装備し
た連続式酸化反応設備の反応釜に、水分2.7 重量%の回
収酢酸、酢酸コバルト4水和物、酢酸マンガン4水和
物、および臭化カリウムを用いて調製した触媒液 (Co、
Mn、Brの各原子の濃度がそれぞれ0.05グラム原子/kg、
水分3.4 重量%) を3.3 kg/時間、純度95.3%の1,4-DM
N を0.58 kg/時間、空気を1.6 Nm3/時間の流量で供給
し、反応温度140 ℃、反応圧力10 kg/cm2G、滞留時間2.
5 時間の条件で連続的に酸化反応させた。この場合、
(P+1)/W=3.2 であった。4.3 kg/時間の流量で連続的
に抜き出した反応液を冷却し、結晶を濾別し、実施例1
と同様に処理した後、分析した。得られた1,4-NDCAは淡
黄色で、純度は98.6%であり、収率は77.9モル%であっ
た。
Example 5 A continuous system equipped with a stirrer, a gas injection pipe, an exhaust gas extraction pipe with a reflux condenser, a raw material introduction pipe, a reaction liquid extraction pipe, and a titanium-lined reaction kettle having an internal volume of 17 liters and having a thermometer. A catalyst solution (Co, Co, prepared by using recovered acetic acid having a water content of 2.7% by weight, cobalt acetate tetrahydrate, manganese acetate tetrahydrate, and potassium bromide in a reaction kettle of an oxidation reaction facility (Co,
The concentration of each atom of Mn and Br is 0.05 gram atom / kg,
Water (3.4% by weight) 3.3 kg / hr, purity 95.3% 1,4-DM
N was supplied at a flow rate of 0.58 kg / hour and air was supplied at a flow rate of 1.6 Nm 3 / hour, the reaction temperature was 140 ° C, the reaction pressure was 10 kg / cm 2 G, and the residence time was 2.
The oxidation reaction was continuously carried out under the condition of 5 hours. in this case,
(P + 1) /W=3.2. The reaction liquid continuously withdrawn at a flow rate of 4.3 kg / hour was cooled, and the crystals were separated by filtration.
After the same treatment as described above, it was analyzed. The obtained 1,4-NDCA was pale yellow, the purity was 98.6%, and the yield was 77.9 mol%.

【0048】[0048]

【発明の効果】1,4-ジ低級アルキルナフタレンを低級脂
肪族カルボン酸、遷移金属塩および臭素化合物からなる
触媒液中で分子状酸素により酸化して1,4-NDCAを製造す
る方法において、触媒液の水分と反応圧力が前記(1) 式
を満たす条件下で酸化することにより、所望の圧力で収
率よく高品位の1,4-NDCAを製造することができる。
The method for producing 1,4-NDCA by oxidizing 1,4-di-lower alkylnaphthalene with molecular oxygen in a catalyst solution consisting of a lower aliphatic carboxylic acid, a transition metal salt and a bromine compound, By oxidizing under conditions where the water content of the catalyst solution and the reaction pressure satisfy the above formula (1), it is possible to produce high-quality 1,4-NDCA at a desired pressure in a high yield.

【0049】特に反応圧力を、使用する設備仕様などの
制約により低く抑える必要がある場合には、前記(1) 式
に従うように触媒液の水分を低くするだけで、高収率で
高品位の1,4-NDCAを確実に得ることができる。一方、使
用する触媒液の水分が高い場合 (例えば、回収した溶媒
を使用する場合) でも、前記の(1) 式を満たすように反
応圧力を高くするか、或いは溶媒の水分を適当な脱水手
段で低下させることにより、やはり高収率で高品位の1,
4-NDCAを確実に得ることができる。
In particular, when it is necessary to keep the reaction pressure low due to restrictions such as equipment specifications to be used, simply by lowering the water content of the catalyst solution according to the equation (1), a high yield and high quality can be obtained. It is possible to reliably obtain 1,4-NDCA. On the other hand, even when the water content of the catalyst liquid used is high (for example, when the recovered solvent is used), the reaction pressure should be increased so as to satisfy the above formula (1), or the water content of the solvent should be adjusted by an appropriate dehydrating means. It is also possible to obtain high-quality, high-quality 1,
4-NDCA can be surely obtained.

【0050】このように、本発明によれば、1,4-ジ低級
アルキルナフタレンの液相酸化による1,4-NDCAの製造を
工業的に実施する際に、収率と製品純度の両者を確保す
ることができる反応条件を容易に決定でき、1,4-NDCAを
工業的に有利に製造できるので、染料等の合成中間体と
して安価に供給することが可能となる。
As described above, according to the present invention, both the yield and the product purity are determined when industrially producing 1,4-NDCA by liquid phase oxidation of 1,4-di-lower alkylnaphthalene. The reaction conditions that can be secured can be easily determined, and 1,4-NDCA can be industrially advantageously produced, so that it can be inexpensively supplied as a synthetic intermediate such as a dye.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1,4-ジ低級アルキルナフタレンを、低級
脂肪族カルボン酸を主成分とする溶媒中に少なくとも1
種の遷移金属塩および臭素化合物を含有する触媒液中
で、分子状酸素により酸化して1,4-ナフタレンジカルボ
ン酸を製造する方法において、前記酸化反応を触媒液の
水分と反応圧力とが下記(1) 式を満足する条件下で行う
ことを特徴とする、1,4-ナフタレンジカルボン酸の製造
方法。 (P+1) /W ≧ 3 ・・・・・ (1) ここで、P:反応圧力 (Kg/cm2 G) W:触媒液の水分 (重量%)
1. At least 1 part of 1,4-di-lower alkylnaphthalene in a solvent containing a lower aliphatic carboxylic acid as a main component.
In a method for producing 1,4-naphthalenedicarboxylic acid by oxidizing with molecular oxygen in a catalyst solution containing a certain transition metal salt and a bromine compound, in the oxidation reaction, the water content and the reaction pressure of the catalyst solution are as follows. A method for producing 1,4-naphthalenedicarboxylic acid, which is characterized in that it is carried out under conditions satisfying the formula (1). (P + 1) / W ≧ 3 (1) where P: reaction pressure (Kg / cm 2 G) W: water content of catalyst liquid (% by weight)
【請求項2】 1,4-ジ低級アルキルナフタレンを、低級
脂肪族カルボン酸を主成分とする溶媒中に少なくとも1
種の遷移金属塩および臭素化合物を含有する触媒液中
で、分子状酸素により酸化して1,4-ナフタレンジカルボ
ン酸を製造する方法において、前記酸化反応を1,4-低級
アルキルナフタレンと分子状酸素を反応系に連続的に供
給することにより行い、反応後の溶媒を回収して、酸化
反応中の触媒液の水分と反応圧力とが下記(1) 式を満足
するようにその水分を制御した後、反応系に再循環させ
ることを特徴とする、1,4-ナフタレンジカルボン酸の製
造方法。 (P+1) /W ≧ 3 ・・・・・ (1) ここで、P:反応圧力 (Kg/cm2 G) W:触媒液の水分 (重量%)
2. At least 1 part of 1,4-di-lower alkylnaphthalene in a solvent containing a lower aliphatic carboxylic acid as a main component.
In a method for producing 1,4-naphthalenedicarboxylic acid by oxidizing with molecular oxygen in a catalyst solution containing a certain transition metal salt and a bromine compound, the oxidation reaction is performed with 1,4-lower alkylnaphthalene Oxygen is continuously supplied to the reaction system, the solvent after the reaction is recovered, and the water content of the catalyst solution during the oxidation reaction and the reaction pressure are controlled so that the reaction pressure satisfies the following equation (1). After that, the method for producing 1,4-naphthalenedicarboxylic acid is characterized in that it is recycled to the reaction system. (P + 1) / W ≧ 3 (1) where P: reaction pressure (Kg / cm 2 G) W: water content of catalyst liquid (% by weight)
JP5134344A 1993-06-04 1993-06-04 Production of 1,4-naphthalene dicarboxylic acid Withdrawn JPH06345685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5134344A JPH06345685A (en) 1993-06-04 1993-06-04 Production of 1,4-naphthalene dicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5134344A JPH06345685A (en) 1993-06-04 1993-06-04 Production of 1,4-naphthalene dicarboxylic acid

Publications (1)

Publication Number Publication Date
JPH06345685A true JPH06345685A (en) 1994-12-20

Family

ID=15126166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5134344A Withdrawn JPH06345685A (en) 1993-06-04 1993-06-04 Production of 1,4-naphthalene dicarboxylic acid

Country Status (1)

Country Link
JP (1) JPH06345685A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336640A (en) * 2021-06-07 2021-09-03 黄石市利福达医药化工有限公司 Method for reducing content of 1, 4-naphthalenedicarboxylic acid impurities
CN113461511A (en) * 2021-06-07 2021-10-01 黄石市利福达医药化工有限公司 Preparation method of 1, 4-naphthalenedicarboxylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336640A (en) * 2021-06-07 2021-09-03 黄石市利福达医药化工有限公司 Method for reducing content of 1, 4-naphthalenedicarboxylic acid impurities
CN113461511A (en) * 2021-06-07 2021-10-01 黄石市利福达医药化工有限公司 Preparation method of 1, 4-naphthalenedicarboxylic acid

Similar Documents

Publication Publication Date Title
EP0465100B1 (en) Process for producing high purity isophthalic acid
US5183933A (en) Process for preparing 2,6-naphthalene-dicarboxylic acid
EP0971872B1 (en) Process for preparing 2,6-naphthalenedicarboxylic acid
EP0021747B1 (en) Process for the preparation of terephthalic acid
KR910006326B1 (en) Process for preparing terephthalic acid from para-xylene
JPH0451539B2 (en)
JPS6247864B2 (en)
JPH0259820B2 (en)
EP1003699B1 (en) Purification of difluoromethane by extractive distillation
US4992579A (en) Process for the production of trimellitic acid
US20080293964A1 (en) Process for Preparing High Purity Terephthalic Acid
KR100562436B1 (en) Process for the preparation of high purity dimethyl 2,6-naphthalenedicarboxylate
JPH06345685A (en) Production of 1,4-naphthalene dicarboxylic acid
JP3988501B2 (en) Method for producing 1,4-naphthalenedicarboxylic acid
JP3187212B2 (en) Continuous production method of naphthalenedicarboxylic acid
US4754062A (en) Iron-enhanced selectivity of heavy metal-bromine catalysis in the oxidation of polyalkylaromatics
JPS6323983B2 (en)
JPH0454149A (en) Production of high-purity isophthalic acid
KR800000714B1 (en) Process for the preparation of high grade terephthalic acid
JPS6323982B2 (en)
JP4367591B2 (en) Production of pyromellitic acid
JPH0127055B2 (en)
JPH02164847A (en) Oxidization of 2,6-diisopropylnaphthalene
JPH0357887B2 (en)
JPS598253B2 (en) Production method of high purity terephthalic acid

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905