JPH06331843A - Optical waveguide and its production - Google Patents

Optical waveguide and its production

Info

Publication number
JPH06331843A
JPH06331843A JP13925193A JP13925193A JPH06331843A JP H06331843 A JPH06331843 A JP H06331843A JP 13925193 A JP13925193 A JP 13925193A JP 13925193 A JP13925193 A JP 13925193A JP H06331843 A JPH06331843 A JP H06331843A
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
layer
optical
waveguide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13925193A
Other languages
Japanese (ja)
Inventor
Takeshi Yamaguchi
毅 山口
Naoyuki Kobayashi
直之 小林
Hitoshi Koizumi
等 小泉
Kazuya Sano
一也 佐野
Riyuuji Saikudou
龍司 細工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP13925193A priority Critical patent/JPH06331843A/en
Publication of JPH06331843A publication Critical patent/JPH06331843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide the optical waveguide consisting of an epitaxial film having good crystallinity. CONSTITUTION:A substrate 7 and the optical waveguide layer 10 consist of the same material and a buffer layer 9 of a different kind lower in refractive index than the optical waveguide layer 10 is formed between this substrate 7 and the optical waveguide layer 10. Inexpensive materials having good crystallinity are usable for the substrate 7. Consequently, the epitiaxial film 10 formed of the same material as the material of the substrate 7 has decreased lattice strains and forms highly safe crystals. There is thus an effect of making it possible to obtain the optical waveguide having excellent optical characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信や光情報記録な
どの分野で用いられる光導波路およびその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide used in fields such as optical communication and optical information recording, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】電気光学材料を用いた光変調器や光スイ
ッチなどの光制御素子として使用される光導波路は、周
囲を低屈折率のクラッドと呼ばれる媒質で取り囲まれた
コアと呼ばれる領域の中を、光がその境界面で全反射を
繰り返しながら伝播するような光伝送路である。このよ
うな構造を実現するため、導波路材に応じて種々の形成
方法を用いている。例えば、LiNbO3導波路の場
合、LiNbO3単結晶基板表面にTiを拡散させ、そ
の部分の屈折率を高くすることで導波路を形成する方法
が一般的に取られている。すなわち、LiNbO3単結
晶基板表面に700Å程度のTiを蒸着し、酸素雰囲気
中で基板を1020〜1050℃に加熱してTiの熱拡
散を行って作製する方法である。この方法の場合、基板
を1000℃以上に加熱するため、LiNbO3基板よ
りLi、Oが蒸発し、また、Tiを拡散して導波層にす
るため、導波層の結晶品質が低下し、光の伝播損失、電
気光学定数の劣化や、DCドリフトの問題が生じる。
2. Description of the Related Art An optical waveguide used as an optical control element such as an optical modulator or an optical switch using an electro-optical material is surrounded by a medium called a clad having a low refractive index in a region called a core. Is an optical transmission line through which light propagates while repeating total reflection at the boundary surface. In order to realize such a structure, various forming methods are used depending on the waveguide material. For example, in the case of LiNbO 3 waveguide, LiNbO 3 is diffused Ti a single crystal substrate surface, a method of forming a waveguide by increasing the refractive index of that portion is taken generally. That is, it is a method of depositing Ti of about 700 Å on the surface of a LiNbO 3 single crystal substrate, heating the substrate to 1020 to 1050 ° C. in an oxygen atmosphere, and thermally diffusing Ti. In the case of this method, since the substrate is heated to 1000 ° C. or higher, Li and O are evaporated from the LiNbO 3 substrate, and since Ti is diffused into the waveguide layer, the crystal quality of the waveguide layer is deteriorated, Problems of light propagation loss, deterioration of electro-optical constant, and DC drift occur.

【0003】そこで、Ti拡散法とは別に、図3に示す
ように、低屈折率の基板1上にLiNbO3のエピタキ
シャル膜2を形成し、これを導波層とする試みもなされ
ている。基板材には、LiNbO3よりも屈折率が低
く、格子定数や熱膨張係数の近いLiTaO3が最も有
望である。この作製法は、例えば、応用物理学会学術講
演会予稿集1992年秋17-p-ZV-2に見られるように、
2元イオンビームスパッタリング法で作製することがで
きる。これを図1に基づいて説明すると、2元イオンビ
ームスパッタリング装置は、イオン源3が2台と、L
i、Nb、Oよりなる2つのLi3NbO4ターゲット4
とNb25ターゲット5とで構成されている。そして、
イオン源3、3から1000kVのArイオンビームを
発生させ、それぞれイオンビーム電流IA(mA)とI
B(mA)で、Li3NbO4ターゲット4とNb25
ーゲット5に照射する。このとき、Li3NbO4ターゲ
ット4とNb25ターゲット5で発生したLi、Nb、
Oで構成されるスパッタ粒子が基板温度500℃以上に
加熱されたLiTaO3単結晶基板7上に付着し、エピ
タキシャル成長する。この方法により、LiNbO3
ピタキシャル膜2が屈折率の低いLiTaO3基板1上
に形成され、光導波路を得ることができる。
Therefore, in addition to the Ti diffusion method, as shown in FIG. 3, an attempt has been made to form an epitaxial film 2 of LiNbO 3 on a substrate 1 having a low refractive index and use this as a waveguide layer. LiTaO 3 is the most promising material for the substrate because it has a lower refractive index than LiNbO 3 and has a close lattice constant and thermal expansion coefficient. This production method is described in, for example, the proceedings of the Japan Society of Applied Physics, Proceedings, Autumn 1992, 17-p-ZV-2,
It can be manufactured by a binary ion beam sputtering method. This will be described with reference to FIG. 1. In the binary ion beam sputtering apparatus, two ion sources 3 and L
Two Li 3 NbO 4 targets 4 composed of i, Nb, and O
And Nb 2 O 5 target 5. And
A 1000 kV Ar ion beam is generated from the ion sources 3 and 3, and the ion beam currents IA (mA) and I
The Li 3 NbO 4 target 4 and the Nb 2 O 5 target 5 are irradiated with B (mA). At this time, Li, Nb generated in the Li 3 NbO 4 target 4 and the Nb 2 O 5 target 5
Sputtered particles composed of O adhere to the LiTaO 3 single crystal substrate 7 heated to a substrate temperature of 500 ° C. or higher and grow epitaxially. By this method, the LiNbO 3 epitaxial film 2 is formed on the LiTaO 3 substrate 1 having a low refractive index, and an optical waveguide can be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、LiT
aO3基板上にLiNbO3エピタキシャル膜を形成する
上記方法により得られた光導波路には、次のような問題
点がある。まずエピタキシャル成長が、基板の結晶格子
に支配されて膜の結晶が成長する方法であるため、基板
と膜材料が異物質で格子定数が異なるとき、膜材料が本
来の格子定数と異なって成長してしまう。そのために、
例えば膜材料の屈折率が本来の値と異なってしまうこと
がある。また、LiTaO3基板と、この基板上のLi
NbO3膜との組み合わせのように、基板材が膜材に比
べ、高価でしかも良質の結晶が得にくい場合がある。こ
の理由はLiTaO3とLiNbO3は、融液から種結晶
を用いて結晶成長を行う引き上げ法によって作成される
が、LiTaO3はLiNbO3に比べ融点が高いためと
考えられている。この様に、製造コストが高くかつ結晶
性の悪い基板上に形成された膜は必然的に高価になり、
膜の結晶性も悪くなる。この発明は上記課題を解決する
ことを基本的な目的とし、基板材料に起因する膜の変
質、結晶性の劣化および価格が高価になることを改善す
る光導波路およびその製造方法を提供することを目的と
する。
However, the LiT
The optical waveguide obtained by the above method of forming a LiNbO 3 epitaxial film on an aO 3 substrate has the following problems. First, since epitaxial growth is a method in which the crystal of the film grows by being controlled by the crystal lattice of the substrate, when the substrate and the film material are different substances and have different lattice constants, the film material grows differently from the original lattice constant. I will end up. for that reason,
For example, the refractive index of the film material may be different from the original value. Also, the LiTaO 3 substrate and the Li on this substrate
In some cases, such as a combination with an NbO 3 film, the substrate material is more expensive than the film material and it is difficult to obtain a good quality crystal. The reason for this is thought to be that LiTaO 3 and LiNbO 3 are produced by a pulling method in which crystal growth is performed from a melt using seed crystals, but LiTaO 3 has a higher melting point than LiNbO 3 . As described above, the film formed on the substrate having high manufacturing cost and poor crystallinity is inevitably expensive,
The crystallinity of the film also deteriorates. It is an object of the present invention to provide an optical waveguide and a method for manufacturing the same, which has a basic object to solve the above problems, and which can prevent deterioration of a film due to a substrate material, deterioration of crystallinity, and cost increase. To aim.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本願発明の光導波路は、電気光学材料または誘電体
からなる結晶基板に、エピタキシャル成長によって光導
波層が形成された光導波路において、基板と光導波層が
同一材料からなり、この基板と光導波層の間に、光導波
層よりも屈折率が低い異種の電気光学材料または誘電体
材料からなるバッファ層が形成されていることを特徴と
する。第2の発明の光導波路は、基板および光導波層が
LiNbO3で構成されており、バッファ層がLiTa
3で構成されていることを特徴とする。
In order to solve the above-mentioned problems, an optical waveguide of the present invention is an optical waveguide in which an optical waveguide layer is formed by epitaxial growth on a crystal substrate made of an electro-optical material or a dielectric. The optical waveguide layer is made of the same material, and between the substrate and the optical waveguide layer, a buffer layer made of a different electro-optical material or dielectric material having a lower refractive index than the optical waveguide layer is formed. To do. In the optical waveguide of the second invention, the substrate and the optical waveguide layer are composed of LiNbO 3 , and the buffer layer is LiTa.
It is characterized by being composed of O 3 .

【0006】また、本願発明の光導波路の製造方法は、
電気光学材料または誘電体からなる結晶基板に、エピタ
キシャル成長によって光導波層を形成する光導波路の製
造方法において、前記基板上に、基板材料と格子定数お
よび熱膨張係数が近い異種の材料をエピタキシャル成長
させてバッファ層を形成し、このバッファ層上に基板と
同一材料で光導波層をエピタキシャル成長させて、基板
と光導波層との間に、光導波層よりも屈折率が低いバッ
ファ層を介設したことを特徴とする。上記基板の電気光
学材料または誘電体としては、安価でしかも結晶性の優
れたLiNbO3を例示することができる。このバッフ
ァ層の格子定数は、エピタキシャル成長方法が基板の結
晶格子に支配されて結晶成長するという方法であるた
め、基板に比較的近いものとするのが望ましい。このバ
ッファ層の上に、基板と同じ材料の膜をエピタキシャル
成長させれば基板と格子定数のほぼ一致した膜が得ら
れ、歪がなく結晶性のよい光導波層を得ることができ
る。
The method of manufacturing the optical waveguide of the present invention is
In a method of manufacturing an optical waveguide in which an optical waveguide layer is formed by epitaxial growth on a crystal substrate made of an electro-optical material or a dielectric, a heterogeneous material having a lattice constant and a thermal expansion coefficient close to that of the substrate material is epitaxially grown on the substrate. A buffer layer is formed, an optical waveguide layer is epitaxially grown on the buffer layer with the same material as the substrate, and a buffer layer having a lower refractive index than the optical waveguide layer is interposed between the substrate and the optical waveguide layer. Is characterized by. As the electro-optical material or the dielectric of the substrate, LiNbO 3 which is inexpensive and has excellent crystallinity can be exemplified. The lattice constant of this buffer layer is a method in which the epitaxial growth method is a method in which crystal growth is controlled by the crystal lattice of the substrate, and therefore it is desirable to be relatively close to the substrate. By epitaxially growing a film made of the same material as the substrate on this buffer layer, a film having a lattice constant substantially matching that of the substrate can be obtained, and an optical waveguide layer having no distortion and good crystallinity can be obtained.

【0007】[0007]

【作用】本発明の方法に従って、安価でかつ結晶性の優
れた材料を採用し、これを基板と光導波層とに使用し、
かつ両者より屈折率の低い異種材料からなるバッファ層
を両者の間に設けた光導波路を作製することにより、結
晶性の悪い基板を用いた場合に生じる基板の欠陥に起因
する膜の変質、結晶性の劣化を改善することができる。
すなわち結晶性の優れた基板の上にエピタキシャル成長
させた、基板と異種のバッファ層の上に、さらにエピタ
キシャル成長させた膜は、基板の結晶性をそのまま受け
継ぎ結晶性の良好なものとなる。
According to the method of the present invention, an inexpensive and excellent crystallinity material is used, which is used for the substrate and the optical waveguide layer,
Moreover, by producing an optical waveguide in which a buffer layer made of a different material having a lower refractive index than both is provided between the two, the deterioration of the film due to the defect of the substrate caused by the substrate defect generated when the substrate with poor crystallinity, the crystal It is possible to improve the deterioration of sex.
That is, a film epitaxially grown on a substrate having excellent crystallinity and further epitaxially grown on a buffer layer of a different type from the substrate inherits the crystallinity of the substrate as it is and has good crystallinity.

【0008】[0008]

【実施例】次に、本発明の実施例について図1を用いて
説明する。先ず、表面を光学研磨したZカットLiNb
3単結晶を基板7としてスパッタリング装置8内に設
置する。この状態では、基板7の温度は室温に保たれて
いる。なお、基板7の常光屈折率は、スパッタリング装
置8内への設置前に、アベレス法により測定したとこ
ろ、2.28であった。次いで、2台のカウフマンイオ
ン源3、3から加速電圧1000VのArイオンビーム
6を発生させて、Li2CO3ターゲット4と、Ta25
ターゲット5にそれぞれイオンビーム電流30mAで照
射して、2つのターゲットからLi、Ta、Oのスパッ
タ粒子を発生させ、LiNbO3単結晶基板7上に付着
させた。次に、この試料をスッパタリング装置8から取
り出し、酸素中にて600℃、3hrで熱処理すること
により結晶化及び脱二酸化炭素を行なった。 この膜9
の常光屈折率をプリズムカプラー法により測定したとこ
ろ2.175であった。
EXAMPLE Next, an example of the present invention will be described with reference to FIG. First, Z-cut LiNb whose surface is optically polished
The O 3 single crystal is set as the substrate 7 in the sputtering device 8. In this state, the temperature of the substrate 7 is kept at room temperature. The ordinary refractive index of the substrate 7 was 2.28 as measured by the Abeles method before being installed in the sputtering device 8. Then, an Ar ion beam 6 with an acceleration voltage of 1000 V is generated from the two Kauffman ion sources 3 and 3, and a Li 2 CO 3 target 4 and Ta 2 O 5 are generated.
The targets 5 were respectively irradiated with an ion beam current of 30 mA to generate sputtered particles of Li, Ta, and O from the two targets, and the sputtered particles were deposited on the LiNbO 3 single crystal substrate 7. Next, this sample was taken out from the spattering apparatus 8 and heat-treated in oxygen at 600 ° C. for 3 hours to perform crystallization and decarbonization. This film 9
The ordinary refractive index was measured by the prism coupler method and found to be 2.175.

【0009】このようにしてLiNbO3単結晶上にL
iTaO3膜9をバッファ層として形成した試料を、ス
パッタリング装置8内に再度基板として設置し、基板温
度を480℃に上昇させた。なお、ターゲット4、5
は、それぞれLi3NbO4およびNb25に変更してお
く。次に、カウフマン型イオン源3、3から加速電圧1
000VのArイオンビーム6を発生させ、イオンビー
ム電流を、Li3NbO4ターゲット4は21mA、Nb
25ターゲット5は38mAに設定し、2元同時イオン
ビームスパッタ法により、基板上にLiNbO3膜10
を気相エピタキシャル成長させた。このようにして光導
波層として作成したLiNbO3膜10の常光屈折率は
2.28であった。本方法により得られた膜10を反射
高速電子線回折およびX線回折により観察したところ、
C軸方向にエピタキシャル成長した結晶性の良好な単結
晶薄膜であることが確認され、プリズム結合によりHe
−Neレーザ光を導入し、光伝播損失を測定したところ
1.0dB/cm以下で、非常に高効率であった。
In this way, L was formed on the LiNbO 3 single crystal.
The sample in which the iTaO 3 film 9 was formed as a buffer layer was placed again as a substrate in the sputtering device 8 and the substrate temperature was raised to 480 ° C. The targets 4, 5
Are changed to Li 3 NbO 4 and Nb 2 O 5 , respectively. Next, the accelerating voltage 1 from the Kaufman type ion sources 3 and 3.
The Ar ion beam 6 of 000 V is generated and the ion beam current is set to 21 mA for the Li 3 NbO 4 target 4 and Nb.
The 2 O 5 target 5 was set to 38 mA, and the LiNbO 3 film 10 was formed on the substrate by the binary simultaneous ion beam sputtering method.
Was vapor-phase epitaxially grown. The ordinary light refractive index of the LiNbO 3 film 10 thus formed as the optical waveguide layer was 2.28. When the film 10 obtained by this method was observed by reflection high-energy electron diffraction and X-ray diffraction,
It was confirmed that the single crystal thin film was epitaxially grown in the C-axis direction and had good crystallinity.
When the -Ne laser light was introduced and the light propagation loss was measured, it was 1.0 dB / cm or less, and the efficiency was very high.

【0010】[0010]

【発明の効果】以上説明したように本願発明の光導波路
によれば、基板に安価で結晶性の良い材料を用い(Li
NbO3等)、その上にバッファ層として異種材料(L
iTaO3等)をエピタキシャル成長させることによ
り、その上に基板と同一材料で形成されたエピタキシャ
ル膜(LiNbO3等)は格子の歪が少なく、完全性の
高い結晶となり、低コストでしかも光学特性の優れた光
導波路(LINbO3等)が得られる効果がある。
As described above, according to the optical waveguide of the present invention, an inexpensive material having good crystallinity is used for the substrate (Li
NbO 3 etc.) and a different material (L
By epitaxially growing (iTaO 3 etc.), an epitaxial film (LiNbO 3 etc.) formed on the same material as the substrate has a small lattice distortion, becomes a crystal with high integrity, and has low cost and excellent optical characteristics. There is an effect that an optical waveguide (LINbO 3 etc.) can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、この発明の製造に用いられる装置の概
略図である。
FIG. 1 is a schematic view of an apparatus used for manufacturing the present invention.

【図2】図2は、本発明により得られる光導波路の断面
図である。
FIG. 2 is a sectional view of an optical waveguide obtained by the present invention.

【図3】図3は、従来の導波路の一例を示す拡大断面図
である。
FIG. 3 is an enlarged cross-sectional view showing an example of a conventional waveguide.

【符号の説明】[Explanation of symbols]

3 イオン源 7 基板 8 イオンスパッタリング装置 9 LiTaO3膜 10 LiNbO33 Ion Source 7 Substrate 8 Ion Sputtering Device 9 LiTaO 3 Film 10 LiNbO 3 Film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐野 一也 千葉県四街道市鷹の台1丁目3番 株式会 社日本製鋼所内 (72)発明者 細工藤 龍司 千葉県四街道市鷹の台1丁目3番 株式会 社日本製鋼所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuya Sano 1-3, Takanodai, Yotsukaido, Chiba Stock Company Japan Steel Works (72) Inventor Ryuji Makoto 1-3, Takanodai, Yotsukaido, Chiba Stock Company Inside Japan Steel Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電気光学材料または誘電体からなる結晶
基板に、エピタキシャル成長によって光導波層が形成さ
れた光導波路において、基板と光導波層が同一材料から
なり、この基板と光導波層の間に、光導波層よりも屈折
率が低い異種の電気光学材料または誘電体材料からなる
バッファ層が形成されていることを特徴とする光導波路
1. In an optical waveguide in which an optical waveguide layer is formed by epitaxial growth on a crystal substrate made of an electro-optical material or a dielectric, the substrate and the optical waveguide layer are made of the same material, and between the substrate and the optical waveguide layer. And an optical waveguide having a buffer layer formed of a different electro-optical material or dielectric material having a refractive index lower than that of the optical waveguide layer.
【請求項2】 基板および光導波層がLiNbO3で構
成されており、バッファ層がLiTaO3で構成されて
いることを特徴とする請求項1記載の光導波路
2. The optical waveguide according to claim 1, wherein the substrate and the optical waveguide layer are made of LiNbO 3 , and the buffer layer is made of LiTaO 3.
【請求項3】 電気光学材料または誘電体からなる結晶
基板に、エピタキシャル成長によって光導波層を形成す
る光導波路の製造方法において、前記基板上に、基板材
料と格子定数および熱膨張係数が近い異種の材料をエピ
タキシャル成長させてバッファ層を形成し、このバッフ
ァ層上に基板と同一材料で光導波層をエピタキシャル成
長させて、基板と光導波層との間に、光導波層よりも屈
折率が低いバッファ層を介設したことを特徴とする光導
波路の製造方法
3. A method of manufacturing an optical waveguide in which an optical waveguide layer is formed by epitaxial growth on a crystal substrate made of an electro-optical material or a dielectric, wherein the substrate material has a different lattice constant and thermal expansion coefficient from each other. A buffer layer is formed by epitaxially growing a material, an optical waveguide layer is epitaxially grown on the buffer layer with the same material as the substrate, and a buffer layer having a lower refractive index than the optical waveguide layer is provided between the substrate and the optical waveguide layer. A method for manufacturing an optical waveguide, characterized in that
JP13925193A 1993-05-19 1993-05-19 Optical waveguide and its production Pending JPH06331843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13925193A JPH06331843A (en) 1993-05-19 1993-05-19 Optical waveguide and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13925193A JPH06331843A (en) 1993-05-19 1993-05-19 Optical waveguide and its production

Publications (1)

Publication Number Publication Date
JPH06331843A true JPH06331843A (en) 1994-12-02

Family

ID=15240965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13925193A Pending JPH06331843A (en) 1993-05-19 1993-05-19 Optical waveguide and its production

Country Status (1)

Country Link
JP (1) JPH06331843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6950591B2 (en) * 2002-05-16 2005-09-27 Corning Incorporated Laser-written cladding for waveguide formations in glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6950591B2 (en) * 2002-05-16 2005-09-27 Corning Incorporated Laser-written cladding for waveguide formations in glass

Similar Documents

Publication Publication Date Title
US5209917A (en) Lithium niobate single crystal thin film and production method thereof
US4329016A (en) Optical waveguide formed by diffusing metal into substrate
US4849080A (en) Method of manufacturing an optical stripline waveguide for non-reciprocal optical components
US4037005A (en) Method of making optical waveguides and product by the process
JPH06331843A (en) Optical waveguide and its production
NL9301058A (en) OPTICAL SINGLE-MODE WAVE GUIDE.
JP4665162B2 (en) Optical element and manufacturing method thereof
JPH06308343A (en) Optical waveguide and its production
US5453325A (en) Nonlinear optical waveguide multilayer structure
JP4309571B2 (en) Optical waveguide device
JPH05313033A (en) Optical waveguide, manufacture thereof and optical element
JP3203003B2 (en) Optical wavelength conversion element
JP3128332B2 (en) Method of forming diffused optical waveguide with improved surface morphology
JP2945107B2 (en) Optical wavelength conversion element and method of manufacturing the same
JPH05896A (en) Thin lithium niobate single crystal film
Haruna et al. Epitaxial growth of LiNbO3 optical-waveguide films by excimer laser ablation
JPH04191711A (en) Optical wave guide passage
JPH0412094A (en) Thin film of lithium niobate single crystal
JPH05150128A (en) Optical waveguide and production thereof
JP3121361B2 (en) Ti-containing lithium niobate thin film and method for producing the same
JPH05127033A (en) Optical waveguide and its production
JP2001166164A (en) LiNbO3 THIN-FILM OPTICAL WAVEGUIDE DEVICE
JPH0723927B2 (en) Method of manufacturing optical waveguide
JPH0812490A (en) Production of single crystal film
JPH09100200A (en) Single crystal epitaxial film, single crystal product and second-harmonic generating element