JPH06329653A - Production of tetrachlorophthalic acid anhydride - Google Patents

Production of tetrachlorophthalic acid anhydride

Info

Publication number
JPH06329653A
JPH06329653A JP5118304A JP11830493A JPH06329653A JP H06329653 A JPH06329653 A JP H06329653A JP 5118304 A JP5118304 A JP 5118304A JP 11830493 A JP11830493 A JP 11830493A JP H06329653 A JPH06329653 A JP H06329653A
Authority
JP
Japan
Prior art keywords
reaction
anhydride
tetrachlorophthalic anhydride
phthalic anhydride
iodine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5118304A
Other languages
Japanese (ja)
Inventor
Kyoichi Tomita
恭一 冨田
Zentaro Ueda
善太郎 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP5118304A priority Critical patent/JPH06329653A/en
Publication of JPH06329653A publication Critical patent/JPH06329653A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide a production method for tetrachlorophthalic anhydride capable of chlorinating phthalic anhydride at a relatively low temperature, in a short time and in high yield and suitable for an industrial production of tetrachlorophthalic anhydride. CONSTITUTION:Tetrachlorophthalic anhydride is produced by using anhydrous sulfuric acid as a reaction solvent and iodine or an iodo compound as a catalyst in the chlorination reaction of phthalic anhydride with gaseous chlorine. The objective production method is capable of producing tetrachlorophthalic anhydride useful as a raw material of flame resistive polymer, organic pigment, etc., at a relatively low temperature, in a relatively short reaction time and in high yield and extremely useful as an industrial production method for tetrachlorophthalic anhydride.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、難燃性ポリマーや有
機顔料等の原料として有用なテトラクロロフタル酸無水
物の製造方法に係り、特にテトラクロロフタル酸無水物
を収率良く製造することができるテトラクロロフタル酸
無水物を製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing tetrachlorophthalic anhydride, which is useful as a raw material for flame-retardant polymers and organic pigments, and particularly to produce tetrachlorophthalic anhydride in good yield. The present invention relates to a method for producing tetrachlorophthalic anhydride capable of producing.

【0002】[0002]

【従来の技術】安価な無水フタル酸を原料に、これを塩
素ガスで塩素化してテトラクロロフタル酸無水物を製造
する方法として、幾つかの方法が知られている。例え
ば、原料の無水フタル酸を270℃に加熱して溶融状
態にし、無溶媒で触媒の鉄又は塩化第二鉄の存在下に塩
素ガスを導入して反応させる方法(米国特許第2,02
8,383号及び第2,429,985号の各明細
書)、270℃で塩化第二鉄触媒の存在下に無水フタ
ル酸と塩素ガスとを気相反応させる方法〔J. Soc. Org.
Synth. Chem. Jap., 22(8), 737(1964)〕、溶媒とし
て発煙硫酸を使用し、50〜60℃で無水フタル酸と塩
素ガスとを液相反応させる方法(西ドイツ特許第50
1,770号明細書)、溶媒として塩素ガスや生成す
る塩化水素ガスに不活性なクロルスルフォン酸を使用
し、無水フタル酸と塩素ガスとを液相反応させる方法
(特開昭61−118,378号公報、西ドイツ特許第
1,934,174号明細書)が知られている。
2. Description of the Related Art There are several known methods for producing tetrachlorophthalic anhydride by using inexpensive phthalic anhydride as a raw material and chlorinating it with chlorine gas. For example, a method in which phthalic anhydride as a raw material is heated to 270 ° C. to be in a molten state, and chlorine gas is introduced in the presence of iron or ferric chloride as a catalyst without a solvent to cause a reaction (US Pat. No. 2,023).
Nos. 8,383 and 2,429,985), a method of reacting phthalic anhydride and chlorine gas in a gas phase at 270 ° C. in the presence of a ferric chloride catalyst [J. Soc. Org.
Synth. Chem. Jap., 22 (8), 737 (1964)], a method of reacting phthalic anhydride and chlorine gas at 50 to 60 ° C. in a liquid phase using fuming sulfuric acid as a solvent (West German Patent No. 50).
No. 1,770), a method in which chlorosulfonic acid, which is inert to chlorine gas or hydrogen chloride gas produced, is used as a solvent and phthalic anhydride is reacted with chlorine gas in a liquid phase reaction (JP-A-61-118, 378 and West German Patent 1,934,174) are known.

【0003】しかしながら、上記との方法において
は、その反応温度が高く、このために副生物が多量に生
成して着色する場合が多く、また、上記及びの方法
においては、その反応速度が遅すぎて触媒を使用しても
反応時間が長すぎ、工業化には不向きであるという問題
がある。
However, in the methods described above, the reaction temperature is high, and as a result, a large amount of by-products are formed and colored in many cases, and in the above methods and the reaction rate is too slow. However, even if a catalyst is used, the reaction time is too long, which is not suitable for industrialization.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明者ら
は、無水フタル酸と塩素ガスとを比較的低温で、しか
も、速い反応速度で反応させ、テトラクロロフタル酸無
水物を収率良く製造することができる方法について鋭意
研究を重ねた結果、反応溶媒として無水硫酸を使用し、
触媒としてヨウ素又はヨウ素化合物を用いる方法に到達
し、本発明を完成した。従って、本発明の目的は、比較
的低温で、しかも、短時間で収率良く無水フタル酸を塩
素化し、テトラクロロフタル酸無水物を工業的に製造す
るのに適したテトラクロロフタル酸無水物の製造方法を
提供することにある。
Therefore, the present inventors have made phthalic anhydride and chlorine gas react at a relatively low temperature and at a high reaction rate to produce tetrachlorophthalic anhydride in a high yield. As a result of earnest research on a method that can be carried out, using anhydrous sulfuric acid as a reaction solvent,
The present invention has been completed by reaching a method using iodine or an iodine compound as a catalyst. Therefore, an object of the present invention is to provide a tetrachlorophthalic anhydride suitable for industrially producing tetrachlorophthalic anhydride by chlorinating phthalic anhydride at a relatively low temperature in a short time with a good yield. It is to provide a manufacturing method of.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、無
水フタル酸を気体状塩素ガスと反応させて塩素化するに
際し、反応溶媒として無水硫酸を使用し、触媒としてヨ
ウ素又はヨウ素化合物を用いるテトラクロロフタル酸無
水物の製造方法である。
[Means for Solving the Problems] That is, according to the present invention, when phthalic anhydride is reacted with gaseous chlorine gas to chlorinate, sulfuric acid anhydride is used as a reaction solvent, and iodine or an iodine compound is used as a catalyst. It is a method for producing chlorophthalic anhydride.

【0006】本発明方法で使用する気体状塩素ガスとし
ては、塩素ガスそのものを使用できるほか、この塩素ガ
スを窒素、アルゴン、ヘリウム等の不活性ガスで通常1
0〜100容量%、好ましくは50〜100容量%の濃
度に希釈して使用することもできる。この気体状塩素ガ
スを反応系に導入する方法については、導入される気体
状塩素ガスが反応溶媒中で無水フタル酸と効率良く接触
できる方法であればどのような方法であってもよいが、
好ましくは塩素ガス導入管から反応溶媒中に気体状塩素
ガスをバブリングして導入するのがよい。また、反応系
への塩素ガスの導入量は、特に限定されるものではない
が、原料の無水フタル酸の反応率をある程度高い値に維
持し、また、塩素ガスの浪費をできるだけ抑制するため
に、通常、理論量(すなわち、無水フタル酸の4倍モ
ル)の1.5〜4倍モル程度がよい。
As the gaseous chlorine gas used in the method of the present invention, chlorine gas itself can be used, and this chlorine gas is usually an inert gas such as nitrogen, argon or helium.
It can also be used by diluting it to a concentration of 0 to 100% by volume, preferably 50 to 100% by volume. Regarding the method of introducing this gaseous chlorine gas into the reaction system, any method may be used as long as the introduced gaseous chlorine gas can efficiently contact phthalic anhydride in the reaction solvent,
It is preferable to introduce gaseous chlorine gas by bubbling it into the reaction solvent through a chlorine gas introduction pipe. The amount of chlorine gas introduced into the reaction system is not particularly limited, but in order to maintain the reaction rate of the raw material phthalic anhydride at a high value to some extent and to suppress the waste of chlorine gas as much as possible. Usually, about 1.5 to 4 times mol of the theoretical amount (that is, 4 times mol of phthalic anhydride) is preferable.

【0007】また、本発明方法では反応溶媒として無水
硫酸を使用するが、この無水硫酸の使用量については、
好ましくは原料の無水フタル酸濃度が50重量%以下、
より好ましくは5〜30重量%となる範囲で用いるのが
よい。反応系内の無水フタル酸濃度が50重量%以下と
なる使用量で無水硫酸を使用することにより反応速度の
向上と攪拌効率の向上という利点が生じる。この無水硫
酸は、反応の進行と共に反応系内に生成した塩化水素と
反応し、一部がクロルスルフォン酸に変化するが、反応
終了後に回収した反応溶媒を蒸溜することにより、この
クロルスルフォン酸を容易に無水硫酸から分離して除去
することができ、再び反応溶媒として使用することがで
きる。
In the method of the present invention, sulfuric acid is used as a reaction solvent. Regarding the amount of sulfuric acid used,
Preferably, the raw material has a phthalic anhydride concentration of 50% by weight or less,
More preferably, it is used in the range of 5 to 30% by weight. The use of sulfuric anhydride in an amount such that the concentration of phthalic anhydride in the reaction system is 50% by weight or less brings about the advantages of improving the reaction rate and stirring efficiency. This sulfuric anhydride reacts with hydrogen chloride produced in the reaction system as the reaction progresses, and part of it changes to chlorosulfonic acid.However, by distilling the reaction solvent recovered after the reaction is completed, this chlorosulfonic acid is It can be easily separated and removed from sulfuric anhydride, and can be used again as a reaction solvent.

【0008】更に、触媒としてはヨウ素又はヨウ素化合
物が用いられ、ヨウ素化合物としては一塩化ヨウ素、三
塩化ヨウ素、アルカリ金属のヨウ化物等を挙げることが
でき、これらは単独で使用することができるほか、2種
以上の混合物としても使用することができる。この触媒
の使用量については、無水フタル酸の仕込量に対して通
常0.1〜10重量%、好ましくは1〜8重量%の範囲
である。この触媒の使用量が0.1重量%より少ないと
反応の進行が極めて遅いという問題があり、10重量%
より多くなると副生成物の増加という問題が生じる。こ
の触媒の添加方法については、反応開始時にその全量を
反応系に添加してもよいが、反応性をより向上させるた
めに、2〜10回、好ましくは3〜5回に分割して添加
するのがよく、更にこの際に、より好ましくは塩素化度
の上昇に合わせてその添加量を略比例的に増加させるよ
うにするのがよい。
Further, iodine or an iodine compound is used as the catalyst, and iodine monochloride, iodine trichloride, an iodide of an alkali metal and the like can be mentioned as the iodine compound, and these can be used alone. It can also be used as a mixture of two or more kinds. The amount of this catalyst used is usually in the range of 0.1 to 10% by weight, preferably 1 to 8% by weight, based on the charged amount of phthalic anhydride. If the amount of this catalyst used is less than 0.1% by weight, there is a problem that the progress of the reaction is extremely slow.
The larger amount causes a problem of increased by-products. Regarding the method of adding this catalyst, the whole amount may be added to the reaction system at the start of the reaction, but in order to further improve the reactivity, it is added in 2 to 10 times, preferably in 3 to 5 times. At this time, it is more preferable to increase the amount of addition in proportion to the increase in the degree of chlorination.

【0009】本発明方法における反応は、それが常圧で
あっても、また、加圧であってもよいが、反応速度を速
くして反応時間を短縮するためには、加圧下に反応させ
るのがよく、その場合の圧力については、2〜5気圧程
度がよい。また、本発明の反応は、その当初には反応混
合物を所定の反応温度、通常30〜60℃、好ましくは
40〜50℃まで加熱し、反応が始まった後には、この
反応が発熱反応であるので、反応温度が必要以上に高く
ならないように必要に応じて冷却する。そして、この反
応は、通常はバッチ式で行われるが、例えば、反応器を
複数連設し、適当な塩素化度、例えば反応器を2段で構
成した場合には塩素化度3で前段の反応器から後段の反
応器へ移送させるようにして前段の反応と後段の反応と
を分離し、反応系を複数に分割した半連続的な方式を採
用することもできる。
The reaction in the method of the present invention may be carried out under normal pressure or under pressure, but in order to increase the reaction rate and shorten the reaction time, the reaction is carried out under pressure. The pressure in that case is preferably about 2 to 5 atm. Further, in the reaction of the present invention, the reaction mixture is initially heated to a predetermined reaction temperature, usually 30 to 60 ° C., preferably 40 to 50 ° C., and after the reaction is started, this reaction is an exothermic reaction. Therefore, the reaction temperature is cooled as necessary so that the reaction temperature does not become higher than necessary. This reaction is usually carried out in a batch system, but for example, when a plurality of reactors are connected in series and an appropriate degree of chlorination, for example, when the reactor is constructed in two stages, the degree of chlorination is 3 It is also possible to adopt a semi-continuous system in which the reaction in the former stage and the reaction in the latter stage are separated by transferring the reaction system from the reactor to the latter stage reactor and the reaction system is divided into a plurality of parts.

【0010】本発明の反応においては、未反応の塩素ガ
ス、ヨウ素塩化物及び塩化水素を含む排ガスが発生する
が、これらの排ガス成分はそれ自体が価値あるものであ
り、これらの排ガス成分を回収し、分離して再利用する
のがよい。
In the reaction of the present invention, exhaust gas containing unreacted chlorine gas, iodine chloride and hydrogen chloride is generated. However, these exhaust gas components are valuable in themselves, and these exhaust gas components are recovered. However, it is better to separate and reuse.

【0011】本発明の反応は、反応系内に副生するクロ
ルスルホン酸の量がモル濃度として50モル%を越えな
い範囲、好ましくは20〜40モル濃度の範囲で行うの
がよい。反応系内における副生クロルスルホン酸の量が
50モル%を越えると、反応速度が低下して反応時間が
長くなり、また、好ましくない副生物、例えばヘキサク
ロロベンゼンの生成量も増加してくる。
The reaction of the present invention is carried out in a range where the amount of chlorosulfonic acid by-produced in the reaction system does not exceed 50 mol%, preferably 20 to 40 mol. If the amount of chlorosulfonic acid by-product in the reaction system exceeds 50 mol%, the reaction rate decreases, the reaction time becomes long, and the amount of undesired by-products such as hexachlorobenzene increases.

【0012】反応終了後、冷却し、析出した結晶を吸引
濾過して少量の水で洗浄し、その後に100〜120℃
で乾燥することにより、目的物のテトラクロロフタル酸
無水物を得ることができる。また、反応混合物を濾過し
て回収された濾液については、蒸溜して無水硫酸とクロ
ルスルホン酸とに分離するか、あるいは、濾液中に水を
加えて全てを発煙硫酸にした後、これを蒸溜して無水硫
酸を回収し、得られた無水硫酸については反応溶媒とし
て再度使用する。
After completion of the reaction, the reaction mixture is cooled, the precipitated crystals are suction filtered and washed with a small amount of water, and then 100 to 120 ° C.
The desired product, tetrachlorophthalic anhydride, can be obtained by drying with. Further, the filtrate recovered by filtering the reaction mixture is distilled to separate it into anhydrous sulfuric acid and chlorosulfonic acid, or water is added to the filtrate to convert it into fuming sulfuric acid, which is then distilled. Sulfuric acid anhydride is recovered by using and the obtained sulfuric acid anhydride is reused as a reaction solvent.

【0013】[0013]

【作用】本発明方法において、反応溶媒の無水硫酸がヨ
ウ素又はヨウ素化合物を触媒とする無水フタル酸のヨウ
素化を促進し、このためにヨウ素の反応系外への昇華に
よるロスが抑制され、しかも、この反応溶媒の無水硫酸
が弱ルイス酸溶媒として塩素の活性化に寄与し、結果と
して反応速度が著しく促進されるものと考えられる。
In the method of the present invention, sulfuric acid as a reaction solvent promotes the iodination of phthalic anhydride using iodine or an iodine compound as a catalyst, and thus the loss due to sublimation of iodine outside the reaction system is suppressed, and It is considered that the anhydrous sulfuric acid of this reaction solvent contributes to the activation of chlorine as a weak Lewis acid solvent, and as a result, the reaction rate is significantly accelerated.

【0014】[0014]

【実施例】以下、実施例及び比較例に基づいて、本発明
方法を具体的に説明する。
EXAMPLES The method of the present invention will be specifically described below based on Examples and Comparative Examples.

【0015】実施例1 還流冷却器、温度計、塩素ガス吹込管及び攪拌機を備え
た0.5リットルのガラス製反応容器に無水フタル酸7
4.0g(0.5mol)と無水硫酸220g(2.7
5mol)とを仕込み、攪拌しながら50℃まで上昇せ
しめ、その後、金属ヨウ素3.7gを添加し、塩素ガス
を0.4g/分の速度で供給し、無水フタル酸の塩素化
反応を行った。反応中、金属ヨウ素3gを5回に分けて
添加し、反応温度については50℃より徐々に上昇さ
せ、最終的には80℃まで上昇させた。
EXAMPLE 1 Phthalic anhydride 7 was placed in a 0.5 liter glass reaction vessel equipped with a reflux condenser, a thermometer, a chlorine gas blowing tube and a stirrer.
4.0 g (0.5 mol) and 220 g of sulfuric anhydride (2.7
(5 mol) was added, the temperature was raised to 50 ° C. with stirring, then 3.7 g of metallic iodine was added, and chlorine gas was supplied at a rate of 0.4 g / min to perform a chlorination reaction of phthalic anhydride. . During the reaction, 3 g of metallic iodine was added in 5 batches, and the reaction temperature was gradually increased from 50 ° C and finally to 80 ° C.

【0016】この反応をガスクロマトグラフィーで経時
的に追跡し、塩素化度3.98の時点で反応を終了させ
た。この時点までの反応時間は10.5時間であった。
反応終了後、反応混合物を冷却し、析出した結晶を吸引
濾過し、次いで少量の水で水洗したのち、100℃で5
時間乾燥して白色結晶のテトラクロロフタル酸無水物1
25.5g(収率89%、純度99.8%)を得た。ま
た、濾液については、単蒸留処理して165gの無水硫
酸(回収率72%)を得た。
This reaction was followed by gas chromatography over time, and the reaction was terminated when the chlorination degree was 3.98. The reaction time up to this point was 10.5 hours.
After completion of the reaction, the reaction mixture was cooled, the precipitated crystals were suction filtered, washed with a small amount of water and then at 100 ° C. for 5 minutes.
White crystalline tetrachlorophthalic anhydride 1 after drying for 1 hour
25.5 g (yield 89%, purity 99.8%) was obtained. The filtrate was subjected to simple distillation treatment to obtain 165 g of sulfuric anhydride (recovery rate: 72%).

【0017】実施例2 還流冷却器、温度計、塩素ガス吹込管及び攪拌機を備え
た0.5リットルのガラス製反応容器に無水フタル酸7
4.0g(0.5mol)と無水硫酸230g(2.8
8mol)とを仕込み、攪拌しながら50℃まで上昇せ
しめ、その後、三塩化ヨウ素6gを添加し、塩素ガスを
0.4g/分の速度で供給し、無水フタル酸の塩素化反
応を行った。反応中、三塩化ヨウ素5gを2回に分けて
添加し、反応温度については50℃より徐々に上昇さ
せ、最終的には80℃まで上昇させた。
Example 2 Phthalic anhydride 7 was placed in a 0.5 liter glass reaction vessel equipped with a reflux condenser, a thermometer, a chlorine gas blowing tube and a stirrer.
4.0 g (0.5 mol) and 230 g of sulfuric anhydride (2.8
(8 mol) was added and the temperature was raised to 50 ° C. with stirring, then 6 g of iodine trichloride was added, and chlorine gas was supplied at a rate of 0.4 g / min to perform a chlorination reaction of phthalic anhydride. During the reaction, 5 g of iodine trichloride was added in 2 portions, and the reaction temperature was gradually raised from 50 ° C and finally to 80 ° C.

【0018】この反応をガスクロマトグラフィーで経時
的に追跡し、塩素化度3.95の時点で反応を終了させ
た。この時点までの反応時間は20.8時間であった。
反応終了後、反応混合物を冷却し、析出した結晶を吸引
濾過し、次いで少量の水で水洗したのち、100℃で5
時間乾燥して白色結晶のテトラクロロフタル酸無水物1
14.2g(収率81%、純度98.9%)を得た。ま
た、濾液については、単蒸留処理して140gの無水硫
酸(回収率60.8%)を得た。
This reaction was followed by gas chromatography over time, and the reaction was terminated when the chlorination degree was 3.95. The reaction time up to this point was 20.8 hours.
After completion of the reaction, the reaction mixture was cooled, the precipitated crystals were suction filtered, washed with a small amount of water and then at 100 ° C. for 5 minutes.
White crystalline tetrachlorophthalic anhydride 1 after drying for 1 hour
14.2 g (yield 81%, purity 98.9%) was obtained. The filtrate was subjected to simple distillation to obtain 140 g of sulfuric anhydride (recovery rate 60.8%).

【0019】比較例1 反応溶媒としてクロルスルホン酸180g(1.55m
ol)を使用し、反応温度を反応開始から反応終了まで
70℃とし、反応中に金属ヨウ素30gを10回に分け
て添加した以外は、上記実施例1と同様に無水フタル酸
の塩素化反応を行い、塩素化度3.99の時点で反応を
終了させた。反応終了までの反応時間は上記実施例1の
場合の約5倍に当たる52.5時間であり、得られたテ
トラクロロフタル酸無水物119.9g(収率85%)
の純度は99.5%であった。
Comparative Example 1 180 g (1.55 m) of chlorosulfonic acid as a reaction solvent
ol) was used, the reaction temperature was 70 ° C. from the start of the reaction to the end of the reaction, and 30 g of metallic iodine was added in 10 batches during the reaction, but the chlorination reaction of phthalic anhydride was carried out in the same manner as in Example 1 above. The reaction was terminated when the chlorination degree was 3.99. The reaction time until completion of the reaction was 52.5 hours, which was about 5 times that in Example 1 above, and 119.9 g of the obtained tetrachlorophthalic anhydride (yield 85%).
Was 99.5%.

【0020】比較例2 反応溶媒として発煙硫酸(SO3 濃度25重量%)19
0g(1.55mol)を使用し、反応温度を反応開始
から反応終了まで70℃とし、反応中に三塩化ヨウ素3
0gを10回に分けて添加した以外は、上記実施例1と
同様に無水フタル酸の塩素化反応を行い、塩素化度3.
99の時点で反応を終了させた。反応終了までの反応時
間は上記実施例1の場合の約4倍に当たる48.5時間
であり、得られたテトラクロロフタル酸無水物124.
1g(収率88%)の純度は99.0%であった。
Comparative Example 2 Fuming sulfuric acid (SO 3 concentration 25% by weight) 19 was used as a reaction solvent.
0 g (1.55 mol) was used, the reaction temperature was 70 ° C. from the start to the end of the reaction, and iodine trichloride 3 was added during the reaction.
The chlorination reaction of phthalic anhydride was performed in the same manner as in Example 1 except that 0 g was added in 10 batches, and the degree of chlorination was 3.
The reaction was terminated at time 99. The reaction time until the end of the reaction was 48.5 hours, which is about four times that in Example 1 above, and the obtained tetrachlorophthalic anhydride 124.
The purity of 1 g (yield 88%) was 99.0%.

【0021】[0021]

【発明の効果】本発明方法によれば、無水フタル酸と塩
素ガスとを比較的低温で、しかも、速い反応速度で反応
させることができ、テトラクロロフタル酸無水物を収率
良く製造することができ、テトラクロロフタル酸無水物
の工業的製法として極めて有用である。
According to the method of the present invention, phthalic anhydride and chlorine gas can be reacted at a relatively low temperature and at a high reaction rate, and tetrachlorophthalic anhydride can be produced in a high yield. And is extremely useful as an industrial method for producing tetrachlorophthalic anhydride.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無水フタル酸を気体状塩素ガスと反応さ
せて塩素化するに際し、反応溶媒として無水硫酸を使用
し、触媒としてヨウ素又はヨウ素化合物を用いることを
特徴とするテトラクロロフタル酸無水物の製造方法。
1. Tetrachlorophthalic anhydride characterized in that when phthalic anhydride is reacted with gaseous chlorine gas to chlorinate, sulfuric acid is used as a reaction solvent and iodine or an iodine compound is used as a catalyst. Manufacturing method.
JP5118304A 1993-05-20 1993-05-20 Production of tetrachlorophthalic acid anhydride Pending JPH06329653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5118304A JPH06329653A (en) 1993-05-20 1993-05-20 Production of tetrachlorophthalic acid anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5118304A JPH06329653A (en) 1993-05-20 1993-05-20 Production of tetrachlorophthalic acid anhydride

Publications (1)

Publication Number Publication Date
JPH06329653A true JPH06329653A (en) 1994-11-29

Family

ID=14733373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5118304A Pending JPH06329653A (en) 1993-05-20 1993-05-20 Production of tetrachlorophthalic acid anhydride

Country Status (1)

Country Link
JP (1) JPH06329653A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134630A1 (en) 2009-05-21 2010-11-25 住友化学株式会社 Production method of halogen-substituted phthalide
CN105669620A (en) * 2016-01-12 2016-06-15 潍坊鑫洋化工有限公司 Preparation method of tetrabromophthalic anhydride
CN114933579A (en) * 2022-04-26 2022-08-23 河北海力香料股份有限公司 Preparation method of tetrachlorophthalic anhydride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134630A1 (en) 2009-05-21 2010-11-25 住友化学株式会社 Production method of halogen-substituted phthalide
CN105669620A (en) * 2016-01-12 2016-06-15 潍坊鑫洋化工有限公司 Preparation method of tetrabromophthalic anhydride
CN114933579A (en) * 2022-04-26 2022-08-23 河北海力香料股份有限公司 Preparation method of tetrachlorophthalic anhydride

Similar Documents

Publication Publication Date Title
JP2911626B2 (en) Preparation of carboxylic acid chloride
JP2006518734A (en) Method for producing oxydiphthalic anhydride using bicarbonate as catalyst
JPH06329653A (en) Production of tetrachlorophthalic acid anhydride
US5872291A (en) Process for producing benzoyl chlorides
JPS61118378A (en) Production of tetrachlorophthalic anhydride
JPH021432A (en) Production of 2,2-bis(4-aminophenyl)hexafluoro-propane
JP3161723B2 (en) Method for producing chlorosulfonyl isocyanate
JPH06145100A (en) Production of 2,6-dichlorobenzoyl chloride
JPS61243043A (en) Production of 2-(4'-amylbenzoyl) benzoic acid
JP4301766B2 (en) Method for producing dibenzoyltartaric acid and acid anhydrides thereof
EP0132990B1 (en) Production of hexanitrostilbene (hns)
US3607032A (en) Process for the production of hydroxylamine-o-sulphonic acid
US5113016A (en) Manufacture of phthaloyl chlorides
JPH07165687A (en) Production of 5-fluoroanthranilic acid
JP2846939B2 (en) Method for producing 2,3-epoxy-2,3-dihydro-1,4-naphthoquinone
JPH01275590A (en) Production of alkyldihalogenophosphane
JPS5993025A (en) Preparation of dichlorofluoroacetyl chloride
JP3841886B2 (en) Process for producing 1,2-indanediols
KR19990028862A (en) Method for preparing alpha, omega-bromochloroalkane
JPS6312049B2 (en)
JP2724402B2 (en) Method for producing 3,3,4,4-tetrachlorotetrahydrothiophene-1,1-dioxide
JP4143295B2 (en) Method for producing 9,9-disubstituted-2,3,6,7-xanthenetetracarboxylic dianhydride
JPS58167553A (en) Preparation of n,n'-methylenebisphenylacetamide
JPH05339259A (en) Production of 3,3,4,4-tetrachlorotetrahydrothiophene-1,1-dioxide
JPS6061582A (en) One-pot process for production of bicyclotetracarboxylic acid anhydride