JPH06145100A - Production of 2,6-dichlorobenzoyl chloride - Google Patents

Production of 2,6-dichlorobenzoyl chloride

Info

Publication number
JPH06145100A
JPH06145100A JP4323826A JP32382692A JPH06145100A JP H06145100 A JPH06145100 A JP H06145100A JP 4323826 A JP4323826 A JP 4323826A JP 32382692 A JP32382692 A JP 32382692A JP H06145100 A JPH06145100 A JP H06145100A
Authority
JP
Japan
Prior art keywords
dcoc
substituted
reaction
catalyst
chlorination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4323826A
Other languages
Japanese (ja)
Other versions
JP3126834B2 (en
Inventor
Tatsuichi Sanpei
辰一 三瓶
Yoshihiko Abe
吉彦 安部
Osamu Mogi
修 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP04323826A priority Critical patent/JP3126834B2/en
Publication of JPH06145100A publication Critical patent/JPH06145100A/en
Application granted granted Critical
Publication of JP3126834B2 publication Critical patent/JP3126834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain 2,6-dichlorobenzoyl chloride in high purity and yield with suppressed by-product formation by chlorination of 2,6-dichlorobenzaldehyde using an industrially effective catalyst. CONSTITUTION:The compound can be obtained by chlorination of 2,6- dichlorobenzaldehyde using, as catalyst, (A) at least one kind of compound selected from tetrasubstituted urea compounds each substituted by lower alkyl groups, disubstituted urea compounds and tertiary amines, or (B) any combination thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2,6−ジクロロベン
ズアルデヒド(以下、2,6−DCBADと略記する)
を塩素化して2,6−ジクロロベンゾイルクロリド(以
下、2,6−DCOCと略記する)を効率的に製造する
ための触媒の提供にかんする。2,6−DCOCは、農
薬、医薬、染料の原料及び中間体として幅広い利用価値
を有する工業的に極めて重要な化合物である。
The present invention relates to 2,6-dichlorobenzaldehyde (hereinafter abbreviated as 2,6-DCBAD).
The present invention provides a catalyst for efficiently producing 2,6-dichlorobenzoyl chloride (hereinafter, abbreviated as 2,6-DCOC) by chlorinating. 2,6-DCOC is an industrially extremely important compound having a wide utility value as a raw material and an intermediate for agricultural chemicals, pharmaceuticals, dyes.

【0002】[0002]

【従来の技術】従来、ベンゾイルクロリド類は、対応す
るベンゾトリクロリド類の加水分解によって得る方法が
経済的とされているが本願化合物の2,6−DCOCの
場合には、対応する2,6−ジクロロベンゾトリクロリ
ドが、2,6位の塩素置換基の立体障害により効率よく
得る事が困難であるため適用出来ない。
2. Description of the Related Art Conventionally, benzoyl chlorides have been economically obtained by hydrolysis of corresponding benzotrichlorides, but in the case of 2,6-DCOC of the present compound, the corresponding 2,6 -Dichlorobenzotrichloride cannot be applied because it is difficult to obtain dichlorobenzotrichloride efficiently due to the steric hindrance of the chlorine substituent at the 2,6 position.

【0003】従って、これまで2,6−DCOCの製造
法としては例えば米国特許3,681,453号公報に
記載されているような、2,6−ジクロロベンザルクロ
リドを酸素の存在下、二酸化硫黄又は二酸化硫黄と塩化
チオニルの混合系にて加圧、高温下で反応させる方法。
又、特公昭49−39656号公報に記載されているよ
うな、2−クロロ−6−ニトロトルエンをピリジン及び
リン化合物の存在下、塩素化した後、ルイス酸触媒の下
に塩素酸化して2,6−ジクロロ安息香酸を得、更にそ
れを塩化チオニルと反応させて2,6−DCOCを得る
方法が知られている。
Therefore, as a conventional method for producing 2,6-DCOC, 2,6-dichlorobenzal chloride as described in, for example, US Pat. No. 3,681,453, was oxidized in the presence of oxygen. A method of reacting under pressure and at high temperature in a mixed system of sulfur or sulfur dioxide and thionyl chloride.
Further, as described in JP-B-49-39656, 2-chloro-6-nitrotoluene is chlorinated in the presence of pyridine and a phosphorus compound, and then chlorinated under a Lewis acid catalyst to give 2,2. A method is known in which 6-dichlorobenzoic acid is obtained and further reacted with thionyl chloride to obtain 2,6-DCOC.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
公知技術は2,6−DCOCの工業的製造法としては、
その技術的及び経済的側面から見て不十分と言わざるを
得ない。即ち、前者は腐食性ガスを加圧下高温で取り扱
うものであり、その装置材質の選択上困難な問題を抱え
ていると共に、得られる2,6−DCOCの収率は決し
て満足のゆくものではない。又後者に於いてはその工程
が長い事、収率が物足りない事、更には最終生成物中に
2,6−ジクロロベンゾニトリルが副生する等、工業的
製造法としていずれも問題があり、更に有利な方法が求
められている。
However, the conventional publicly known technology is, as an industrial production method of 2,6-DCOC,
It must be said that it is insufficient in terms of its technical and economic aspects. That is, the former deals with corrosive gas at high temperature under pressure, and has a difficult problem in selecting the material of the apparatus, and the yield of 2,6-DCOC obtained is not always satisfactory. . Further, in the latter case, there are problems as industrial production methods such as long process, insufficient yield, and by-product of 2,6-dichlorobenzonitrile in the final product. There is a need for an advantageous method.

【0005】本発明者等はかかる問題を解決すべく鋭意
検討を重ねた結果、2,6−DCBADを塩素化する際
に、触媒として低級アルキル基で置換されたテトラ置換
尿素類、ジ置換環式尿素類、又は3級アミン類を触媒と
して用いる事により、極めて効率よく、即ち高収率、高
純度かつ工業的にも合理的な操作にてにて2,6−DC
OCが得られる事を見いだし本発明を完成するに到っ
た。
As a result of intensive studies made by the present inventors to solve such a problem, when chlorinating 2,6-DCBAD, tetra-substituted ureas substituted with a lower alkyl group and di-substituted rings are used as catalysts. By using formula ureas or tertiary amines as catalysts, 2,6-DC can be produced very efficiently, that is, in high yield, high purity and industrially rational operation.
They found that OC was obtained, and completed the present invention.

【0006】従来、本発明に使用するような尿素系、又
は3級アミン系の化合物は、光照射下に行うアルキル置
換芳香族化合物の側鎖塩素化反応に於いて、核塩素置換
やハルツの副生を抑制する金属封鎖剤としての効果が公
知であったが、これ等化合物自身が本ベンゾイルクロリ
ド化のような塩素化触媒として優れた機能を有する事
は、全く予想外の事であり、かつ知られていなかった
Conventionally, the urea-based or tertiary amine-based compounds used in the present invention have been subjected to nuclear chlorine substitution or Harz's reaction in the side chain chlorination reaction of an alkyl-substituted aromatic compound under light irradiation. Although the effect as a sequestering agent for suppressing by-products was known, it is totally unexpected that these compounds themselves have an excellent function as a chlorination catalyst such as the present benzoyl chloride formation. And was unknown

【0007】[0007]

【課題を解決するための手段】本発明の目的は、2,6
−DCBADの塩素化により、効率的に2,6−DCO
Cを製造するための触媒を提供する事である。即ち本発
明は、触媒の存在下2,6−DCBADを塩素化し2,
6−DCOCを製造する方法に於いて、当該触媒として
低級アルキル基で置換されたテトラ置換尿素類、ジ置換
環式尿素類、又は3級アミン類を用いる事を特徴とする
2,6−DCOCの製造方法である。
The objects of the present invention are 2, 6
-Efficient 2,6-DCO by chlorination of DCBAD
It is to provide a catalyst for producing C. That is, the present invention chlorinates 2,6-DCBAD in the presence of a catalyst,
In the method for producing 6-DCOC, 2,6-DCOC characterized in that a tetra-substituted urea substituted with a lower alkyl group, a di-substituted cyclic urea or a tertiary amine is used as the catalyst. Is a manufacturing method.

【0008】本発明に使用する原料である2,6−DC
BADは2,6−ジクロロトルエンを側鎖塩素化した
後、加水分解する事により極めて容易にかつ高収率で得
られる物である。又、本発明に使用する触媒の低級アル
キル基で置換されたテトラ置換尿素類としては、テトラ
メチル尿素、テトラエチル尿素、1,1,3−トリメチ
ル−3−イソプロピル尿素等が挙げられる。低級アルキ
ル基で置換されたジ置換尿素類としては、1,3−ジメ
チル−1,3−ペンタメチレン尿素、1,3−ジメチル
イミダゾリジノン等が挙げられ、又3級アミン類として
は、トリエチルアミン、トリ−n−ブチルアミン等の飽
和脂肪族3級アミン、又はトリアリルアミン等の不飽和
脂肪族3級アミン、又はトリエタノ−ルアミン、トリ−
n−プロパノ−ルアミン、ベンジルジメチルアミン、p
−クロロベンジルジエチルアミン等の置換脂肪族3級ア
ミン 、及びN−メチルピペリジン、N−メチルモルホ
リン、キヌクリジン等の環式3級アミンが挙げられる。
2,6-DC which is a raw material used in the present invention
BAD is a product that can be obtained extremely easily and in high yield by chlorinating 2,6-dichlorotoluene and then hydrolyzing it. Further, examples of the tetra-substituted urea substituted with a lower alkyl group of the catalyst used in the present invention include tetramethylurea, tetraethylurea, 1,1,3-trimethyl-3-isopropylurea and the like. Examples of the disubstituted ureas substituted with a lower alkyl group include 1,3-dimethyl-1,3-pentamethylene urea, 1,3-dimethylimidazolidinone, and the tertiary amines include triethylamine. , Saturated aliphatic tertiary amines such as tri-n-butylamine, or unsaturated aliphatic tertiary amines such as triallylamine, or triethanolamine, tri-
n-propanolamine, benzyldimethylamine, p
Examples include substituted aliphatic tertiary amines such as -chlorobenzyldiethylamine, and cyclic tertiary amines such as N-methylpiperidine, N-methylmorpholine, and quinuclidine.

【0009】これ等触媒は、単独で充分にその作用を示
すものであるが、2種〜数種を組み合わせて用いてもそ
の効果が減じる事はない。又塩素化が進行すると3級ア
ミン系の触媒は発生する塩化水素により塩酸塩となる
が、それでもその触媒能が低下する事はない。即ち、3
級アミン系の触媒はその塩酸塩のような形でも用いる事
が出来る。
[0009] These catalysts exhibit their functions sufficiently by themselves, but the effect is not diminished even if two or more kinds of catalysts are used in combination. Further, as the chlorination progresses, the tertiary amine-based catalyst is converted into a hydrochloride by the generated hydrogen chloride, but the catalytic ability does not deteriorate. That is, 3
The primary amine-based catalyst can also be used in the form of its hydrochloride.

【0010】これ等触媒の使用量は、原料の2,6−D
CBAD1重量当たり0.3〜20重量%、好ましくは
1〜3重量%である。又、本発明に於ける塩素化の反応
温度は80〜180℃の間で行われるが、好ましくは1
20〜150℃である。
The amount of these catalysts used is 2,6-D of the raw material.
It is 0.3 to 20% by weight, preferably 1 to 3% by weight, based on 1 weight of CBAD. The reaction temperature of chlorination in the present invention is carried out at 80 to 180 ° C., preferably 1
20 to 150 ° C.

【0011】塩素化剤としては、塩素ガス、スルフリル
クロリドのような一般的なラジカル塩素化反応に用いら
れる塩素化剤が使用されるが、製造の経済性を考慮すれ
ば塩素ガスが望ましい。又、本反応は無溶媒系で充分そ
の目的を達する事が可能で、かつ経済的にも有利である
が、反応溶媒として例えば四塩化炭素のような反応に不
活性な溶剤を用いても差し支えない。
As the chlorinating agent, a chlorinating agent used in general radical chlorination reactions such as chlorine gas and sulfuryl chloride is used, but chlorine gas is preferable in view of production economy. In addition, this reaction can achieve its purpose sufficiently in a solvent-free system and is economically advantageous, but a solvent inert to the reaction such as carbon tetrachloride may be used as a reaction solvent. Absent.

【0012】目的とする2,6−DCOCは塩素化反応
終了後、減圧下で蒸留する事により容易に高純度品とし
て取り出す事が可能である。この時使用した触媒は蒸留
残査として存在し、この残査に新たに原料の2,6−D
CBADを加え、再び塩素化反応を行う事も可能であ
る。
The desired 2,6-DCOC can be easily taken out as a high-purity product by distillation under reduced pressure after the completion of the chlorination reaction. The catalyst used at this time was present as a distillation residue, and a 2,6-D raw material was newly added to this residue.
It is also possible to add CBAD and perform the chlorination reaction again.

【0013】[0013]

【発明の効果】本発明によれば、2,6−DCBADの
塩素化により2,6−DCOCを製造する際、多核塩素
化物の生成を抑えて2,6−DCOCを高純度、高収率
で得る事が出来る。更に後処理操作が容易であり、触媒
の再使用も可能であるため廃水、産業廃棄物の量も微量
である。従って極めて効率的な2,6−DCOCの製造
方法として本発明の工業的価値は高いものである。以
下、実施例により本発明を詳細に説明する。
INDUSTRIAL APPLICABILITY According to the present invention, when 2,6-DCOC is produced by chlorinating 2,6-DCBAD, the production of polynuclear chlorinated compounds is suppressed and the 2,6-DCOC is highly purified and has a high yield. Can be obtained at. Further, since the post-treatment operation is easy and the catalyst can be reused, the amount of waste water and industrial waste is very small. Therefore, the industrial value of the present invention is high as an extremely efficient method for producing 2,6-DCOC. Hereinafter, the present invention will be described in detail with reference to examples.

【0014】[0014]

【実施例】【Example】

[実施例1]攪拌機、温度計、ガス吹き込み管及び還流
冷却器を備えた300ml反応フラスコに2,6−DC
BAD87.5gとトリエタノ−ルアミン1.75g
(2%)を仕込み、窒素ガスを導入しながら120℃に
昇温する。次いで窒素ガスを止め、同温度に保ちながら
塩素ガスを0.25g/分の速度で、計4時間17分導
入し反応を行った。この反応液をガスクロマトグラフに
て分析した結果、2,6−DCOCの生成率は99.4
%であった。更に、反応液を単蒸留して得られた2,6
−DCOCの収率は94.7%、この時の同物の純度は
99.85%であった。
[Example 1] 2,6-DC was added to a 300 ml reaction flask equipped with a stirrer, a thermometer, a gas blowing tube and a reflux condenser.
87.5 g of BAD and 1.75 g of triethanolamine
(2%) is charged and the temperature is raised to 120 ° C. while introducing nitrogen gas. Then, the nitrogen gas was stopped, and while maintaining the same temperature, chlorine gas was introduced at a rate of 0.25 g / min for a total of 4 hours and 17 minutes to carry out the reaction. As a result of analyzing this reaction liquid by gas chromatography, the production rate of 2,6-DCOC was 99.4.
%Met. Furthermore, 2,6 obtained by simple distillation of the reaction solution
The yield of -DCOC was 94.7%, and the purity of the same was 99.85%.

【0015】[実施例2]攪拌機、温度計、ガス吹き込
み管及び還流冷却器を備えた300ml反応フラスコに
2,6−DCBAD87.5gとテトラメチルウレア
1.75g(2%)を仕込み、窒素ガスを導入しながら
135℃に昇温する。次いで窒素ガスを止め、同温度に
保ちながら塩素ガスを0.25g/分の速度で、計4時
間50分導入し反応を行った。この反応液をガスクロマ
トグラフにて分析した結果、2,6−DCOCの生成率
は99.3%であった。更に、反応液を単蒸留して得ら
れた2,6−DCOCの収率は93.1%、この時の同
物の純度は99.04%であった 。
[Example 2] 2,5-DCBAD (87.5 g) and tetramethylurea (1.75 g, 2%) were charged into a 300 ml reaction flask equipped with a stirrer, a thermometer, a gas blowing tube and a reflux condenser, and nitrogen gas was added. Is introduced and the temperature is raised to 135 ° C. Then, the nitrogen gas was stopped, and while maintaining the same temperature, chlorine gas was introduced at a rate of 0.25 g / min for a total of 4 hours and 50 minutes to carry out the reaction. As a result of analyzing this reaction liquid by a gas chromatograph, the production rate of 2,6-DCOC was 99.3%. Further, the yield of 2,6-DCOC obtained by subjecting the reaction solution to simple distillation was 93.1%, and the purity of the same at this time was 99.04%.

【0016】[実施例3−10]各種触媒を所定量仕込
み、実施例2と同様に反応を行った。反応液を単蒸留し
て得られた2,6−DCOCの収率と純度を表−1に示
す。
[Example 3-10] A predetermined amount of each catalyst was charged and the reaction was carried out in the same manner as in Example 2. Table 1 shows the yield and purity of 2,6-DCOC obtained by simple distillation of the reaction solution.

【0017】[0017]

【表−1】 [Table-1]

【0017】[実施例11]実施例1の蒸留残査の入っ
た300ml反応フラスコに、攪拌機、温度計、ガス吹
き込み管及び還流コンデンサ−を備え、2,6−DCB
AD87.5gを仕込み、窒素ガスを通じつつ135℃
に昇温した。窒素ガスを止め、同温度を保ちながら塩素
ガスを0.25g/分の速度で、計4時間50分吹き込
み、反応を行った。反応液をガスクロマトグラフにて分
析した結果、2,6−DCOCの生成率は99.5%と
なり、単蒸留して得られた収率は95.6%、この時の
2,6−DCOCの純度は99.73%であった。
[Example 11] A 300 ml reaction flask containing the distillation residue of Example 1 was equipped with a stirrer, a thermometer, a gas blowing tube and a reflux condenser, and 2,6-DCB was used.
Charge AD87.5g, 135 ℃ while passing nitrogen gas.
The temperature was raised to. The nitrogen gas was stopped, and chlorine gas was blown at a rate of 0.25 g / min for 4 hours and 50 minutes in total while maintaining the same temperature to carry out the reaction. As a result of analyzing the reaction liquid by a gas chromatograph, the production rate of 2,6-DCOC was 99.5%, and the yield obtained by simple distillation was 95.6%. The purity was 99.73%.

【0019】[実施例12]実施例11の蒸留残査に新
たに2,6−DCBAD87.5gを仕込み、実施例1
1と同様に反応を行った。単蒸留して得られた2,6−
DCOCの収率は95.2%及びその純度は99.52
%であった。
[Example 12] The distillation residue of Example 11 was newly charged with 87.5 g of 2,6-DCBAD to prepare Example 1
The reaction was carried out in the same manner as in 1. 2,6-obtained by simple distillation
The yield of DCOC is 95.2% and its purity is 99.52.
%Met.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 2,6−ジクロロベンズアルデヒドを塩
素化剤と反応させ2,6−ジクロロベンゾイルクロリド
を得るに際し、低級アルキル基で置換されたテトラ置換
尿素類、ジ置換環式尿素類、又は3級アミン類の中から
から選ばれた少なくとも一種の、又は任意の組み合わせ
からなる触媒の存在下で反応する事を特徴とする2,6
−ジクロロベンゾイルクロリドの製造方法。
1. When a 2,6-dichlorobenzaldehyde is reacted with a chlorinating agent to obtain 2,6-dichlorobenzoyl chloride, a tetra-substituted urea substituted with a lower alkyl group, a di-substituted cyclic urea, or 3 Characterized in that it reacts in the presence of a catalyst consisting of at least one selected from the group of primary amines or any combination thereof
-Method for producing dichlorobenzoyl chloride.
JP04323826A 1992-11-10 1992-11-10 Method for producing 2,6-dichlorobenzoyl chloride Expired - Fee Related JP3126834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04323826A JP3126834B2 (en) 1992-11-10 1992-11-10 Method for producing 2,6-dichlorobenzoyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04323826A JP3126834B2 (en) 1992-11-10 1992-11-10 Method for producing 2,6-dichlorobenzoyl chloride

Publications (2)

Publication Number Publication Date
JPH06145100A true JPH06145100A (en) 1994-05-24
JP3126834B2 JP3126834B2 (en) 2001-01-22

Family

ID=18159032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04323826A Expired - Fee Related JP3126834B2 (en) 1992-11-10 1992-11-10 Method for producing 2,6-dichlorobenzoyl chloride

Country Status (1)

Country Link
JP (1) JP3126834B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2239252A1 (en) * 2009-04-06 2010-10-13 Sumitomo Chemical Company, Limited Process for producing 3-methylthiopropanal
CN109096086A (en) * 2018-09-28 2018-12-28 石家庄绿田科技有限公司 A kind of preparation method of 2,6- dihydroxy-benzoic acid
CN114702380A (en) * 2022-04-07 2022-07-05 河南特格纳特科技有限公司 Method for co-producing p-chlorobenzoyl chloride and caproyl chloride and acyl chloride products thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311U (en) * 1992-06-18 1994-01-11 本間冬治工業株式会社 Back strainer
JP5402864B2 (en) * 2010-07-20 2014-01-29 住友化学株式会社 Method for producing 3-methylthiopropanal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2239252A1 (en) * 2009-04-06 2010-10-13 Sumitomo Chemical Company, Limited Process for producing 3-methylthiopropanal
CN101857560A (en) * 2009-04-06 2010-10-13 住友化学株式会社 Be used to prepare the method for 3-methylthiopropionaldehyde
US8173845B2 (en) 2009-04-06 2012-05-08 Sumitomo Chemical Company, Limited Process for producing 3-methylthiopropanal
CN109096086A (en) * 2018-09-28 2018-12-28 石家庄绿田科技有限公司 A kind of preparation method of 2,6- dihydroxy-benzoic acid
CN114702380A (en) * 2022-04-07 2022-07-05 河南特格纳特科技有限公司 Method for co-producing p-chlorobenzoyl chloride and caproyl chloride and acyl chloride products thereof
CN114702380B (en) * 2022-04-07 2024-03-19 河南特格纳特科技有限公司 Method for co-producing p-chlorobenzoyl chloride and hexanoyl chloride and acyl chloride product thereof

Also Published As

Publication number Publication date
JP3126834B2 (en) 2001-01-22

Similar Documents

Publication Publication Date Title
CN111732520B (en) Preparation method of 3-methyl-2-aminobenzoic acid
JPH0641026A (en) Production of 3,5-difluoroaniline
EP0638539A2 (en) Process for preparing poly- and perfluorocarboxylic acid chlorides
JPH0959238A (en) Synthesis of ketazine
JPH06145100A (en) Production of 2,6-dichlorobenzoyl chloride
US4387082A (en) Removal of nitrous oxide from exit gases containing this compound during the production of hydroxylammonium salts
US5872291A (en) Process for producing benzoyl chlorides
KR940011129B1 (en) Process for the preparation of 3-chloro-4-fluoronitrobenzene
JP3882855B2 (en) Method for producing alkylbenzoyl chloride
CN1264814C (en) Method for preparing chlorine sulfonyl isocyanic ester
JP3164284B2 (en) Method for producing 2-chloro-4-trifluoromethylbenzal chloride
JP4139448B2 (en) Method for producing α-bromo, ω-chloroalkane
JPH08231462A (en) Perfluoroalkylarboxylic acid fluoride and production of its derivative
JPS611662A (en) Manufacture of (trifluoromethyl)pyridine
JP2794436B2 (en) Nitrosyl fluoride manufacturing method
JPH072709B2 (en) Method for producing chlorosulfonyl isocyanate
EP0146882A2 (en) Process for the preparation of 1,2-dichloroethane
JP3788482B2 (en) Method for producing alkylbenzoyl chloride
JPH0583533B2 (en)
JPS61118378A (en) Production of tetrachlorophthalic anhydride
US4213919A (en) Manufacture of β-chlorocarboxylic acid chlorides
JPS5939705A (en) Manufacture of fluorinated phosgene
JPH04164063A (en) Production of chlorosulfonyl isocyanate
JPS5926610B2 (en) Method for producing 2,3-dichloro-1,4-naphthoquinone
JPH05271103A (en) Process for free-radical chlorination or bromination of methyl aromatic compound

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees