JPH0632845A - Production of electrically conductive high molecular complex material - Google Patents

Production of electrically conductive high molecular complex material

Info

Publication number
JPH0632845A
JPH0632845A JP4192479A JP19247992A JPH0632845A JP H0632845 A JPH0632845 A JP H0632845A JP 4192479 A JP4192479 A JP 4192479A JP 19247992 A JP19247992 A JP 19247992A JP H0632845 A JPH0632845 A JP H0632845A
Authority
JP
Japan
Prior art keywords
sulfonic acid
polyaniline
poly
derivative
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4192479A
Other languages
Japanese (ja)
Other versions
JP3066431B2 (en
Inventor
Masataka Takeuchi
正隆 武内
Hideo Yashima
秀夫 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP4192479A priority Critical patent/JP3066431B2/en
Publication of JPH0632845A publication Critical patent/JPH0632845A/en
Application granted granted Critical
Publication of JP3066431B2 publication Critical patent/JP3066431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high molecular complex material having particularly excellent thermal stability by complexing polyaniline and its derivative with polymerizable sulfonic acid followed by polymerization of the sulfonic acid to effect homogeneous mixing of a dopant which is physically and chemically stable. CONSTITUTION:(A) Polyaniline having the recurring units of the formula (R<1> to R<4> are H, 1 to 10C alkyl, alkoxy) and its derivative (preferably poly-O-aniline, poly-2,6-dimethoxyaniline or the like) and (B) a polymerizable sulfonic acid, preferably p-styrene-sulfonic acid are chelated, then the component B is polymerized, preferably by a method not using a catalyst but a thermal process to give the objective complex. The complexation of components A and B is carried out by separately dissolving them in solvents, and the solutions are mixed under stirring usually at 10 to 100 deg.C for 30 minutes to 10 hours. This heat treatment is usually effected at 150 to 250 deg.C for more than 0.5 hours.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導電性高分子複合物の製
造方法に関し、詳しくは物理的及び化学的安定性に優れ
るスルホン酸とポリアニリン系導電性高分子の複合方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive polymer composite, and more particularly to a method for synthesizing a sulfonic acid and a polyaniline-based conductive polymer having excellent physical and chemical stability.

【0002】[0002]

【従来の技術】導電性高分子は、有機導電体、有機半導
体としての応用はもとより、その新規な物理特性、電気
化学特性が注目を集めており、電池、表示素子、光電変
換素子、センサー、帯電防止材等、各種機能素子用素材
として、また非線形光学材料、帯電防止材料、電波吸収
材料等の機能性材料としての応用が期待されている。イ
オンドーピング法によりポリアセチレンの導電性が著し
く上昇することが見出されて以来(フィジクス・レビュ
−・レター、39巻、109項、1977年)、各種の
イオンドーピング型導電性高分子が提案されている。ド
ーピングには、電子受容体(酸化剤)添加により、高分
子内に正孔を多数発生させるP型ドーピングと、電子供
与体(還元剤)添加により、高分子内に自由電子を多数
発生させるN型ドーピングがある。P型導電性高分子の
ドーパントとしては、ハロゲンイオンのような小さなも
のから、巨大環状分子、更には高分子電解質まで可能で
あり、これら各種ドーパントのドーピング方法及び得ら
れた導電性高分子の特性と用途開発が新技術として注目
されている。
2. Description of the Related Art Conductive polymers have been attracting attention for their novel physical characteristics and electrochemical characteristics as well as their application as organic conductors and organic semiconductors, and have been used for batteries, display elements, photoelectric conversion elements, sensors, It is expected to be applied as a material for various functional elements such as an antistatic material, and as a functional material such as a non-linear optical material, an antistatic material, and an electromagnetic wave absorbing material. Since it was found that the conductivity of polyacetylene was significantly increased by the ion doping method (Physics Review Letter, Vol. 39, Item 109, 1977), various ion-doping type conductive polymers have been proposed. There is. For the doping, P-type doping that generates a large number of holes in the polymer by adding an electron acceptor (oxidizing agent) and N type that generates a large number of free electrons in the polymer by adding an electron donor (reducing agent). There is type doping. The dopants for the P-type conductive polymer can be small ones such as halogen ions, macrocyclic molecules, and polymer electrolytes. The doping method of these various dopants and the characteristics of the obtained conductive polymer are available. And application development is attracting attention as a new technology.

【0003】上記ドーパントとしてフッ化物イオンのよ
うな無機アニオンがよく使用されるが、これら低分子ド
ーパントは多量にドープされ得るものの、導電性高分子
中で移動し易く、また加熱により脱離し易い等、材料と
しての安定性に問題がある。また、この様な低分子ドー
パントでドープされた導電性高分子複合物は一般的に自
立性が悪く、脆いという欠点を有する。
Inorganic anions such as fluoride ions are often used as the above-mentioned dopants, but although these low-molecular-weight dopants can be doped in a large amount, they easily move in the conductive polymer and are easily desorbed by heating. However, there is a problem in stability as a material. In addition, a conductive polymer composite doped with such a low molecular weight dopant generally has poor self-standing property and is fragile.

【0004】このことから、近年アニオン基を有する高
分子電解質をドーパントとすることが提案されており、
例えば、特開昭59−98165号では高分子アニオン
をドーパントとする導電性高分子組成物が提案されてい
る。この組成物はドーパントとして、スルホン化ポリエ
チレン、スルホン化ポリスチレン、スルホン化ポリ
(2,5ージメチルフェニレンオキシド)、スルホン化
ポリビニルアルコール等が挙げられており、アニオン基
はスルホン酸基より形成されている。この提案は従来の
無機アニオンをドーパントとする導電性高分子に比較し
て安定で強度良好な導電性高分子複合物が得られること
を示したものであり注目される。しかしながら、これら
は高分子であるため、導電性高分子内部まで均一にドー
ピングすることが困難であり、また、導電性等の機能性
を発現するための重要な因子であるドーピング率が低い
という問題がある。
Therefore, it has been proposed in recent years to use a polymer electrolyte having an anion group as a dopant,
For example, JP-A-59-98165 proposes a conductive polymer composition containing a polymer anion as a dopant. This composition includes sulfonated polyethylene, sulfonated polystyrene, sulfonated poly (2,5-dimethylphenylene oxide), sulfonated polyvinyl alcohol and the like as a dopant, and the anion group is formed from a sulfonate group. . It is noteworthy that this proposal shows that a conductive polymer composite having a stable and good strength can be obtained as compared with a conventional conductive polymer using an inorganic anion as a dopant. However, since these are polymers, it is difficult to uniformly dope the inside of the conductive polymer, and the doping rate, which is an important factor for expressing functionality such as conductivity, is low. There is.

【0005】一方、酸化染料としてのアニリンの酸化重
合体に関する研究も、アニリンブラックに等で古くより
行なわれている。特に、アニリンブラック生成の中間体
であるアニリンの8量体がエメラルディンとして確認さ
れており( ジャーナル オブケミカルソサエティ−, 9
7, 2388(1910); 101, 1117(1912))、これは酢酸、ピリ
ジン、DMFに可溶である。次いで、近年になって、こ
のエメラルディンの硫酸塩が高い導電性を有することも
見い出された( ジャーナル オブ ポリマ−サイエン
ス, C, 16, 2931; 2943(1967); 22, 1187(1969))。更に
最近では、アニリンの化学的又は電気化学的酸化重合に
より得られたエメラルディン類似のポリアニリンが塩酸
等のプロトン酸で容易にドープされ高い導電性を示すこ
とが報告されている( ジャ−ナル オブ ケミカル ソ
サエティ−, ケミカル.コミュニケ−ション,1784(198
7)) 。
On the other hand, research on aniline oxidation polymers as oxidative dyes has also been conducted for a long time in aniline black and the like. In particular, an octamer of aniline, which is an intermediate for producing aniline black, has been confirmed as emeraldine (Journal of Chemical Society, 9
7, 2388 (1910); 101, 1117 (1912)), which is soluble in acetic acid, pyridine and DMF. Next, in recent years, it was also found that this sulfate of emeraldine has high conductivity (Journal of Polymer Science, C, 16, 2931; 2943 (1967); 22, 1187 (1969)). More recently, it has been reported that a polyaniline similar to emeraldine obtained by chemical or electrochemical oxidative polymerization of aniline is easily doped with a protic acid such as hydrochloric acid and has high conductivity (journal of Chemical Society, Chemical Communication, 1784 (198
7)).

【0006】ポリアニリンは空気中で安定であり、また
合成も比較的容易であるため、最近特に注目されている
導電性高分子である。但し、ポリアニリンは一部の極性
溶媒に僅かに溶ける程度の溶解性しか有しないため、導
電性高分子を各種用途に応用する場合に必要な加工性と
いう点で不利になっている。本発明者らはこの加工性を
積極的に付与するには、ポリアニリンの側鎖にアルコキ
シ基やアルキル基を導入して可溶化させることが有効で
あることを見出した(特開昭61-206106 号)。しかしな
がら、上記導電性高分子同様、均一に多量にドーピング
を行なうには、低分子であるプロトン酸を用いる以外に
方法はなく、従ってドーピング状態での安定性としては
上述したような問題が残っていた。
Since polyaniline is stable in air and is relatively easy to synthesize, polyaniline is a conductive polymer which has recently received special attention. However, since polyaniline has a solubility to the extent that it is slightly soluble in some polar solvents, it is disadvantageous in terms of workability required when the conductive polymer is applied to various applications. The present inventors have found that in order to positively impart this processability, it is effective to introduce an alkoxy group or an alkyl group into the side chain of polyaniline to solubilize it (JP-A-61-206106). issue). However, like the above-mentioned conductive polymer, there is no method other than using a protonic acid, which is a low molecular weight, for uniformly doping a large amount, and therefore, the stability in the doping state has the above-mentioned problems. It was

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、物理
的、化学的に安定なドーパントを均一に混合した物理
的、化学的安定性、特に熱安定性に優れたポリアニリン
系導電性高分子複合物を与えることにある。更に詳しく
は、安定性に優れたスルホン酸系高分子ドーパントをポ
リアニリン系化合物内に均一に混合する方法を提案する
ものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a polyaniline-based conductive polymer excellent in physical and chemical stability, particularly thermal stability, in which a physically and chemically stable dopant is uniformly mixed. To give a compound. More specifically, it proposes a method of uniformly mixing a sulfonic acid-based polymer dopant having excellent stability into a polyaniline-based compound.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記問題点
を解決するために鋭意検討を行なった結果、イオン性が
強く混合後に高分子化が可能な重合性スルホン酸がポリ
アニリン系化合物に容易にドープすることに着目し、ド
ープ後にこれらスルホン酸を重合させることにより、高
分子ドーパントを均一にポリアニリン系化合物内に導入
できることを見出し、本発明に至った。導電性高分子の
中でも特にポリアニリンはアミン及びイミン構造を有す
るため、プロトン酸との新和性が強く、スルホン酸が容
易にド−プすることも本発明の特徴と言える。即ち本発
明は、下記の一般式(I)で表される構造を繰返し単位
とするポリアニリン誘導体と重合性スルホン酸とを複合
し、次いでスルホン酸を重合することを特徴とする導電
性高分子複合物の製造方法に関するものである。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that a polymerizable sulfonic acid having strong ionicity and capable of being polymerized after mixing becomes a polyaniline compound. Focusing on easy doping, it was found that a polymer dopant can be uniformly introduced into a polyaniline-based compound by polymerizing these sulfonic acids after the doping, and the present invention has been completed. Among the conductive polymers, polyaniline has an amine and imine structure, so that it has a strong compatibility with a protonic acid and is easily doped with sulfonic acid. That is, the present invention is a conductive polymer composite characterized in that a polyaniline derivative having a structure represented by the following general formula (I) as a repeating unit is compounded with a polymerizable sulfonic acid, and then the sulfonic acid is polymerized. The present invention relates to a method for manufacturing a product.

【0009】[0009]

【化2】 (式中、R1 〜R4 は、水素原子、炭素数1〜10のア
ルキル基、又はアルコキシ基である。)
[Chemical 2] (Wherein, R 1 to R 4 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group.)

【0010】以下、本発明を具体的に説明する。本発明
の一般式(I)で表される繰返し単位とするポリアニリ
ン誘導体の例としては、ポリアニリン、ポリ−o−トル
イジン、ポリ−m−トルイジン、ポリ−o−アニシジ
ン、ポリ−m−アニシジン、ポリキシリジン、ポリ−
2,5−ジメトキシアニリン、ポリ−2,6−ジメトキ
シアニリン、ポリ−2,5−ジエトキシアニリン、ポリ
−2,6−ジエトキシアニリン、ポリ−o−エトキシア
ニリン、ポリ−m−エトキシアニリン及びこれらの共重
合体を挙げることができるが、特にこれらに限定される
ものではない。前記ポリアニリン誘導体の側鎖の導入量
は、多いほど溶解性という点では都合が良いが、あまり
多過ぎると立体障害、分子量の低下等が起こり、電気伝
導性という点で好ましくない。従って、好ましい誘導体
としては、ポリ−o−アニシジン、ポリ−m−アニシジ
ン、ポリ−2,5−ジメトキシアニリン、ポリ−2,6
−ジメトキシアニリン、ポリ−o−エトキシアニリン、
ポリ−m−エトキシアニリンが挙げられる。
The present invention will be described in detail below. Examples of the polyaniline derivative having the repeating unit represented by the general formula (I) of the present invention include polyaniline, poly-o-toluidine, poly-m-toluidine, poly-o-anisidine, poly-m-anisidine and polyxylidine. , Poly-
2,5-dimethoxyaniline, poly-2,6-dimethoxyaniline, poly-2,5-diethoxyaniline, poly-2,6-diethoxyaniline, poly-o-ethoxyaniline, poly-m-ethoxyaniline and Although these copolymers can be mentioned, they are not particularly limited thereto. The introduction amount of the side chain of the polyaniline derivative is more convenient in terms of solubility, but if it is too much, steric hindrance, decrease in molecular weight and the like occur, which is not preferable in terms of electrical conductivity. Therefore, preferable derivatives include poly-o-anisidine, poly-m-anisidine, poly-2,5-dimethoxyaniline and poly-2,6.
-Dimethoxyaniline, poly-o-ethoxyaniline,
Mention may be made of poly-m-ethoxyaniline.

【0011】本発明のポリアニリン誘導体の重合方法は
特に限定されるものではないが、一般には、例えば、ジ
ャ−ナル オブ ケミカル ソサエティ−, ケミカル.
コミュニケ−ション,1784(1987)等で報告されている様
に、アニリン、o−アニシジン、2,5−ジメトキシア
ニリン等のアニリン誘導体を電気化学的又は化学的に酸
化重合する方法がとられている。
The method for polymerizing the polyaniline derivative of the present invention is not particularly limited, but in general, for example, Journal of Chemical Society, Chemical.
As reported in Communication, 1784 (1987) and the like, a method of electrochemically or chemically oxidatively polymerizing an aniline derivative such as aniline, o-anisidine and 2,5-dimethoxyaniline has been adopted. .

【0012】電気化学的酸化重合は、陽極酸化によって
行われ、電流密度約0.01〜50mA/cm2 、電解
電圧0.1〜30Vの範囲で、定電流法、定電圧法及び
それ以外のいかなる方法をも用いることができる。重合
は水溶液中、有機溶媒中又はこれらの混合溶媒中で行わ
れる。電解液のpHとしては特に制限はないが、好まし
くはpHが3以下、特に好ましくは2以下である。pH
調節に用いる酸の具体例としては、HCl、HBF4
CF3 COOH、H2 SO4 及びHNO3 、パラトルエ
ンスルホン酸等の強酸をあげることができるが、特にこ
れらに限定されるものではない。
The electrochemical oxidative polymerization is carried out by anodic oxidation, and a current density of about 0.01 to 50 mA / cm 2 and an electrolysis voltage of 0.1 to 30 V are used in a constant current method, a constant voltage method and other methods. Any method can be used. The polymerization is carried out in an aqueous solution, an organic solvent or a mixed solvent thereof. The pH of the electrolytic solution is not particularly limited, but the pH is preferably 3 or less, particularly preferably 2 or less. pH
Specific examples of the acid used for adjustment include HCl, HBF 4 ,
Strong acids such as CF 3 COOH, H 2 SO 4 and HNO 3 , and paratoluene sulfonic acid can be used, but the acid is not particularly limited thereto.

【0013】化学的酸化重合の場合には、例えばアニリ
ン誘導体を酸性溶液中で過酸化物、過硫酸塩のような酸
化剤で酸化重合させることができる。この場合に用いる
酸としては、電気化学的酸化重合の場合に用いるものと
同様のものが用いられるが、同じくこれらに限定される
ものではない。
In the case of chemical oxidative polymerization, for example, the aniline derivative can be oxidatively polymerized in an acidic solution with an oxidizing agent such as peroxide or persulfate. As the acid used in this case, the same acid as that used in the electrochemical oxidative polymerization can be used, but the acid is not limited thereto.

【0014】このような方法で得られるポリアニリン誘
導体の分子量は特に限定されないが、通常2000以上
のものが得られている。また、このような方法によって
得られるポリアニリン誘導体は、一般的に重合溶液中の
アニオンをド−パントとして含んだ状態で得られる場合
が多く、従って重合性スルホン酸を添加する前にこれら
アニオンを脱ド−プする必要がある。脱ド−プの方法と
しては特に制限はないが、一般にはアンモニア水等の塩
基で処理する方法がとられる。
The molecular weight of the polyaniline derivative obtained by such a method is not particularly limited, but a molecular weight of 2000 or more is usually obtained. In general, the polyaniline derivative obtained by such a method is generally obtained in a state in which the anion in the polymerization solution is contained as a dopant, and therefore, the anion is removed before the addition of the polymerizable sulfonic acid. Need to dope. The method for removing the dope is not particularly limited, but a method of treating with a base such as aqueous ammonia is generally used.

【0015】本発明の重合性スルホン酸としては、スチ
レンスルホン酸、ビニルスルホン酸及びそれらの誘導体
が挙げられる。これらの中でパラスチレンスルホン酸が
反応性、安定性等で優れている。本発明のポリアニリン
誘導体と重合性スルホン酸の複合量としてはスルホン酸
/ポリアニリン誘導体のモノマーユニットのモル比が
0.01以上10以下が好ましく、更に好ましくは0.
1以上2以下である。モル比が0.01以下の場合に
は、ドープ量が小さく電気伝導度向上に効果がない。ま
た10以上の場合、複合物中のスルホン酸の量が多過ぎ
るため、導電性高分子の電気伝導性を阻害することにな
る。
Examples of the polymerizable sulfonic acid of the present invention include styrene sulfonic acid, vinyl sulfonic acid and their derivatives. Among these, p-styrene sulfonic acid is excellent in reactivity, stability and the like. As the combined amount of the polyaniline derivative of the present invention and the polymerizable sulfonic acid, the molar ratio of the sulfonic acid / polyaniline derivative monomer unit is preferably 0.01 or more and 10 or less, more preferably 0.
It is 1 or more and 2 or less. When the molar ratio is 0.01 or less, the doping amount is small and there is no effect in improving the electric conductivity. On the other hand, when it is 10 or more, the amount of sulfonic acid in the composite is too large, which impairs the electrical conductivity of the conductive polymer.

【0016】本発明のポリアニリン誘導体と重合性スル
ホン酸を複合させる方法としては、特に制限はないが、
固体状のポリアニリン誘導体を重合性スルホン酸溶液中
に浸す方法やポリアニリン誘導体が溶媒に可溶な場合に
は溶液同志を混合する方法が一般的にとられる。特に、
溶液状態で混合すれば、成膜等の加工面で大きな利点と
なる。この場合の溶媒は、ポリアニリン誘導体が溶解す
るものであれば、特に限定されない。また複合時の温
度、時間は特に限定されない。ポリアニリン誘導体とス
ルホン酸との親和性が高く、通常、10℃から100℃
の範囲で30分から10時間程度撹拌混合すればよい。
The method of combining the polyaniline derivative of the present invention and the polymerizable sulfonic acid is not particularly limited,
Generally, a method of immersing a solid polyaniline derivative in a solution of a polymerizable sulfonic acid or a method of mixing the solutions when the polyaniline derivative is soluble in a solvent is used. In particular,
Mixing in a solution state is a great advantage in terms of processing such as film formation. The solvent in this case is not particularly limited as long as it can dissolve the polyaniline derivative. Further, the temperature and the time during the combination are not particularly limited. High affinity between polyaniline derivative and sulfonic acid, usually 10 ℃ to 100 ℃
It is only necessary to stir and mix in the range of about 30 minutes to 10 hours.

【0017】本発明では、ポリアニリン誘導体/重合性
スルホン酸複合後に複合物中のスルホン酸を重合させる
ことを特徴とする。その重合方法に特に制限はないが、
触媒を使用するとその残留物が最終的な複合物の電気伝
導度等に影響する可能性が有るので、加熱等の無触媒系
で重合する方法が好ましい。この場合の加熱温度、時間
は使用するスルホン酸によって異なるが、一般的には1
50℃から250℃の範囲で0.5時間以上を要する。
また、加熱処理の雰囲気としては、ポリアニリン誘導体
の酸化劣化を防止する意味で減圧下や不活性雰囲気下等
の酸素を排した状態が好ましい。また、他の触媒作用を
有する物質を併用することもできる。このようにして得
られた複合物中のスルホン酸重合体は、5〜50量体付
近のものが多く生成している。
The present invention is characterized in that the sulfonic acid in the composite is polymerized after the polyaniline derivative / polymerizable sulfonic acid composite. The polymerization method is not particularly limited,
When a catalyst is used, the residue thereof may affect the electrical conductivity of the final composite and the like, so a method of polymerizing in a non-catalytic system such as heating is preferable. The heating temperature and time in this case differ depending on the sulfonic acid used, but in general, 1
It takes 0.5 hours or more in the range of 50 ° C to 250 ° C.
The atmosphere for the heat treatment is preferably a state in which oxygen is exhausted under reduced pressure or in an inert atmosphere in order to prevent oxidative deterioration of the polyaniline derivative. Also, other substances having a catalytic action can be used in combination. The sulfonic acid polymer in the thus obtained composite is mostly in the vicinity of 5 to 50 mer.

【0018】[0018]

【発明の効果】本発明によればポリ又はオリゴスルホン
酸系ドーパントをポリアニリン系導電性高分子中に均一
に混合でき、物理的、化学的安定性、加工性に優れた導
電性高分子複合物が得られる。この手法は、各種の導電
性高分子に適用でき、各種光電子素子の構成材料や帯電
防止材料、電波吸収材料等の導電性高分子の応用上極め
て有用である。
INDUSTRIAL APPLICABILITY According to the present invention, a poly or oligo sulfonic acid type dopant can be uniformly mixed in a polyaniline type conductive polymer, and the conductive polymer composite is excellent in physical and chemical stability and processability. Is obtained. This method can be applied to various conductive polymers, and is extremely useful for application of conductive polymers such as constituent materials of various optoelectronic devices, antistatic materials, and radio wave absorbing materials.

【0019】[0019]

【実施例】以下に実施例を示して、本発明を更に詳細に
説明する。 実施例1 ガラス製反応容器に、1.5モルのHBF4 水溶液を2
0ml、及び0.35モルの2,5−ジメトキシアニリ
ンを入れ、pH<1.0の水溶液を調製した。この水溶
液に2cmの間隔で各々その電極面積が10cm2 の2
つの白金電極を挿入した後、撹拌下で20クーロンの電
気量を流して電解酸化重合した。この際、陽極の白金電
極上に濃緑色のBF4 アニオンがドープしたポリ−2,
5−ジメトキシアニリンが析出した。次いで、この析出
物を10%のアンモニア水で洗浄後、蒸留水で洗浄した
ところ、濃青色に変化した。この重合体を乾燥後、白金
電極から剥離し、N−メチルピロリドン(NMP)に溶
解し、2wt%の溶液を調製した。この溶液のGPC測
定により求めた分子量は、ポリスチレン換算で約100
00であった。
The present invention will be described in more detail with reference to the following examples. Example 1 A glass reactor was charged with 2 mol of a 1.5 mol HBF 4 aqueous solution.
0 ml and 0.35 mol of 2,5-dimethoxyaniline were added to prepare an aqueous solution of pH <1.0. The electrode area was 10 cm 2 in this aqueous solution at intervals of 2 cm.
After inserting two platinum electrodes, an electric quantity of 20 coulomb was passed under stirring to carry out electrolytic oxidative polymerization. At this time, poly-2 doped with dark green BF 4 anions on the platinum electrode of the anode,
5-dimethoxyaniline was precipitated. Next, when this precipitate was washed with 10% aqueous ammonia and then with distilled water, it turned deep blue. After drying this polymer, it was peeled from the platinum electrode and dissolved in N-methylpyrrolidone (NMP) to prepare a 2 wt% solution. The molecular weight of this solution determined by GPC measurement is about 100 in terms of polystyrene.
It was 00.

【0020】実施例2 パラスチレンスルホン酸ソーダを水に溶かし、イオン交
換樹脂に通して4wt%のパラスチレンスルホン酸(P
SS)水溶液を得た。この溶液をガラス板に塗布し、減
圧下、150℃で2時間熱処理した。得られた膜を水に
再溶解したところ、強酸性を示した。また、この膜の水
溶液中でのGPCを測定したところ、パラスチレンスル
ホン酸の5〜20量体に相当する分子量のものが生成し
ていることを確認した。
Example 2 Sodium parastyrene sulfonate was dissolved in water and passed through an ion exchange resin to obtain 4 wt% of para styrene sulfonic acid (P
SS) aqueous solution was obtained. This solution was applied to a glass plate and heat-treated at 150 ° C. for 2 hours under reduced pressure. When the obtained membrane was redissolved in water, it showed strong acidity. Further, when GPC of this membrane in an aqueous solution was measured, it was confirmed that a molecular weight equivalent to 5 to 20-mer of p-styrene sulfonic acid was produced.

【0021】実施例3 実施例1、2で調製した2wt%ポリ−2,5−ジメト
キシアニリンのNMP溶液と4wt%PSS水溶液を各
々のモノマー比が1:1となるように混合し、ガラス板
上にスピンコート(500回転)により成膜し、50℃
で約8時間真空乾燥した。得られた緑色膜の表面抵抗
(25℃、窒素雰囲気)は3×106 Ω/□であった。
次いで、上記膜を150℃で2時間熱処理した後、表面
抵抗(25℃、窒素雰囲気)を測定したところ、その値
は4×106 Ω/□であった上記複合膜を100℃、窒
素雰囲気下で1週間放置後、再度表面抵抗(25℃、窒
素雰囲気)を測定したところ、4×106 Ω/□で、表
面抵抗はほとんど変化しておらず、高温で安定な電気伝
導性膜であることが確認できた。
Example 3 An NMP solution of 2 wt% poly-2,5-dimethoxyaniline prepared in Examples 1 and 2 was mixed with a 4 wt% PSS aqueous solution so that each monomer ratio was 1: 1, and a glass plate was prepared. Film is formed by spin coating (500 rotations) on top and at 50 ° C.
It was vacuum dried for about 8 hours. The surface resistance (25 ° C., nitrogen atmosphere) of the obtained green film was 3 × 10 6 Ω / □.
Then, after heat-treating the film at 150 ° C. for 2 hours, the surface resistance (25 ° C., nitrogen atmosphere) was measured. The value was 4 × 10 6 Ω / □. After being left for 1 week, the surface resistance (25 ° C., nitrogen atmosphere) was measured again and found to be 4 × 10 6 Ω / □, which showed almost no change in surface resistance and was an electrically conductive film that was stable at high temperatures. It was confirmed that there is.

【0022】実施例4 1Lの4つ口フラスコに、温度計、撹拌機、コンデンサ
ーを取り付け、1規定のHBF4 水溶液を500mL加
え、窒素をバブルしながら33.62gの2,5−ジメ
トキシアニリンを溶解した。次いで、撹拌下、窒素バブ
ルしながら、11.5gの過硫酸アンモニウムを固体の
まま、約30分かけて添加した。この反応は発熱反応で
あるので、反応中は氷冷により、22℃に保った。添加
後、更に2時間反応させた後ろ過し、ろ残を500mL
の蒸留水で洗浄した。次いで、この生成物をビ−カ−に
移し、500mLの5%アンモニア水で約1時間撹拌洗
浄後、ろ過し、ろ残をろ液が中性になるまで、蒸留水で
十分に洗浄後、100℃で約8時間減圧乾燥することに
より、未ド−プ状態のポリ−2,5−ジメトキシアニリ
ン粉末を化学的方法により得た。更に、これをNMPに
溶解し、2wt%の溶液を調製した。この溶液のGPC
測定により求めた分子量は、ポリスチレン換算で約80
00であった。
Example 4 A 1 L four-necked flask was equipped with a thermometer, a stirrer, and a condenser, and 500 mL of 1N HBF4 aqueous solution was added. 33.62 g of 2,5-dimethoxyaniline was dissolved while bubbling nitrogen. did. Then, with stirring and while bubbling nitrogen through, 11.5 g of ammonium persulfate was added as a solid over about 30 minutes. Since this reaction is an exothermic reaction, the temperature was kept at 22 ° C. by cooling with ice during the reaction. After the addition, react for 2 hours and then filter to obtain 500 mL of filter residue.
It was washed with distilled water. Then, this product was transferred to a beaker, washed with 500 mL of 5% ammonia water under stirring for about 1 hour, and then filtered, and the residue was thoroughly washed with distilled water until the filtrate became neutral, By drying under reduced pressure at 100 ° C. for about 8 hours, an undoped poly-2,5-dimethoxyaniline powder was obtained by a chemical method. Further, this was dissolved in NMP to prepare a 2 wt% solution. GPC of this solution
The molecular weight determined by measurement is about 80 in terms of polystyrene.
It was 00.

【0023】実施例5 実施例4、2で調製した2wt%ポリ−2,5−ジメト
キシアニリンのNMP溶液と4wt%PSS水溶液を各
々のモノマー比が1:1となるように混合し、混合後す
ぐにガラス板上にスピンコート(500回転)により成
膜し、50℃で約8時間真空乾燥した。得られた緑色膜
の表面抵抗(25℃、窒素雰囲気)は6×106 Ω/□
であった。次いで、上記膜を150℃で2時間熱処理し
た後、表面抵抗(25℃、窒素雰囲気)を測定したとこ
ろ、その値は7×106 Ω/□であった上記複合膜を1
00℃、窒素雰囲気下で1週間放置後、再度表面抵抗
(25℃、窒素雰囲気)を測定したところ、7×106
Ω/□で、表面抵抗はほとんど変化しておらず、高温で
安定な電気伝導性膜であることが確認できた。
Example 5 The NMP solution of 2 wt% poly-2,5-dimethoxyaniline prepared in Examples 4 and 2 and a 4 wt% PSS aqueous solution were mixed so that the respective monomer ratios were 1: 1, and after mixing. Immediately, a film was formed on the glass plate by spin coating (500 rotations) and vacuum dried at 50 ° C. for about 8 hours. The surface resistance (25 ° C., nitrogen atmosphere) of the obtained green film is 6 × 10 6 Ω / □
Met. Then, the film was heat-treated at 150 ° C. for 2 hours, and the surface resistance (25 ° C., nitrogen atmosphere) was measured. The value was 7 × 10 6 Ω / □.
After being left at 00 ° C. in a nitrogen atmosphere for 1 week, the surface resistance (25 ° C., nitrogen atmosphere) was measured again, and it was 7 × 10 6.
With Ω / □, the surface resistance hardly changed, and it was confirmed that the film was an electrically conductive film that was stable at high temperatures.

【0024】実施例6〜9 実施例4で用いた2,5−ジメトキシアニリンのかわり
に、等モルのアニリン、o−トルイジン、o−アニシジ
ン、o−エトキシアニリンを用いた以外は、実施例4と
同様にしてそれぞれのモノマ−に対応する表1に示した
ような重合体を化学的に重合し、1〜2wt%のNMP
溶液を調製した。尚、アニリンの重合体は部分的にしか
NMPに溶解しなかった。次いで、これらの重合体の溶
液を用いた以外は実施例5と全く同様の方法で、複合物
を成膜し、表面抵抗(25℃、窒素雰囲気)を測定した
ところ、表1のような結果が得られ、表面抵抗はほとん
ど変化しておらず、高温で安定な電気伝導性膜であるこ
とが確認できた。
Examples 6 to 9 Example 4 was repeated except that equimolar aniline, o-toluidine, o-anisidine and o-ethoxyaniline were used in place of the 2,5-dimethoxyaniline used in Example 4. In the same manner as above, a polymer corresponding to each monomer as shown in Table 1 is chemically polymerized to obtain 1-2 wt% of NMP.
A solution was prepared. The aniline polymer was only partially dissolved in NMP. Then, a composite film was formed and surface resistance (25 ° C., nitrogen atmosphere) was measured by the same method as in Example 5 except that the solutions of these polymers were used, and the results shown in Table 1 were obtained. It was confirmed that the surface resistance was almost unchanged, and that the electroconductive film was stable at high temperatures.

【0025】実施例10 実施例5での溶液の混合比の代りに、モノマー比として
2,5−ジメトキシアニリン:PSSが2:1となるよ
うに溶液を混合した以外は実施例5と全く同様の方法
で、複合物を成膜し、表面抵抗(25℃、窒素雰囲気)
を測定したところ、表1のような結果が得られ、表面抵
抗はほとんど変化しておらず、高温で安定な電気伝導性
膜であることが確認できた。
Example 10 Exactly the same as Example 5 except that the solution was mixed so that the monomer ratio was 2,5-dimethoxyaniline: PSS was 2: 1 instead of the solution mixing ratio in Example 5. Method, the composite film is formed and the surface resistance (25 ° C, nitrogen atmosphere)
As a result, the results shown in Table 1 were obtained, and it was confirmed that the surface resistance was almost unchanged and the electroconductive film was stable at high temperatures.

【0026】比較例1、2 実施例5で用いた4wt%PSS水溶液の代りに、4w
t%の塩酸水溶液又は4wt%パラトルエンスルホン酸
水溶液を用いた以外は実施例5と全く同様の方法で、複
合物を成膜し、表面抵抗(25℃、窒素雰囲気)を測定
したところ、表1のような結果が得られ、高温では不安
定であった。
Comparative Examples 1 and 2 Instead of the 4 wt% PSS aqueous solution used in Example 5, 4 w
A composite film was formed and the surface resistance (25 ° C., nitrogen atmosphere) was measured by the same method as in Example 5 except that a t% hydrochloric acid aqueous solution or a 4 wt% paratoluenesulfonic acid aqueous solution was used. The result of 1 was obtained and it was unstable at high temperature.

【0027】[0027]

【表1】 [Table 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I)を繰り返し単位とするポリ
アニリン及びその誘導体と重合性スルホン酸とを複合後
にスルホン酸を重合することを特徴とする導電性高分子
複合物の製造方法。 【化1】 (式中、R1 〜R4 は、水素原子、炭素数1〜10のア
ルキル基又はアルコキシ基である。)
1. A method for producing a conductive polymer composite, which comprises polymerizing a sulfonic acid after complexing a polyaniline having a repeating unit of the general formula (I) and a derivative thereof with a polymerizable sulfonic acid. [Chemical 1] (In the formula, R 1 to R 4 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group.)
【請求項2】 重合性スルホン酸がパラスチレンスルホ
ン酸である請求項1の導電性高分子複合物の製造方法。
2. The method for producing a conductive polymer composite according to claim 1, wherein the polymerizable sulfonic acid is parastyrene sulfonic acid.
JP4192479A 1992-07-20 1992-07-20 Method for producing conductive polymer composite Expired - Fee Related JP3066431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4192479A JP3066431B2 (en) 1992-07-20 1992-07-20 Method for producing conductive polymer composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4192479A JP3066431B2 (en) 1992-07-20 1992-07-20 Method for producing conductive polymer composite

Publications (2)

Publication Number Publication Date
JPH0632845A true JPH0632845A (en) 1994-02-08
JP3066431B2 JP3066431B2 (en) 2000-07-17

Family

ID=16291980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4192479A Expired - Fee Related JP3066431B2 (en) 1992-07-20 1992-07-20 Method for producing conductive polymer composite

Country Status (1)

Country Link
JP (1) JP3066431B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828184A1 (en) * 1996-09-04 1998-03-11 Eastman Kodak Company Imaging element containing an electrically conductive polymer blend
US5959832A (en) * 1994-11-25 1999-09-28 Nec Corporation Solid electrolytic capacitor with heat resisting polyaniline and method of manufacturing same
US6024895A (en) * 1995-08-11 2000-02-15 Mitsubishi Rayon Co., Ltd. Cross-linkable, electrically conductive composition, electric conductor and process for forming the same
US7645400B2 (en) 2002-11-01 2010-01-12 Mitsubishi Rayon Co., Ltd. Composition containing carbon nanotubes having a coating
JP2015010202A (en) * 2013-07-01 2015-01-19 国立大学法人山形大学 Thermosetting conductive polymer composition
US9627144B2 (en) 2011-08-17 2017-04-18 Mitsubishi Rayon Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
WO2018147318A1 (en) 2017-02-10 2018-08-16 三菱ケミカル株式会社 Conductive composition, method for producing conductive composition, and method for producing conductor
US10096395B2 (en) 2012-07-24 2018-10-09 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
WO2019146715A1 (en) 2018-01-26 2019-08-01 三菱ケミカル株式会社 Electroconductive composition and production method therefor, and water-soluble polymer and production method therefor
WO2019177096A1 (en) 2018-03-15 2019-09-19 三菱ケミカル株式会社 Conductive film, method for producing same, conductor, resist pattern formation method, and laminate
WO2019198749A1 (en) 2018-04-10 2019-10-17 三菱ケミカル株式会社 Electrically conductive composition, electrically conductive film, and laminate
WO2020100791A1 (en) 2018-11-15 2020-05-22 三菱ケミカル株式会社 Conductive composition and method for manufacturing same, and conductor and method for manufacturing same
WO2021153678A1 (en) 2020-01-29 2021-08-05 三菱ケミカル株式会社 Conductive composite, resist coating material, resist, and resist pattern formation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103492424B (en) 2011-04-28 2016-03-16 旭化成精细化工股份有限公司 Polyvinylsulfonic acid, its manufacture method and uses thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5959832A (en) * 1994-11-25 1999-09-28 Nec Corporation Solid electrolytic capacitor with heat resisting polyaniline and method of manufacturing same
US6024895A (en) * 1995-08-11 2000-02-15 Mitsubishi Rayon Co., Ltd. Cross-linkable, electrically conductive composition, electric conductor and process for forming the same
EP0828184A1 (en) * 1996-09-04 1998-03-11 Eastman Kodak Company Imaging element containing an electrically conductive polymer blend
US7645400B2 (en) 2002-11-01 2010-01-12 Mitsubishi Rayon Co., Ltd. Composition containing carbon nanotubes having a coating
US9627144B2 (en) 2011-08-17 2017-04-18 Mitsubishi Rayon Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
US11145432B2 (en) 2012-07-24 2021-10-12 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
US10096395B2 (en) 2012-07-24 2018-10-09 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
JP2015010202A (en) * 2013-07-01 2015-01-19 国立大学法人山形大学 Thermosetting conductive polymer composition
WO2018147318A1 (en) 2017-02-10 2018-08-16 三菱ケミカル株式会社 Conductive composition, method for producing conductive composition, and method for producing conductor
WO2019146715A1 (en) 2018-01-26 2019-08-01 三菱ケミカル株式会社 Electroconductive composition and production method therefor, and water-soluble polymer and production method therefor
WO2019177096A1 (en) 2018-03-15 2019-09-19 三菱ケミカル株式会社 Conductive film, method for producing same, conductor, resist pattern formation method, and laminate
WO2019198749A1 (en) 2018-04-10 2019-10-17 三菱ケミカル株式会社 Electrically conductive composition, electrically conductive film, and laminate
WO2020100791A1 (en) 2018-11-15 2020-05-22 三菱ケミカル株式会社 Conductive composition and method for manufacturing same, and conductor and method for manufacturing same
WO2021153678A1 (en) 2020-01-29 2021-08-05 三菱ケミカル株式会社 Conductive composite, resist coating material, resist, and resist pattern formation method

Also Published As

Publication number Publication date
JP3066431B2 (en) 2000-07-17

Similar Documents

Publication Publication Date Title
Cao et al. Influence of chemical polymerization conditions on the properties of polyaniline
JP3694038B2 (en) Solid electrolytic capacitor
JP3066431B2 (en) Method for producing conductive polymer composite
US5804649A (en) Water-soluble self acid-doped polyaniline, method of preparation thereof, and polymer blends made therefrom
JP3186328B2 (en) Conductive composite and manufacturing method thereof
JP3906071B2 (en) Conductive polyaniline composition, film thereof, and production method thereof
US7273918B2 (en) Thermally stable self-doped functionalized polyanilines
CN108530621B (en) Soluble conductive polymer and preparation method thereof
EP1466934A1 (en) Conductive polyaniline composition, film thereof, and processes for producing these
JPS61159424A (en) Electrically active polymer easy to process
JP2909544B2 (en) Method for producing solution of water-soluble conductive organic polymer composition
JP2907131B2 (en) Conductive polymer, solid electrolytic capacitor using the same, and method of manufacturing the same
JPH0330618B2 (en)
JP3161058B2 (en) Poly (pyridine-2,5-diylvinylene) polymer and production method
JPH09268258A (en) Electroconductive composition and its production
KR100514643B1 (en) Preparation Method of Polyanilines
JP3649526B2 (en) Conductive polyaniline composition and solid electrolytic capacitor using the same as solid electrolyte
WO1998055532A1 (en) Electrochemical synthesis of electrically conductive polymers and products thereof
JP4426555B2 (en) Conductive polymer solution
JPH07286035A (en) Soluble conductive polymer and its production
US20010041485A1 (en) Electrically conductive polymers
JP3947434B2 (en) Conductive polyaniline composition, film thereof, and production method thereof
JP7184274B2 (en) METHOD FOR MANUFACTURING CONDUCTIVE POLYMER SOLUTION
JP2835816B2 (en) Method for producing polyaniline composite molded article
JPH0555533B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees