JPH06330101A - Production of cu-cr based composite material - Google Patents

Production of cu-cr based composite material

Info

Publication number
JPH06330101A
JPH06330101A JP5146948A JP14694893A JPH06330101A JP H06330101 A JPH06330101 A JP H06330101A JP 5146948 A JP5146948 A JP 5146948A JP 14694893 A JP14694893 A JP 14694893A JP H06330101 A JPH06330101 A JP H06330101A
Authority
JP
Japan
Prior art keywords
powder
composite material
sintered
sintering
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5146948A
Other languages
Japanese (ja)
Other versions
JP3321906B2 (en
Inventor
Noboru Uenishi
昇 上西
Yoshinobu Takeda
義信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14694893A priority Critical patent/JP3321906B2/en
Publication of JPH06330101A publication Critical patent/JPH06330101A/en
Application granted granted Critical
Publication of JP3321906B2 publication Critical patent/JP3321906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a Cu-Cr based composite material having fine structure economically by cold-forming and then sintering a mechanically alloying powder comprising a Cu powder and a Cr powder in a specified ratio and thereafter cold-forging and re-sintering the resulting sintered material. CONSTITUTION:The Cu-Cr based composite material is produced as follows. A 5 to 50wt.% Cr powder and the remainder of a Cu powder are blended together and if necessary, a 0.01 to 5wt.% powder such as Bi, Zr, B, Cr2O3, Cr3C2 is further added to the blend, and then the resulting powdery mixture is subjected to mechanical alloying in an inert gas atmosphere. The mechanically alloying powder thus obtained is cold-formed into compacts and if necessary, the compacts are calcined at a temp. higher than 1/3 (the melting point of the alloy), and thereafter the compacts are sintered at >=500 deg.C, in a gaseous hydrogen atmosphere or under vacuum. Then the sintered material is cold-forged at <=100 deg.C and the forged material is re-sintered at >=500 deg.C and further subjected to aging treatment and extrusion or HIP treatment. Thus the Cu-Cr based composite material that has the structure consisting of fine separated crystalline phases of Cu and Cr which do not form a solid solution together with each other and excellent characteristics as the electrode material for the vacuum circuit-breaker, etc., can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空遮断器の電極材料
等として有用な、微細な析出相からなる組織を持つCu
−Cr系複合材料の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to Cu having a structure composed of a fine precipitation phase, which is useful as an electrode material for a vacuum circuit breaker.
-A method for manufacturing a Cr-based composite material.

【0002】[0002]

【従来の技術】平衡状態図において互いに非固溶の2相
以上が共存する組成の合金又は複合材料を作製するため
の従来からの技術としては、鋳造法や粉末冶金法があ
る。例えば、真空遮断器の電極材料として最近提案され
ているCu−Cr系合金は、CuとCrが互いに殆ど固
溶しない2相分離型の合金系であり、鋳造法か粉末冶金
法によって製造される。
2. Description of the Related Art Conventional techniques for producing an alloy or composite material having a composition in which two or more non-solid solution phases coexist in an equilibrium diagram include a casting method and a powder metallurgy method. For example, a Cu-Cr alloy recently proposed as an electrode material for a vacuum circuit breaker is a two-phase separation type alloy system in which Cu and Cr hardly form a solid solution with each other, and is manufactured by a casting method or a powder metallurgy method. .

【0003】しかし、鋳造法によると、溶解凝固の過程
を取るため析出した組織が粗くなってしまう欠点があっ
た。これは、CuとCrが互いに殆ど固溶しないため、
冷却速度が遅いと鋳造凝固過程で安定な合金組成、即ち
ほぼ純Cuと純Crとが粗大に混合した組成を形成して
しまう事に原因がある。このため、真空遮断器の電極材
料では微細なCr粒構造を持つことが、接触抵抗、截断
値、硬度等の電極として優れた特性を得るうえで必要な
事は判っていても、そのような微細な組織を実現出来な
かった。
However, according to the casting method, there is a drawback that the deposited structure becomes coarse because of the process of melting and solidification. This is because Cu and Cr hardly form a solid solution with each other.
A slow cooling rate causes a stable alloy composition during the casting and solidification process, that is, a composition in which substantially pure Cu and pure Cr are coarsely mixed. Therefore, even though it is known that the electrode material of the vacuum circuit breaker has a fine Cr grain structure in order to obtain excellent characteristics such as contact resistance, cutoff value and hardness, as an electrode, I could not realize a fine structure.

【0004】又、粉末冶金法によりCu−Cr系の複合
合金を作製する場合には、Cu粉末とCr粉末を混合
し、成形した後に焼結するが、焼結材には気孔が多く残
留するために密度が上がり難かったり、より困難な問題
としてCr粉の表面が酸化物で覆われているために、焼
結してもCr粒とCuマトリックスの間の結合が十分で
なかった。従って、真空遮断器の電極材料としてアーク
による衝撃や開閉負荷に耐え得るだけの強度及び硬度が
得られなかった。つまり、CuマトリックスからCr粒
子が脱離し、電極表面の肌荒れの原因となったり、接触
抵抗値が劣化したり、截断値が安定しない等の原因とな
っていた。
When a Cu-Cr-based composite alloy is produced by powder metallurgy, Cu powder and Cr powder are mixed, molded and then sintered, but many pores remain in the sintered material. Therefore, it is difficult to increase the density, and as a more difficult problem, the surface of the Cr powder is covered with an oxide, so that the bond between the Cr particles and the Cu matrix was not sufficient even if sintered. Therefore, as the electrode material of the vacuum circuit breaker, it is not possible to obtain the strength and hardness enough to withstand the impact by the arc and the switching load. That is, Cr particles are detached from the Cu matrix, which causes the surface of the electrode to be rough, the contact resistance value is deteriorated, and the cut value is not stable.

【0005】粉末冶金法の一つとして、Cr粉末を焼結
して気孔率の高いスケルトンを作製した後、低融点のC
uをスケルトンの気孔内に溶融含浸させる方法がある。
しかしながら、この溶浸法では微細なCr粒子からなる
構造のスケルトンを得る事が難しいうえ、Cuを溶浸さ
せたスケルトンの気孔内に空隙が残り易いので緻密且つ
強固な組織を得ることが難しく、従って真空遮断器の電
極材料として優れた特性を実現する事は難しかった。
As one of powder metallurgy methods, Cr powder is sintered to prepare a skeleton having a high porosity, and then a C having a low melting point is added.
There is a method of melt impregnating u into the pores of the skeleton.
However, with this infiltration method, it is difficult to obtain a skeleton of a structure composed of fine Cr particles, and since voids are likely to remain in the pores of the skeleton infiltrated with Cu, it is difficult to obtain a dense and strong structure, Therefore, it was difficult to realize excellent characteristics as an electrode material for a vacuum circuit breaker.

【0006】更に、電極特性の改善にBiの添加が有効
である事は知られているが、前記した従来の方法では、
Biが低融点であるためにCu−Cr系合金の焼結過程
や電極材料のロウ付け過程でBiが流出し、電極表面に
流出による空孔を残したり、ロウ付け自体も難しくなる
という問題があった。
Further, it is known that the addition of Bi is effective for improving the electrode characteristics, but in the above-mentioned conventional method,
Since Bi has a low melting point, Bi flows out during the sintering process of the Cu-Cr alloy or the brazing process of the electrode material, leaving holes due to the outflow on the electrode surface, and the brazing itself becomes difficult. there were.

【0007】[0007]

【発明が解決しようとする課題】本発明は、かかる従来
の事情に鑑み、互いに非固溶のCuとCrとの微細な析
出相からなる組織を有し、真空遮断器の電極材料等とし
て優れた特性を持つCu−Cr系複合材料を、経済的に
製造する方法を提供することを目的とする。
In view of such conventional circumstances, the present invention has a structure composed of fine precipitation phases of insoluble Cu and Cr, and is excellent as an electrode material for a vacuum circuit breaker or the like. It is an object of the present invention to provide a method for economically producing a Cu-Cr based composite material having the above characteristics.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供するCu−Cr系複合材料の製造方法
においては、Cu粉末とCr粉末とをCr粉末が5〜5
0重量%となるように配合し、不活性ガス中でメカニカ
ルアロイングし、得られたメカニカルアロイング粉末を
冷間成形し、成形体を水素ガス中又は真空中において5
00℃以上で焼結し、焼結材を100℃以下で冷間鍛造
し、次に鍛造材を500℃以上で再焼結することを特徴
とする。
In order to achieve the above object, in the method for producing a Cu-Cr composite material provided by the present invention, the Cu powder and the Cr powder are 5 to 5%.
0% by weight, and mechanically alloyed in an inert gas, the resulting mechanically alloyed powder is cold-molded, and the molded body is placed in hydrogen gas or in a vacuum.
It is characterized by sintering at 00 ° C or higher, cold forging the sintered material at 100 ° C or lower, and then re-sintering the forged material at 500 ° C or higher.

【0009】[0009]

【作用】CuとCrは互いに非固溶であるが、Cu粉末
とCr粉末のメカニカルアロイング(MAと略記する)
によって、均一な強制固溶体に近い状態を実現すること
が出来る。この状態は非平衡な状態であり、熱力学的に
安定な状態に移ろうとする。本発明者等は、このドライ
ビングフォースを利用し、その合金の融点の1/3以上
の温度で焼鈍することによって、前記強制固溶体から原
子の移動度が制限された状態で析出が起こるため、微細
な組織が得られることを見いだした。尚、ここで合金の
融点とは、マトリックス相を形成するCuの融点を指
す。
Function: Cu and Cr are non-solid solutions with each other, but mechanical alloying of Cu powder and Cr powder (abbreviated as MA)
By this, a state close to a uniform forced solid solution can be realized. This state is a non-equilibrium state and attempts to move to a thermodynamically stable state. The inventors of the present invention utilized this driving force and annealed it at a temperature of ⅓ or more of the melting point of the alloy to cause precipitation in the state in which the mobility of atoms was restricted from the forced solid solution. I found that a different organization could be obtained. Here, the melting point of the alloy means the melting point of Cu forming the matrix phase.

【0010】従って、MA粉末の合金組成における融点
の1/3以上の温度でMA粉末を焼鈍した後、冷間成形
して焼結すれば、極めて微細な組織を有するCu−Cr
系複合材料が得られる。尚、この焼鈍は焼結を兼ねても
良く、即ちMA粉末をそのまま冷間成形し、融点の1/
3以上更に望ましくは1/2以上の温度で且つ焼結可能
な温度、具体的には500℃以上の温度でそのまま焼結
しても良い。焼鈍又は焼結雰囲気は、酸化物や窒化物の
生成を抑制するため、水素ガス又は真空雰囲気を使用す
る。
Therefore, if the MA powder is annealed at a temperature of 1/3 or more of the melting point in the alloy composition of the MA powder, and then cold-formed and sintered, Cu-Cr having an extremely fine structure is obtained.
A composite material is obtained. This annealing may also serve as sintering, that is, the MA powder is cold-formed as it is,
The temperature may be 3 or more, more preferably 1/2 or more and at a temperature at which sintering is possible, specifically, 500 ° C. or more, and the sintering may be performed as it is. As the annealing or sintering atmosphere, hydrogen gas or a vacuum atmosphere is used in order to suppress the formation of oxides and nitrides.

【0011】真空遮断器の電極材料は真空中で用いるた
め、酸素濃度を極力抑える必要がある。従って、Cu粉
末とCr粉末のMAはAr等の不活性ガス中で行い且つ
焼結は水素ガス中又は真空中で行う。しかし、この様に
してMA粉末を焼結しただけでは、MA粉末は高硬度で
焼結性が悪いために粉末同士の良好な焼結状態が得るこ
とが難しく、密度や電気電導度等の点で真空遮断器の電
極材料として要求される特性を満たすことが困難である
ことが判った。
Since the electrode material of the vacuum circuit breaker is used in vacuum, it is necessary to suppress the oxygen concentration as much as possible. Therefore, MA of Cu powder and Cr powder is performed in an inert gas such as Ar, and sintering is performed in hydrogen gas or in vacuum. However, by simply sintering the MA powder in this manner, it is difficult to obtain a good sintered state between the powders because the MA powder has high hardness and poor sinterability, and it is difficult to obtain the density and the electric conductivity. It was found that it is difficult to satisfy the characteristics required as an electrode material for a vacuum circuit breaker.

【0012】そこで、得られた焼結材を熱間で押出加工
したが、この方法では内部にブリスターと呼ばれる空孔
が形成され易いうえ、合金の酸素濃度を低く保つ事が困
難であった。酸化を抑えるためには、焼結材を大気にさ
らすことなく熱間で押し出すか、又は低温で押し出すこ
とが考えられる。しかし、低温押出により酸化を抑制し
ようとすると、押出圧力が装置の限界に近い超高圧とな
るため、技術的にも経済的にも難しく、大型の素材作製
も困難である。
Therefore, the obtained sintered material was extruded hot, but with this method, it was difficult to keep the oxygen concentration of the alloy low, as well as the formation of voids called blisters inside. In order to suppress the oxidation, it is possible to extrude the sintered material hot without exposing it to the atmosphere, or extruding it at a low temperature. However, when trying to suppress oxidation by low temperature extrusion, the extrusion pressure becomes extremely high pressure close to the limit of the apparatus, which is technically and economically difficult, and it is also difficult to produce a large-sized material.

【0013】又、MA粉末の酸化を抑えるため、MA粉
末の固化法として一般に採用されているように、MA粉
末を真空容器中に封入して押出加工しても良いが、この
方法は非常にコスト高であるため、実用的ではない。即
ち、容器が高価であるうえ、粉末を入れた容器を真空に
脱気するためのパイプの溶接や容器の加工組み立て、粉
末を入れた容器を高温に加熱しての脱気や気密封止、更
には押出後の容器の除去が必要であるため、コスト高と
なる。しかも、製造工程が繁雑化するため品質のコント
ロールが不充分となり、製品の信頼性保証が難しい。
Further, in order to suppress the oxidation of the MA powder, the MA powder may be enclosed in a vacuum container and extruded as is generally adopted as a solidification method of the MA powder, but this method is very difficult. High cost makes it impractical. That is, the container is expensive, welding of pipes for degassing the container containing the powder to vacuum, processing and assembly of the container, degassing and hermetic sealing by heating the container containing the powder to a high temperature, Furthermore, since the container after extrusion must be removed, the cost becomes high. Moreover, since the manufacturing process becomes complicated, quality control becomes insufficient, and it is difficult to guarantee product reliability.

【0014】本発明者等は、この様な制約がある中で、
経済的であり、真空遮断器の電極材料とするため酸素濃
度の上昇を抑えながら、Cu−Cr系のMA粉末の焼結
材を緻密化する方法を検討した。その結果、MA粉末
のCr粒子が小さいほど焼結材中に空孔が発生しにくい
傾向があること、MA粉末の焼結材は常温において通
常の非MA粉末の焼結材より硬く且つ変形能が小さいこ
とが常識であるが、Cu−Cr系では必ずしもそうでな
いこと、MA粉末は高硬度であるため成形時には密度
が上がりにくいが、一度焼結した後には鍛造によって密
度が上がり易いことが判明した。
The present inventors, in spite of such restrictions,
A method for densifying a sintered material of Cu-Cr-based MA powder while suppressing an increase in oxygen concentration in order to use it as an electrode material for a vacuum circuit breaker was studied. As a result, the smaller the Cr particles of the MA powder, the less likely voids are formed in the sintered material, and the sintered material of the MA powder is harder and deformable than the normal non-MA powder sintered material at room temperature. It is common knowledge that is small, but it is not necessarily the case in Cu-Cr system, and it is found that the density is difficult to increase during molding because MA powder has high hardness, but the density tends to increase by forging after sintering once. did.

【0015】これらの事実は本発明者等の研究により初
めて明らかにされたものであり、特には焼結によりM
A粉末の微細Cr粒子の硬度が推定で焼結前の600m
Vから焼結後に200mHVまで低下し、軟化の程度が
極めて大きい事実を発見したことによるものである。こ
れら〜の理由により、前記のCu−Cr系のMA粉
末の焼結材を鍛造することにより緻密化が可能であり、
しかも鍛造は100℃以下の低温での冷間鍛造で良いこ
とを見いだした。更に、焼結材の空孔を予め少なくして
おくため、MA粉末中のCr粒子の大きさが平均粒径で
30μm以下となるようにメカニカルアロイングするこ
とが好ましいことも判った。
These facts have been clarified for the first time by the study of the present inventors, and in particular, M is obtained by sintering.
The hardness of the fine Cr particles of the A powder is estimated to be 600 m before sintering.
This is due to the discovery of the fact that the degree of softening was extremely high, decreasing from H V to 200 mH V after sintering. For these reasons, densification is possible by forging the Cu-Cr-based MA powder sintered material.
Moreover, they have found that cold forging at a low temperature of 100 ° C. or less is good. Further, it has been found that it is preferable to mechanically alloy the Cr particles in the MA powder so that the average particle size of the Cr particles is 30 μm or less in order to reduce the pores of the sintered material in advance.

【0016】ところが、この冷間鍛造により密度は上昇
するものの、電気電導度の上昇は不充分である。そこで
更に検討した結果、真空遮断器の電極材料としての要求
を満たす電気電導度を得るためには、冷間鍛造後に再焼
結することが有効であった。再焼結により材料強度が上
昇することが認められ、結合力の向上によって電気電導
度が高められていると考えられる。この再焼結の温度は
500℃以上、好ましくは700℃以上である。又、再
焼結の雰囲気は特に制限はないが、非酸化性雰囲気であ
ることが好ましく、焼結方法は常圧焼結のほかHIP、
ホットプレス等の方法を用いることも出来る。
However, although the density is increased by this cold forging, the increase in electric conductivity is insufficient. As a result of further study, it was found that re-sintering after cold forging was effective in order to obtain electric conductivity satisfying the requirements as an electrode material for a vacuum circuit breaker. It is recognized that the material strength is increased by the re-sintering, and it is considered that the electric conductivity is increased by the improvement of the bonding force. The temperature of this re-sintering is 500 ° C. or higher, preferably 700 ° C. or higher. The atmosphere for re-sintering is not particularly limited, but a non-oxidizing atmosphere is preferable, and the sintering method includes atmospheric pressure sintering, HIP,
A method such as hot pressing can also be used.

【0017】真空遮断器の電極材料として好ましい特性
を得るためBiの含有が有効であることは知られてい
る。従来の方法では低融点のBiが流出して空孔が形成
される問題点があったが、本発明方法によりCu粉末と
Cr粉末にBi粉末を加えてメカニカルアロイングした
MA粉末を使用すれば、Biの流出を防止し、ロウ付け
を容易にすることが出来る。Bi粉末の添加量は粉末全
体の0.01〜5重量%が好ましい。
It is known that the inclusion of Bi is effective in order to obtain preferable characteristics as an electrode material for a vacuum circuit breaker. In the conventional method, there is a problem that Bi having a low melting point flows out to form vacancies. However, if MA powder mechanically alloyed with Cu powder and Cr powder with Bi powder is used according to the method of the present invention, , Bi can be prevented and brazing can be facilitated. The amount of the Bi powder added is preferably 0.01 to 5% by weight based on the whole powder.

【0018】又、Cu粉末とCr粉末に、Zr粉末、B
粉末、酸化クロム粉末又は炭化クロム粉末を加え、メカ
ニカルアロイングすることによって、複合材料の高温強
度を向上させ、電極特性を更に改善する効果が得られ
る。特に酸化クロム粉末又は炭化クロム粉末を加えるこ
とにより、メカニカルアロイングの進行が促進され、よ
り微細なCr粒子が得られる。これらの粉末の添加量も
粉末全体の0.01〜5重量%とすることが好ましい。
In addition, Cu powder and Cr powder, Zr powder, B
By adding powder, chromium oxide powder or chromium carbide powder and mechanically alloying, the effect of improving the high temperature strength of the composite material and further improving the electrode characteristics can be obtained. In particular, by adding chromium oxide powder or chromium carbide powder, the progress of mechanical alloying is promoted and finer Cr particles can be obtained. The addition amount of these powders is also preferably 0.01 to 5% by weight based on the whole powder.

【0019】本発明の複合材料においては、冷間鍛造又
は再焼結により得られた再焼結材を非酸化性雰囲気中に
おいて300〜850℃で時効処理することにより、時
効硬化させることが出来る。又、鍛造材又は再焼結材を
押出加工又はHIP処理して更に緻密化させることも可
能である。この場合の押出やHIP処理では、鍛造材及
び再焼結材が既に95%以上の密度を有し、表面がほぼ
封孔されているので、これを更に容器に真空封入する必
要はなく、鍛造材又は再焼結材をそのままの状態で押出
又はHIP処理して良い。
The composite material of the present invention can be age-hardened by subjecting the re-sintered material obtained by cold forging or re-sintering to an aging treatment at 300 to 850 ° C. in a non-oxidizing atmosphere. . Further, it is possible to further densify the forged material or the re-sintered material by extrusion processing or HIP processing. In the extrusion and HIP processing in this case, since the forged material and the re-sintered material already have a density of 95% or more and the surface is almost sealed, it is not necessary to further vacuum-seal it in the container, The material or the re-sintered material may be extruded or HIPed as it is.

【0020】[0020]

【実施例】実施例1 電解法による粒径20μm以下の純Cu粉末と、粒径7
4μm以下の電解純Cr粉末を重量比でCu:Cr=5
3:47となるように配合し、予備混合後、ボールミル
によりArガス中で40時間のメカニカルアロイング
(MA)を行った。得られたMA粉末中のCr粒子の平
均粒径は7μmであった。このMA粉末を6t/cm2
で冷間成形した後、水素雰囲気中において1000℃で
3時間焼結した。更に、この焼結材を常温にて6t/c
2の圧力で冷間鍛造を行った後、水素雰囲気中にて1
000℃で3時間再焼結することによりCu−Cr系複
合材料を得た。
EXAMPLES Example 1 Pure Cu powder having a particle size of 20 μm or less by an electrolysis method and a particle size of 7
Cu: Cr = 5 by weight ratio of electrolytic pure Cr powder of 4 μm or less
The mixture was blended so as to be 3:47, preliminarily mixed, and then mechanically alloyed (MA) for 40 hours in Ar gas by a ball mill. The average particle size of Cr particles in the obtained MA powder was 7 μm. This MA powder was added at 6 t / cm 2
After cold-forming at 1000 ° C., it was sintered in a hydrogen atmosphere at 1000 ° C. for 3 hours. Furthermore, this sintered material is 6 t / c at room temperature.
After cold forging at a pressure of m 2 , 1 in a hydrogen atmosphere
A Cu—Cr based composite material was obtained by re-sintering at 000 ° C. for 3 hours.

【0021】焼結材、鍛造材及び再焼結材とも、組織中
のCr粒子は粒径が1〜15μmの範囲内にある微細な
組織であることが判った。又、各工程における真密度比
と電気電導度(%IACS)の変化を図1及び図2に示
した。焼結→冷間鍛造→再焼結と工程を進めるに従っ
て、密度及び電気電導度が向上することが判る。尚、冷
間鍛造材を400℃で5時間時効焼鈍したところ、電気
電導度は鍛造材の電気電導度よりも3〜6%IACS増
加した。
It has been found that the Cr particles in the structure of each of the sintered material, the forged material and the re-sintered material have a fine structure having a grain size in the range of 1 to 15 μm. 1 and 2 show changes in the true density ratio and the electric conductivity (% IACS) in each process. It can be seen that the density and electric conductivity improve as the process proceeds from sintering to cold forging to re-sintering. When the cold forged material was annealed at 400 ° C. for 5 hours, the electric conductivity increased by 3 to 6% IACS over the electric conductivity of the forged material.

【0022】得られたCu−Cr系複合材料を真空遮断
器の電極材料として用いたところ、截断値は1Aと低い
値を示した。これに対して、従来の溶浸法によりCr粉
末を焼結して気孔率の高いスケルトンを作製し、このス
ケルトンの気孔内に低融点のCuを溶融含浸させて製造
したCu−Cr系溶浸材の場合、截断値は5Aと高かっ
た。又、溶浸材では切削加工面が脆く、その表面は凹凸
が激しく亀裂も認められたが、本発明の複合材料では切
削加工面が美しく、亀裂もなかった。これらの事実か
ら、本発明のCu−Cr系複合材料は真空遮断器の電極
材料として優れていることが理解できる。
When the obtained Cu--Cr composite material was used as an electrode material for a vacuum circuit breaker, the cutoff value was as low as 1A. On the other hand, Cu-Cr infiltration produced by sintering Cr powder by a conventional infiltration method to produce a skeleton having a high porosity and melt-impregnating the low melting point Cu into the pores of the skeleton. In the case of wood, the cutoff value was as high as 5A. Further, the infiltrated material had a fragile cutting surface, and the surface had severe irregularities and cracks were observed, but the composite material of the present invention had a beautiful cutting surface and had no cracks. From these facts, it can be understood that the Cu—Cr composite material of the present invention is excellent as an electrode material for a vacuum circuit breaker.

【0023】比較例1 実施例1と同じ比率でCu粉末とCr粉末を混合し、M
Aを行わない変わりにV型ミキサーで30分間混合した
混合粉末を使用し、それ以外は実施例1と同様にしてC
u−Cr系複合材料を製造した。
Comparative Example 1 Cu powder and Cr powder were mixed in the same ratio as in Example 1, and M
Instead of performing A, the mixed powder obtained by mixing with a V-type mixer for 30 minutes was used, and otherwise C was the same as in Example 1.
A u-Cr composite material was manufactured.

【0024】比較例の混合粉末はCr粒子の大きさがほ
ぼ原料粉末と同じ大きさで極めて粗大であり、得られた
Cu−Cr系複合材料においても本発明法による冷間鍛
造後の鍛造材よりも空孔が2倍以上多いことが判った。
又、焼結後、鍛造後、再焼結後のいずれの状態において
も、密度が本発明法の場合よりも真密度比で3〜5%低
く、電気電導度も1〜3%IACS低かった。
The mixed powder of the comparative example had Cr particles of almost the same size as the raw material powder and was extremely coarse, and the obtained Cu--Cr composite material was also a forged material after cold forging according to the method of the present invention. It was found that there were more than twice as many holes as
Further, in any state after sintering, after forging, and after re-sintering, the density was 3 to 5% lower in true density ratio and the electric conductivity was 1 to 3% IACS lower than in the case of the method of the present invention. .

【0025】実施例2 実施例1と同じ純Cu粉末と純Cr粉末に、粒径149
μm以下の純Bi粉末を重量比でCu:Cr:Bi=7
5:23:2となるように配合し、予備混合後、アトラ
イターによりArガス中で4時間のMAを行った。得ら
れたMA粉末中のCr粒子の平均粒径は4μmであっ
た。このMA粉末を6t/cm2で冷間成形した後、1
-3Torrの真空中において1000℃で3時間焼結
したところ真密度比は87%となり、焼結材の電気電導
度は35%IACSであった。
Example 2 The same pure Cu powder and pure Cr powder as in Example 1 were added with a particle size of 149
Cu: Cr: Bi = 7 in weight ratio of pure Bi powder having a size of μm or less
The ingredients were blended in a ratio of 5: 23: 2, premixed, and then MA was performed in an Ar gas in an Ar gas for 4 hours. The average particle size of Cr particles in the obtained MA powder was 4 μm. After cold molding this MA powder at 6 t / cm 2 , 1
When sintered at 1000 ° C. for 3 hours in a vacuum of 0 −3 Torr, the true density ratio was 87%, and the electric conductivity of the sintered material was 35% IACS.

【0026】この焼結材を更に100℃において6t/
cm2の圧力で冷間鍛造を行ったところ、真密度比は9
6%に向上した。その後、鍛造材を真空中において10
00℃で3時間再焼結したところ、電気電導度は54%
IACSまで向上した。又、再焼結により得られたCu
−Cr系複合材料中のCr粒子の粒径は1〜14μmの
範囲内であり、微細組織となっていることが確認され
た。
This sintered material was further subjected to 6 t / 100 ° C.
When cold forging was performed at a pressure of cm 2 , the true density ratio was 9
It improved to 6%. Then, the forged material is vacuumed for 10
When re-sintered at 00 ° C for 3 hours, the electric conductivity is 54%.
It improved to IACS. Also, Cu obtained by re-sintering
It was confirmed that the grain size of the Cr particles in the -Cr composite material was within the range of 1 to 14 µm, and that it had a fine structure.

【0027】次に、Cr粉末の比率を23重量%とした
まま、Bi粉末の比率を0、0.005、0.01、0.
05、0.2、0.5、0.1、1.5、5.0、10重量
%と変化させ、上記と同様に本発明によるCu−Cr系
複合材料を製造した。比較のために、同様にBi粉末の
比率を変え、MAを行わない変わりにV型ミキサーで3
0分間混合した混合粉末を使用し、それ以外は実施例2
と同様にしてCu−Cr系複合材料を製造した。
Next, with the Cr powder ratio kept at 23% by weight, the Bi powder ratios were changed to 0, 0.005, 0.01, and 0.0.
The Cu-Cr-based composite material according to the present invention was manufactured in the same manner as above by changing the amount to 05, 0.2, 0.5, 0.1, 1.5, 5.0 and 10% by weight. For comparison, the ratio of Bi powder was changed in the same manner, and the V-type mixer was used instead of MA instead of 3
Example 2 was used except that the mixed powder was mixed for 0 minutes.
A Cu-Cr composite material was manufactured in the same manner as in.

【0028】いずれのBi濃度においても、MAなしの
Cu−Cr系複合材料はCr粒子の粒径が20μm以上
であったが、本発明のMAを実施した複合材料では1〜
14μmの微細組織になっていることが判った。又、B
i濃度が0.01重量%以上になると、MAなしの複合
材料はMAを行った本発明の複合材料より5倍以上も空
孔が多く存在し、ロウ付け性が劣化するなど機械加工性
が低下した。このことから、Biの電極材料に与える効
果が期待される0.2重量%以上の濃度では、本発明に
よるMAを行ったCu−Cr系複合材料が優れているこ
とが判る。
At any Bi concentration, the Cu--Cr based composite material without MA had a grain size of Cr particles of 20 μm or more.
It was found that the microstructure was 14 μm. Also, B
When the i concentration was 0.01% by weight or more, the composite material without MA had more than 5 times more pores than the composite material of the present invention in which MA was performed, resulting in poor machinability such as deterioration in brazing property. Fell. From this, it is understood that the Cu-Cr-based composite material obtained by MA according to the present invention is excellent at a concentration of 0.2% by weight or more, which is expected to have the effect of Bi on the electrode material.

【0029】比較例2 実施例2と同様にCu−23重量%Cr−2重量%Bi
に配合した原料粉末をメカニカルアロイング(MA)
し、次に焼結した後、得られた焼結材を実施例2の冷間
鍛造の代わりに下記のa〜eの各加工処理を行った。
Comparative Example 2 As in Example 2, Cu-23% by weight Cr-2% by weight Bi
Mechanical alloying (MA)
Then, after sintering, the obtained sintered material was subjected to the following respective processing treatments of a to e instead of the cold forging of Example 2.

【0030】a:焼結材をCu容器に入れ、200℃で
10-3Torrの真空中にて封止した後、800℃にて
押出比8で押出加工 b:焼結材をそのまま800℃にて押出比8で押出加工 c:焼結材をそのまま常温にて押出比8で押出加工 d:焼結材をaと同様に容器中に封止した後、800℃
×2000kgf/cm2×1時間の条件でArガス中
でHIP加工 e:焼結材をそのままdと同じ条件でHIP加工
A: Sintered material is put in a Cu container, sealed at 200 ° C. in a vacuum of 10 −3 Torr, and then extruded at 800 ° C. with an extrusion ratio of 8 b: Sintered material as it is at 800 ° C. Extruding with an extrusion ratio of 8 c: Extruding the sintered material as it is at room temperature with an extrusion ratio of 8 d: Sealing the sintered material in a container in the same manner as a, then 800 ° C
HIP processing in Ar gas under the condition of × 2000 kgf / cm 2 × 1 hour e: HIP processing of the sintered material as it is under the same conditions as d

【0031】a及びdの加工処理で得られた複合材料は
実施例2の場合とほぼ同様に密度及び電気電導度が向上
し、真密度比は95%及び電気電導度は約30%IAC
Sになった。しかし、a及びdの加工処理は真空容器の
作製と真空封入作業が必要であるため、コストが非常に
高くなる欠点がある。一方、bの加工処理で得られた複
合材料は真密度比が92%であったが、加熱中の酸化反
応によるブリスター状の空孔が数多く発生した。又、e
の加工処理による複合材料ではブリスターの発生はなか
ったが、真密度比が約86%で焼結材の密度から殆ど向
上していなかった。更に、cの加工処理は最も簡便で経
済的であるが、押出圧力が押出機の限界に近くなるため
圧し詰まりを起こすことが多いうえ、押出材に割れが多
く発生するため良好な材料の回収率は鍛造材の1/10
以下と極めて低かった。
The composite material obtained by the processing of a and d improved in density and electric conductivity in substantially the same manner as in Example 2, the true density ratio was 95% and the electric conductivity was about 30% IAC.
It became S. However, since the processing of a and d requires the production of a vacuum container and the vacuum sealing work, there is a drawback that the cost becomes very high. On the other hand, the composite material obtained by the processing of b had a true density ratio of 92%, but many blister-shaped holes were generated due to the oxidation reaction during heating. Also, e
Although the blister did not occur in the composite material by the processing of (1), the true density ratio was about 86%, which was almost not improved from the density of the sintered material. Further, the processing of c is the simplest and most economical, but the extrusion pressure is close to the limit of the extruder, so that it is often pressed and clogged. In addition, many cracks occur in the extruded material and good recovery of the material. Ratio is 1/10 of forged material
It was extremely low as below.

【0032】次に、同じCu−23重量%Cr−2重量
%Biに配合した原料粉末をMAした後、MA粉末を成
形及び焼結する代わりに、下記に示すf及びgの各加工
処理を行った。
Next, after the raw material powder blended with the same Cu-23 wt% Cr-2 wt% Bi was MA, instead of molding and sintering the MA powder, the respective processings of f and g shown below were performed. went.

【0033】f:MA粉末をCu容器に入れ、200℃
で10-3Torrの真空中にて封止した後、900℃に
て押出比8で押出加工 g:MA粉末をfと同様に容器中に封止した後、900
℃×2000kgf/cm2×1時間の条件でArガス
中でHIP加工
F: MA powder was placed in a Cu container and the temperature was 200 ° C.
And then sealed in a vacuum of 10 −3 Torr at 900 ° C. and extruded at an extrusion ratio of 8 g: MA powder was sealed in a container in the same manner as f, and then 900
HIP processing in Ar gas under the condition of ℃ × 2000kgf / cm 2 × 1 hour

【0034】f及びgの加工処理で得られた複合材料
は、共に真密度比が95%及び電気電導度が28〜31
%IACSと高かったが、MA粉末を容器中に真空封入
する必要があるので、本発明方法に比べると極めて非生
産的である。
The composite materials obtained by the processing of f and g both have a true density ratio of 95% and an electric conductivity of 28 to 31.
Although it was as high as% IACS, it is extremely unproductive as compared with the method of the present invention because the MA powder needs to be vacuum-sealed in the container.

【0035】実施例3 実施例2と同じ純Cu粉末と純Cr粉末と純Bi粉末を
重量比でCu:Cr:Bi=75:21:4となるよう
に配合し、予備混合後、振動ミルによりArガス中で2
0時間のメカニカルアロイングを行った。得られたMA
粉末中のCr粒子の平均粒径は5μmであった。このM
A粉末を6t/cm2で冷間成形した後、水素雰囲気中
において1000℃で3時間焼結した。得られた焼結材
を常温にて6t/cm2の圧力で冷間鍛造を行った後、
鍛造材を真空中にて800℃で3時間再焼結した。
Example 3 The same pure Cu powder, pure Cr powder and pure Bi powder as in Example 2 were blended in a weight ratio of Cu: Cr: Bi = 75: 21: 4, premixed and then vibrated. 2 in Ar gas
I did mechanical alloying for 0 hours. MA obtained
The average particle size of Cr particles in the powder was 5 μm. This M
The powder A was cold-molded at 6 t / cm 2 and then sintered in a hydrogen atmosphere at 1000 ° C. for 3 hours. After cold forging the obtained sintered material at a pressure of 6 t / cm 2 at room temperature,
The forged material was re-sintered in vacuum at 800 ° C. for 3 hours.

【0036】得られた再焼結材のCu−Cr複合材料
は、Cr粒子の粒径1〜15μmの微細組織を有し、電
気電導度は54%IACSであって、400℃で5時間
焼鈍したところ電気電導度が約1〜4%IACS増加し
た。又、再焼結材と再焼結なしの鍛造材の引張強度を比
較したところ、再焼結材はCr粒子とCuマトリックス
の界面が強固なため28kg/mm2の引張強度を示し
たが、再焼結なしの鍛造材はその70%以下の引張強度
しか示さなかった。
The obtained Cu--Cr composite material of the re-sintered material had a fine structure of Cr particles having a particle size of 1 to 15 μm, an electric conductivity of 54% IACS, and was annealed at 400 ° C. for 5 hours. Then, the electric conductivity was increased by about 1 to 4% IACS. When the tensile strengths of the re-sintered material and the forged material without re-sintering were compared, the re-sintered material showed a tensile strength of 28 kg / mm 2 due to the strong interface between the Cr particles and the Cu matrix. The forged material without resintering exhibited a tensile strength of 70% or less.

【0037】実施例4 実施例2と同じ純Cu粉末と純Cr粉末と純Bi粉末に
Z粉末を加え、重量比でCu:Cr:Bi:Zr=5
4.8:44:0.2:1となるように配合した。更に、
Cr23粉末とCr32粉末をそれぞれ0〜7重量%加
え、予備混合後、振動ミルによりArガス中で20時間
のMAを行った。Cr23粉末又はCr32粉末を加え
た場合はMAの進行が早く、これらの添加量が増えるに
従って得られたMA粉末中のCr粒子は小さくなること
が判った。
Example 4 Z powder was added to the same pure Cu powder, pure Cr powder, and pure Bi powder as in Example 2, and Cu: Cr: Bi: Zr = 5 by weight ratio.
It was blended so as to be 4.8: 44: 0.2: 1. Furthermore,
Each of Cr 2 O 3 powder and Cr 3 C 2 powder was added in an amount of 0 to 7% by weight, and after premixing, MA was performed for 20 hours in Ar gas by a vibration mill. It was found that when the Cr 2 O 3 powder or the Cr 3 C 2 powder was added, MA proceeded quickly, and the Cr particles in the MA powder obtained became smaller as the addition amount of these increased.

【0038】各MA粉末を6t/cm2で冷間成形した
後、真空中において1000℃で3時間焼結した。得ら
れた焼結材を常温にて6t/cm2の圧力で冷間鍛造を
行った後、鍛造材を真空中にて800℃で3時間再焼結
した。再焼結材はいずれも12μm以下の微細なCr粒
子を含む組織となっており、MAにより微細組織が得ら
れることが判る。
Each MA powder was cold-formed at 6 t / cm 2 and then sintered in vacuum at 1000 ° C. for 3 hours. The obtained sintered material was cold forged at room temperature under a pressure of 6 t / cm 2 , and then the forged material was re-sintered in vacuum at 800 ° C. for 3 hours. Each of the re-sintered materials has a structure containing fine Cr particles of 12 μm or less, and it can be seen that a fine structure can be obtained by MA.

【0039】しかし、得られる複合材料の強度はCr2
3粉末とCr32粉末の添加量が増えると共に低下
し、Cu−44重量%Cr−1重量%Zr−0.2重量
%Biの系での引張強度は27kg/mm2であるのに
対して、Cu−44重量%Cr−1重量%Zr−0.2
重量%Bi−5重量%Cr23の系では14kg/mm
2及びCu−44重量%Cr−1重量%Zr−0.2重量
%Bi−7重量%Cr23の系では8.9kg/mm2
なり、構造材としては強度的に使用に適しないことが判
った。
However, the strength of the obtained composite material is Cr 2
The amount of O 3 powder and Cr 3 C 2 powder added increased and decreased, and the tensile strength in the system of Cu-44 wt% Cr-1 wt% Zr-0.2 wt% Bi was 27 kg / mm 2 . On the other hand, Cu-44 wt% Cr-1 wt% Zr-0.2
14 kg / mm in the system of wt% Bi-5 wt% Cr 2 O 3
2 and Cu-44 wt% Cr-1 wt% Zr-0.2 wt% Bi-7 wt% Cr 2 O 3 system has 8.9 kg / mm 2 , which is not suitable for use as a structural material in terms of strength. I knew that.

【0040】[0040]

【発明の効果】本発明によれば、互いに非固溶のCuと
Crとの微細な析出相からなる組織を有し、真空遮断器
の電極材料等として優れた特性を持つCu−Cr系複合
材料を経済的に提供することが出来る。
EFFECTS OF THE INVENTION According to the present invention, a Cu-Cr-based composite having a structure composed of fine precipitation phases of Cu and Cr which are insoluble with each other and having excellent characteristics as an electrode material for a vacuum circuit breaker, etc. Materials can be provided economically.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法による成形、焼結、冷間鍛造、及び
再焼結の各工程におけるCu−Cr系複合材料の真密度
の変化を示すグラフである。
FIG. 1 is a graph showing changes in true density of a Cu—Cr based composite material in each step of forming, sintering, cold forging, and re-sintering according to the method of the present invention.

【図2】本発明方法による焼結、冷間鍛造、及び再焼結
の各工程におけるCu−Cr系複合材料の電気電導度の
変化を示すグラフである。
FIG. 2 is a graph showing changes in electric conductivity of a Cu—Cr based composite material in each step of sintering, cold forging, and re-sintering according to the method of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Cu粉末とCr粉末とをCr粉末が5〜
50重量%となるように配合し、不活性ガス雰囲気中で
メカニカルアロイングし、得られたメカニカルアロイン
グ粉末を冷間成形し、成形体を水素ガス中又は真空中に
おいて500℃以上で焼結し、焼結材を100℃以下で
冷間鍛造し、次に鍛造材を500℃以上で再焼結するこ
とを特徴とするCu−Cr系複合材料の製造方法。
1. A Cu powder and a Cr powder containing 5 to 5 Cr powders.
50% by weight is blended, mechanically alloyed in an inert gas atmosphere, the resulting mechanically alloyed powder is cold-molded, and the molded body is sintered in hydrogen gas or vacuum at 500 ° C. or higher. Then, the sintered material is cold forged at 100 ° C. or lower, and then the forged material is re-sintered at 500 ° C. or higher, and a method for producing a Cu—Cr based composite material.
【請求項2】 Cr粒子の平均粒径が30μm以下とな
るようにメカニカルアロイングすることを特徴とする、
請求項1に記載のCu−Cr系複合材料の製造方法。
2. Mechanical alloying so that the average particle diameter of Cr particles is 30 μm or less,
The method for producing the Cu-Cr composite material according to claim 1.
【請求項3】 Cu粉末とCr粉末に加え、Bi粉末、
Zr粉末、B粉末、酸化クロム粉末又は炭化クロム粉末
を全体の0.01〜5重量%となるように配合した後、
メカニカルアロイングすることを特徴とする、請求項1
又は2に記載のCu−Cr系複合材料の製造方法。
3. In addition to Cu powder and Cr powder, Bi powder,
After blending Zr powder, B powder, chromium oxide powder or chromium carbide powder so as to be 0.01 to 5% by weight of the whole,
2. Mechanical alloying
Or the manufacturing method of Cu-Cr type composite material as described in 2.
【請求項4】 焼結前に、メカニカルアロイング粉末を
その合金組成における融点の1/3以上の温度で焼鈍す
ることを特徴とする、請求項1〜3のいずれかに記載の
Cu−Cr系複合材料の製造方法。
4. The Cu—Cr alloy according to claim 1, wherein the mechanical alloying powder is annealed at a temperature of 1/3 or more of the melting point of its alloy composition before sintering. Method for manufacturing a composite material.
【請求項5】 冷間鍛造又は再焼結により得られた複合
材料を、更に非酸化性雰囲気中において300〜850
℃で時効処理することを特徴とする、請求項1ないし4
のいずれかに記載のCu−Cr系複合材料の製造方法。
5. The composite material obtained by cold forging or re-sintering is further subjected to 300 to 850 in a non-oxidizing atmosphere.
5. Aging treatment at 0 ° C. 5.
5. A method for producing a Cu-Cr composite material according to any one of 1.
【請求項6】 冷間鍛造又は再焼結により得られた複合
材料を、更に押出加工又はHIP処理することを特徴と
する、請求項1ないし4のいずれかに記載のCu−Cr
系複合材料の製造方法。
6. The Cu—Cr according to claim 1, wherein the composite material obtained by cold forging or re-sintering is further subjected to extrusion processing or HIP processing.
Method for manufacturing a composite material.
JP14694893A 1993-05-26 1993-05-26 Method for producing Cu-Cr based composite material Expired - Fee Related JP3321906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14694893A JP3321906B2 (en) 1993-05-26 1993-05-26 Method for producing Cu-Cr based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14694893A JP3321906B2 (en) 1993-05-26 1993-05-26 Method for producing Cu-Cr based composite material

Publications (2)

Publication Number Publication Date
JPH06330101A true JPH06330101A (en) 1994-11-29
JP3321906B2 JP3321906B2 (en) 2002-09-09

Family

ID=15419200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14694893A Expired - Fee Related JP3321906B2 (en) 1993-05-26 1993-05-26 Method for producing Cu-Cr based composite material

Country Status (1)

Country Link
JP (1) JP3321906B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015149A (en) * 2004-06-30 2006-01-19 Cordis Corp Improved magnetic resonance imaging compatibility alloy for implantable medical devices
CN107604200A (en) * 2017-09-06 2018-01-19 西安理工大学 A kind of preparation method of the enhanced CuCr alloys of timeliness
CN112589101A (en) * 2020-10-21 2021-04-02 陕西斯瑞新材料股份有限公司 Preparation method of copper-chromium shielding case for vacuum arc-extinguishing chamber
CN115522096A (en) * 2022-10-11 2022-12-27 江西理工大学 Preparation method of copper-chromium alloy with heterogeneous lamellar structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015149A (en) * 2004-06-30 2006-01-19 Cordis Corp Improved magnetic resonance imaging compatibility alloy for implantable medical devices
CN107604200A (en) * 2017-09-06 2018-01-19 西安理工大学 A kind of preparation method of the enhanced CuCr alloys of timeliness
CN112589101A (en) * 2020-10-21 2021-04-02 陕西斯瑞新材料股份有限公司 Preparation method of copper-chromium shielding case for vacuum arc-extinguishing chamber
CN112589101B (en) * 2020-10-21 2022-09-09 陕西斯瑞新材料股份有限公司 Preparation method of copper-chromium shielding case for vacuum arc-extinguishing chamber
CN115522096A (en) * 2022-10-11 2022-12-27 江西理工大学 Preparation method of copper-chromium alloy with heterogeneous lamellar structure
CN115522096B (en) * 2022-10-11 2023-04-07 江西理工大学 Preparation method of copper-chromium alloy with heterogeneous lamellar structure

Also Published As

Publication number Publication date
JP3321906B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
US4032301A (en) Composite metal as a contact material for vacuum switches
EP0534191B1 (en) Cermets and their production and use
US4838935A (en) Method for making tungsten-titanium sputtering targets and product
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
US20140077426A1 (en) Method of manufacturing powder injection-molded body
US3950166A (en) Process for producing a sintered article of a titanium alloy
US7172725B2 (en) W-Cu alloy having homogeneous micro-structure and the manufacturing method thereof
EP0477685A2 (en) Cermets and their production and use
JP2668955B2 (en) Double boride-based sintered body and method for producing the same
US6187260B1 (en) Aluminum metal matrix composite materials reinforced by intermetallic compounds and alumina whiskers
JP3321906B2 (en) Method for producing Cu-Cr based composite material
JPS6337072B2 (en)
KR100570551B1 (en) Method for Manufacturing Alumium Based Alloyed Powder Having Superior Compactability
JPH0730418B2 (en) Forming method of Ti-Al intermetallic compound member
JP2006348386A (en) Method for producing composite material
US6312495B1 (en) Powder-metallurgically produced composite material and method for its production
JPS62287041A (en) Production of high-alloy steel sintered material
JPH0635602B2 (en) Manufacturing method of aluminum alloy sintered forgings
JPH0118137B2 (en)
JPH0729446A (en) Manufacture of electrode for vacuum interrupter
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP2716886B2 (en) Method for producing Ti-Al intermetallic compound
JP3582061B2 (en) Sintered material and manufacturing method thereof
JPH08209268A (en) Copper-chromium-nickel composite material and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees