JPH0632685A - Production of heat and oxidation resistant carbon material - Google Patents

Production of heat and oxidation resistant carbon material

Info

Publication number
JPH0632685A
JPH0632685A JP4188086A JP18808692A JPH0632685A JP H0632685 A JPH0632685 A JP H0632685A JP 4188086 A JP4188086 A JP 4188086A JP 18808692 A JP18808692 A JP 18808692A JP H0632685 A JPH0632685 A JP H0632685A
Authority
JP
Japan
Prior art keywords
carbon
glass
boron oxide
heat
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4188086A
Other languages
Japanese (ja)
Other versions
JP2588340B2 (en
Inventor
Tomoyuki Tawara
原 知 之 田
Tsuneo Kaneshiro
城 庸 夫 金
Jiro Hiramoto
本 治 郎 平
Susumu Nakai
井 進 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4188086A priority Critical patent/JP2588340B2/en
Publication of JPH0632685A publication Critical patent/JPH0632685A/en
Application granted granted Critical
Publication of JP2588340B2 publication Critical patent/JP2588340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Abstract

PURPOSE:To provide a carbon material having excellent durability in oxidation resistance. CONSTITUTION:On a surface of a carbon fiber reinforced carbon compound material, a base material, is formed a Si layer by vapor phase chemodeposition and then to the surface is applied a compound obtained by mixing alkyl silicic acid ester, boric acid and/or boron oxide in alcohol and allowing them to react by heating and vitrificate at a high temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素材料の被覆方法に
関し、さらに詳述すれば炭素材料に被覆を施してその耐
酸化性を向上させ、宇宙飛行等の構造材、タービンブレ
ードおよび原子炉用部材等、高温酸化雰囲気において繰
り返し使用に耐える材料を提供するための炭素材料の被
覆方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon material coating method. More specifically, the carbon material is coated to improve its oxidation resistance, and structural materials such as space flight, turbine blades and nuclear reactors. TECHNICAL FIELD The present invention relates to a carbon material coating method for providing a material, such as a member for use, which can withstand repeated use in a high temperature oxidizing atmosphere.

【0002】[0002]

【従来の技術】炭素繊維強化炭素複合材料に耐酸化性を
付与するため、前記材料の表面に気相化学蒸着法(CV
D)により緻密なSiC層(以下CVDにより形成され
るSiC層を、CVD−SiC層と記す)を形成させた
炭素材料は、一般に母材となる炭素繊維強化炭素複合材
料の炭素とSiCとの熱膨張率の差に帰因する熱応力に
よりCVD後の冷却時にCVD−SiC層に多数のクラ
ックが発生し耐酸化性能が低下する。これを防止するた
め、従来はCVD−SiC層のクラックを、ゾルゲル法
によりSiO2 等のガラス成分で封止する方法が採用さ
れている。クラックをガラス成分で封止する方法として
は、特開昭63−307181号のようにテトラエチル
オルソシリケート(以下TEOSと記す)を基板に加熱
浸漬(180℃、4時間)したあと空気中で加熱硬化
(315℃、6時間)する方法や、特開平2−6938
2号、同3−252361号〜252363号、同3−
253497号〜253499号のように、TEOS/
水/エタノール溶液、トリエチルオルソボレイト(以下
TEOBと記す)/水/エタノール溶液またはこれらの
混合物を基板に含浸したあと空気中120℃で熱処理す
る方法が知られている。
2. Description of the Related Art In order to impart oxidation resistance to a carbon fiber reinforced carbon composite material, a vapor phase chemical vapor deposition (CV) method is applied to the surface of the material.
The carbon material on which a dense SiC layer (hereinafter, a SiC layer formed by CVD is referred to as a CVD-SiC layer) is formed by D) is generally composed of carbon and SiC of a carbon fiber-reinforced carbon composite material serving as a base material. A large number of cracks are generated in the CVD-SiC layer during cooling after CVD due to thermal stress attributable to the difference in the coefficient of thermal expansion, and the oxidation resistance performance deteriorates. In order to prevent this, conventionally, a method of sealing cracks in the CVD-SiC layer with a glass component such as SiO 2 by a sol-gel method has been adopted. As a method of sealing cracks with a glass component, as described in JP-A-63-307181, tetraethylorthosilicate (hereinafter referred to as TEOS) is immersed in a substrate by heating (180 ° C., 4 hours) and then cured by heating in air. (315 ° C., 6 hours) or JP-A-2-6938.
No. 2, No. 3-252361 to No. 252363, No. 3-
No. 253497-253499, TEOS /
A method is known in which a substrate is impregnated with a water / ethanol solution, a triethyl orthoborate (hereinafter referred to as TEOB) / water / ethanol solution, or a mixture thereof and then heat-treated at 120 ° C. in air.

【0003】[0003]

【発明が解決しようとする課題】TEOS、TEOBま
たはこれらの混合液を基板に含浸する方法では、揮発性
の高いTEOBの選択的な蒸発により、原料組成と、生
成するゲルの成分とが大きく異なり、生成ガラスの組成
コントロールが困難であった。また、生成ゲルはシリカ
とホウ酸の混合物であるため、炭素材料の製造時の加熱
処理および使用時の高温下で、酸化ホウ素が揮散し、ガ
ラスの重量減少やガラス組成の変化による融点変化に起
因する耐酸化性能の低下が問題であった。
In the method of impregnating a substrate with TEOS, TEOB or a mixed solution thereof, the composition of the raw material and the component of the gel to be produced are largely different due to the selective evaporation of highly volatile TEOB. It was difficult to control the composition of the produced glass. In addition, since the generated gel is a mixture of silica and boric acid, boron oxide is volatilized under the high temperature during the heat treatment and the use during the production of the carbon material, and the melting point change due to the weight reduction of the glass and the change of the glass composition. The deterioration of the oxidation resistance performance caused by this has been a problem.

【0004】本発明は、炭素材料表面にガラス前駆体と
して予め分子レベルでSi−O−B結合をもった重合体
を合成付着させ、これをガラス化させることによって組
成制御が容易で均質性に優れたSiO2 −B2 3 ガラ
スによる封孔処理を行ない。耐久性に優れた耐酸化性能
を有する炭素材料を製造する方法を提供することを目的
とする。
In the present invention, as a glass precursor, a polymer having a Si-OB bond at a molecular level is previously synthetically attached to a surface of a carbon material and vitrified to facilitate composition control and homogeneity. performs sealing with excellent SiO 2 -B 2 O 3 glass. It is an object of the present invention to provide a method for producing a carbon material having excellent durability and oxidation resistance.

【0005】[0005]

【課題を解決するための手段】前述の封孔処理層の組成
制御が難しく、酸化ホウ素の揮散により耐久性が劣ると
いった問題は、TEOSとTEOBの混合物を使用する
ためであり、Si−O−B結合を有する化合物ではない
ことに起因する。本発明者らは、封孔処理剤として上述
の混合系ではなく、Si−O−B結合を有する化合物を
用いることにより、封孔処理層の生成ガラスの組成制御
を容易にし、加熱処理の繰り返しによるガラス組成の変
化を減少させて耐久性を向上させることができることを
知見し本発明に至った。
The problem that the composition of the sealing treatment layer is difficult to control and the durability is poor due to volatilization of boron oxide is due to the use of a mixture of TEOS and TEOB. This is because it is not a compound having a B bond. The present inventors have made it easier to control the composition of the glass produced in the sealing treatment layer by using a compound having a Si—O—B bond instead of the above-mentioned mixed system as the sealing treatment agent, and repeating the heat treatment. The present inventors have found that it is possible to reduce the change in the glass composition due to the above and improve the durability, and have reached the present invention.

【0006】すなわち、本発明は、基材となる炭素繊維
強化炭素複合材料の表面に気相化学蒸着法により、Si
C層を形成し、さらにその表面にアルキルケイ酸エステ
ルとホウ酸および/または酸化ホウ素をアルコール中で
混合し加熱反応させて得られる化合物を付着させ、高温
でガラス化させることを特徴とする耐熱・耐酸化性炭素
材料の製造方法を提供するものである。
That is, according to the present invention, Si is formed on the surface of a carbon fiber reinforced carbon composite material as a base material by a vapor phase chemical vapor deposition method.
Heat resistance characterized by forming a C layer, further adhering a compound obtained by mixing an alkyl silicate ester and boric acid and / or boric oxide in alcohol and reacting by heating on the surface and vitrifying at a high temperature -A method for producing an oxidation resistant carbon material is provided.

【0007】以下に本発明をさらに詳細に説明する。基
材となる炭素繊維強化炭素複合材料を構成する炭素繊維
としては、平織り、朱子織り、綾織りなどの二方向織
布、一方向配向材、三方向配向材、n方向配向材、フェ
ルト、トウなどが用いられ、バインダーとしてはフェノ
ール樹脂、フラン樹脂などの熱硬化性物質、タール、ピ
ッチのような熱可塑性物質を用いることできる。炭素繊
維強化炭素複合材料の製造方法としては例えば、前記炭
素繊維をバインダーの含浸、塗布などの方法によりプリ
プレグ化し、加圧加熱して成型体とする。この成型体は
熱処理によってバインダーを完全に硬化させ、その後常
法によって焼成し、さらに必要に応じて黒鉛化すること
により炭素繊維強化炭素複合材料とする。その後、用途
に応じて熱硬化性物質、ピッチ類などを含浸、再炭化を
行う含浸法、例えばメタン、プロパンなどの炭化水素ガ
スを熱分解して炭素を得るCVD法などにより緻密化を
繰り返し行い、さらに高強度の炭素繊維強化炭素複合材
料とすることもできる。
The present invention will be described in more detail below. The carbon fibers constituting the carbon fiber-reinforced carbon composite material as a base material include bidirectional woven fabrics such as plain weave, satin weave, and twill weave, unidirectionally oriented materials, tridirectionally oriented materials, n-directionally oriented materials, felts, tows. For example, a thermosetting substance such as phenol resin or furan resin, or a thermoplastic substance such as tar or pitch can be used as the binder. As a method for producing the carbon fiber-reinforced carbon composite material, for example, the carbon fibers are prepreg-prepared by a method such as impregnation of a binder and coating, and heated under pressure to obtain a molded body. The molded body is heat-treated to completely harden the binder, then fired by an ordinary method, and then graphitized if necessary to obtain a carbon fiber-reinforced carbon composite material. Then, densification is repeatedly performed by an impregnation method in which a thermosetting substance, pitches, etc. are impregnated and re-carbonized according to the application, for example, a CVD method in which a hydrocarbon gas such as methane or propane is thermally decomposed to obtain carbon. It is also possible to use a carbon fiber-reinforced carbon composite material having higher strength.

【0008】本発明においては、上記のようにして得ら
れたCVD−SiCを施した炭素繊維強化炭素複合材料
に対して、SiC層のクラックを封孔するためのガラス
層を形成する。このガラス層の形成には、アルキルケイ
酸エステルと、ホウ酸および/または酸化ホウ素とをア
ルコール中で溶解混合し、加熱反応させて得られるSi
−O−B結合を有する重合化合物を上記のSiC層上に
付着させる。この後に、この重合化合物層を高温で加熱
してガラス化させると、SiO2 −B2 3 の均一なガ
ラス層が形成される。
In the present invention, a glass layer for sealing cracks in the SiC layer is formed on the carbon fiber reinforced carbon composite material subjected to CVD-SiC obtained as described above. To form this glass layer, Si obtained by dissolving and mixing an alkyl silicate ester and boric acid and / or boron oxide in alcohol and reacting with heating.
A polymerized compound having an —O—B bond is deposited on the SiC layer. After that, when the polymerized compound layer is heated at a high temperature to be vitrified, a uniform glass layer of SiO 2 —B 2 O 3 is formed.

【0009】本発明で用いられるアルキルケイ酸エステ
ルとしては、テトラメトキシシラン、テトラエトキシシ
ラン(テトラエチルオルソシリケート)(TEOS)、
テトラプロポキシシラン、テトラブトキシシラン等が挙
げられる。
Examples of the alkyl silicate used in the present invention include tetramethoxysilane, tetraethoxysilane (tetraethylorthosilicate) (TEOS),
Examples include tetrapropoxysilane and tetrabutoxysilane.

【0010】また、本発明で用いられるアルコールとし
ては、メタノール、エタノール、プロピルアルコール、
ブチルアルコールが挙げられ、酸化ホウ素、ホウ酸を溶
解するものであればこれらに限定されるものではない。
The alcohol used in the present invention includes methanol, ethanol, propyl alcohol,
Butyl alcohol can be used, and it is not limited to these as long as it can dissolve boron oxide and boric acid.

【0011】アルキルケイ酸エステルとホウ酸および/
または酸化ホウ素とのSi−O−B結合を有する重合反
応物のガラス化処理は常法によればよく、空気中もしく
は酸化雰囲気中で300℃以上の温度で加熱処理後、空
気中もしくは不活性の雰囲気中で800℃以上の温度で
加熱処理すればよい。
Alkyl silicic acid ester and boric acid and /
Alternatively, the vitrification treatment of the polymerization reaction product having a Si—O—B bond with boron oxide may be carried out by a conventional method. After the heat treatment in air or in an oxidizing atmosphere at a temperature of 300 ° C. or higher, it is in air or inert. The heat treatment may be performed at a temperature of 800 ° C. or higher in the atmosphere.

【0012】本発明によれば、アルキルケイ酸エステル
とホウ酸または酸化ホウ素をアルコール中で反応させる
ことにより、生成ガラスの組成制御が容易になる。ま
た、予め分子レベルでSi−O−B結合を有する化合物
を用いてガラスを製造しているため、炭素材料製造時の
加熱処理および使用時の高温下で、酸化ホウ素の選択的
な揮散が起こりにくい。その結果、ガラス成分の重量減
少が少なくかつ組成変化が小さいことから、融点変化が
小さく耐久性に優れたガラスによる封孔処理が可能とな
る。
According to the present invention, the composition of the produced glass can be easily controlled by reacting the alkyl silicate ester with boric acid or boron oxide in alcohol. In addition, since glass is produced using a compound having a Si-OB bond at a molecular level in advance, selective volatilization of boron oxide occurs under heat treatment during production of a carbon material and high temperature during use. Hateful. As a result, since the weight loss of the glass component is small and the composition change is small, it is possible to perform the sealing treatment with the glass having a small change in melting point and excellent durability.

【0013】[0013]

【実施例】以下に本発明を実施例に基づいて具体的に説
明する。 (実施例1)ガラス前駆体溶液は、丸底フラスコにホウ
酸2molまたは酸化ホウ素1molを入れエタノール
10molを加えて70〜80℃で加熱溶解したあと、
TEOS 1molを添加し、攪拌しながら80℃で還
流操作により1時間または5時間反応させ室温まで放冷
して調整したこの溶液にCVD−SiCを施した炭素繊
維強化炭素複合材料を10min含浸させ、ゆっくり引
き上げたあと1時間風乾し、再び10min含浸させて
ゆっくり引き上げたあと半日風乾し、最後に100℃で
1時間乾燥させた。この含浸操作を3回繰り返し、クラ
ックの封止を確かなものにした。次に炭素繊維強化炭素
複合材料基板に付着したゲルをガラス化させるため、空
気中500℃で1時間加熱して残存する有機基を酸化に
より除去したあと、アルゴン雰囲気下で1000℃30
分加熱した。表1は、これらのサンプルを大気中100
0℃で20分酸化試験を行った結果である。
EXAMPLES The present invention will be specifically described below based on examples. (Example 1) A glass precursor solution was prepared by adding 2 mol of boric acid or 1 mol of boron oxide to a round bottom flask, adding 10 mol of ethanol, and heating and dissolving at 70 to 80 ° C.
TEOS (1 mol) was added, and this solution prepared by reacting for 1 hour or 5 hours by refluxing operation at 80 ° C. with stirring and allowing to cool to room temperature was impregnated with a carbon fiber reinforced carbon composite material subjected to CVD-SiC for 10 minutes, After slowly pulling up, it was air-dried for 1 hour, impregnated again for 10 minutes, slowly pulled up, then air-dried for half a day, and finally dried at 100 ° C. for 1 hour. This impregnation operation was repeated 3 times to ensure crack sealing. Next, in order to vitrify the gel adhering to the carbon fiber reinforced carbon composite material substrate, it is heated in air at 500 ° C. for 1 hour to remove the residual organic groups by oxidation, and then 1000 ° C. in an argon atmosphere at 30 ° C.
Heated for minutes. Table 1 shows these samples in air at 100
It is a result of performing an oxidation test for 20 minutes at 0 ° C.

【0014】従来例5、6は重量比でTEOB/TEO
S=5、従来法7はTEOB/TEOS=3となる溶液
を用いて、上記と同様CVD−SiCを施した炭素繊維
強化炭素複合材料に浸漬、ゲル化、加熱処理(90℃
1時間、150℃ 1時間、300℃ 1時間)を施し
た。
Conventional examples 5 and 6 are TEOB / TEO in weight ratio.
S = 5, Conventional method 7 uses a solution of TEOB / TEOS = 3, and is immersed in a carbon fiber reinforced carbon composite material subjected to CVD-SiC, gelation, and heat treatment (90 ° C.).
1 hour, 150 ° C. for 1 hour, 300 ° C. for 1 hour).

【0015】(酸化試験)得られたサンプルを大気中で
5℃/min で昇温し、1000℃で20min保持し、
冷却した。このとき重量減少率ΔWを求めた。 ΔW=〔(Wo−Wn)/Wo〕×100 〔wt%〕 Wo:サンプルの初期重量 Wn:酸化試験n回後のサンプル重量
(Oxidation test) The obtained sample was heated in the atmosphere at 5 ° C./min and held at 1000 ° C. for 20 min.
Cooled. At this time, the weight reduction rate ΔW was obtained. ΔW = [(Wo-Wn) / Wo] × 100 [wt%] Wo: Initial weight of sample Wn: Sample weight after n times of oxidation test

【0016】(ガラス組成) ガラス組成X=〔B2 3 /(SiO2 +B2 3 )〕×100 〔mol%〕(Glass composition) Glass composition X = [B 2 O 3 / (SiO 2 + B 2 O 3 )] × 100 [mol%]

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】従来法では、原料が単純な混合物系であ
るため酸化ホウ素が偏在し、加熱処理時に酸化ホウ素が
選択的に揮散する。そのため生成ガラスの組成制御が難
しく、加熱処理の繰り返しによりガラスの劣化が著し
い。本発明では、アルキルケイ酸エステルとホウ酸また
は酸化ホウ素を予め加熱反応させSi−O−B結合を有
する重合体を合成して基材表面に付着することで、ガラ
ス構成成分の蒸発がなくなり、かつ加熱処理時の酸化ホ
ウ素の揮散が著しく小さくなるため、生成ガラスの組成
制御が容易になった。また、繰り返し使用時のガラスの
組成変化が小さく、均質なコーティング膜を生成するこ
とから耐久性が向上し、耐酸化性能も大きく向上した。
In the conventional method, since the raw material is a simple mixture system, boron oxide is unevenly distributed, and the boron oxide is selectively volatilized during the heat treatment. Therefore, it is difficult to control the composition of the produced glass, and the glass is significantly deteriorated by repeating the heat treatment. In the present invention, the alkyl silicate ester and boric acid or boron oxide are preliminarily heated and reacted to synthesize a polymer having a Si—O—B bond and adhered to the surface of the base material, thereby eliminating the evaporation of glass constituents. In addition, since the volatilization of boron oxide during the heat treatment is remarkably reduced, the composition of the produced glass can be easily controlled. Further, the compositional change of the glass during repeated use was small and a uniform coating film was formed, so the durability was improved and the oxidation resistance performance was also greatly improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平 本 治 郎 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 中 井 進 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jiro Hiramoto 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Technical Research Division (72) Inventor Susumu Nakai Kawasaki, Chuo-ku, Chiba-shi, Chiba 1st town Kawasaki Steel Co., Ltd. Technical Research Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基材となる炭素繊維強化炭素複合材料の表
面に気相化学蒸着法により、SiC層を形成し、さらに
その表面にアルキルケイ酸エステルとホウ酸および/ま
たは酸化ホウ素をアルコール中で混合し加熱反応させて
得られる化合物を付着させ、高温でガラス化させること
を特徴とする耐熱・耐酸化性炭素材料の製造方法。
1. A SiC layer is formed on the surface of a carbon fiber reinforced carbon composite material as a base material by a vapor-phase chemical vapor deposition method, and an alkyl silicate ester and boric acid and / or boron oxide are added to the surface of the SiC layer in alcohol. A method for producing a heat-resistant and oxidation-resistant carbon material, which comprises depositing a compound obtained by mixing and heating reaction at 1, and vitrifying at a high temperature.
JP4188086A 1992-07-15 1992-07-15 Heat and oxidation resistant carbon material manufacturing method Expired - Fee Related JP2588340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4188086A JP2588340B2 (en) 1992-07-15 1992-07-15 Heat and oxidation resistant carbon material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4188086A JP2588340B2 (en) 1992-07-15 1992-07-15 Heat and oxidation resistant carbon material manufacturing method

Publications (2)

Publication Number Publication Date
JPH0632685A true JPH0632685A (en) 1994-02-08
JP2588340B2 JP2588340B2 (en) 1997-03-05

Family

ID=16217461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4188086A Expired - Fee Related JP2588340B2 (en) 1992-07-15 1992-07-15 Heat and oxidation resistant carbon material manufacturing method

Country Status (1)

Country Link
JP (1) JP2588340B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7950861B2 (en) 2006-06-30 2011-05-31 Brother Kogyo Kabushiki Kaisha Opening-angle restricting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262864A (en) * 1984-06-08 1985-12-26 Kansai Paint Co Ltd Film-forming paint composition
JPS63307181A (en) * 1987-06-09 1988-12-14 Nissan Motor Co Ltd Surface-treatment of carbon/carbon composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262864A (en) * 1984-06-08 1985-12-26 Kansai Paint Co Ltd Film-forming paint composition
JPS63307181A (en) * 1987-06-09 1988-12-14 Nissan Motor Co Ltd Surface-treatment of carbon/carbon composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7950861B2 (en) 2006-06-30 2011-05-31 Brother Kogyo Kabushiki Kaisha Opening-angle restricting device

Also Published As

Publication number Publication date
JP2588340B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
US5707471A (en) Method for making ceramic matrix composites
DK172031B1 (en) Composite material with matrix and carbon reinforcing fibers as well as process for its manufacture
EP2543650B1 (en) Method for manufacturing high-density fiber reinforced ceramic composite materials
US6024898A (en) Article and method for making complex shaped preform and silicon carbide composite by melt infiltration
US5468318A (en) High flexural strength ceramic fiber reinforced silicon carboxide composite
KR100624094B1 (en) The method of producing carbon fiber reinforced ceramic matrix composites
US5438025A (en) Silicon oxycarbonitride by pyrolysis of polycyclosiloxanes in ammonia
JP2000169249A (en) Ceramic composite material
JP4507138B2 (en) Method for changing dielectric properties of ceramic matrix composites
EP0742184B1 (en) Method of forming Ceramic matrix composites using modified hydrogen silsesquioxane resin
US6743393B1 (en) Method for producing ceramic matrix composites
EP0549224B1 (en) Ceramic matrix composites and method for making same
JPH0632685A (en) Production of heat and oxidation resistant carbon material
JP3310538B2 (en) Heat and oxidation resistant carbon materials
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
GB2266302A (en) Ceramic fibre reinforced silicon carboxide composite
EP0702664B1 (en) Silicon carboxide composite reinforced with ceramic fibers having a surface enriched in boron nitride
JPH09278567A (en) Production of heat-resistant, oxidation-resistant carbon material
JPH05170577A (en) Method for anti-oxidizing coating of carbon fiber reinforced carbon composite material using coating method
JP3186195B2 (en) Method for sealing defects in oxidation-resistant coating of carbon fiber reinforced carbon material
US5464594A (en) Ceramic fiber reinforced silicon carboxide composite
EP0688307B1 (en) Reinforced silicon carboxide composite with boron nitride coated ceramic fibers
JPH08253874A (en) High adhesion oxidation resistant coating film for c/c composite material and its formation
JP2559637B2 (en) Heat resistant fiber reinforced inorganic composite material
JP2547111B2 (en) Heat resistant fiber reinforced inorganic composite material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961008

LAPS Cancellation because of no payment of annual fees