JPH06326382A - External resonance semiconductor laser - Google Patents

External resonance semiconductor laser

Info

Publication number
JPH06326382A
JPH06326382A JP13682393A JP13682393A JPH06326382A JP H06326382 A JPH06326382 A JP H06326382A JP 13682393 A JP13682393 A JP 13682393A JP 13682393 A JP13682393 A JP 13682393A JP H06326382 A JPH06326382 A JP H06326382A
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
external resonance
resonance
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13682393A
Other languages
Japanese (ja)
Inventor
Haruo Takahashi
高橋晴夫
Hiroyuki Morimura
森村宏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOSHIN KOGAKU KK
Original Assignee
KOSHIN KOGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOSHIN KOGAKU KK filed Critical KOSHIN KOGAKU KK
Priority to JP13682393A priority Critical patent/JPH06326382A/en
Publication of JPH06326382A publication Critical patent/JPH06326382A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To remove the spontaneous emission of a semiconductor laser, which oscillates single-wavelength light, and to oscillate superior monochromatic light by a method wherein a band-pass filter and a partially reflecting mirror are arranged on the output optical axis of a condensing lens different from that, which guides emitted light to an optical fiber, to form into an external resonance circuit. CONSTITUTION:A DFB semiconductor laser 1 is always maintained at a prescribed temperature by a heat sink 9, a Peltier element 6 and a thermistor 8. At first, comparatively narrow-line width monochromatic light including a spontaneous emission component is oscillated from this laser 1 which is subjected to temperature control. This monochromatic light goes through a condensing lens 2, passes through a band-pass filter 3 and one part of the monochromatic light is reflected by a partially reflecting mirror 4, again passes through the filter 3 and becomes resonance light to the laser 1. The spontaneous emission component is removed from this resonance light which passes through the filter 3 of a half-value width of 1nm as many as two times, the resonance light becomes superior light of monochromatic light and this superior resonance light only is amplified in the laser 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信などに於いて信号
を送るための単一波長半導体レーザー光源に関し,特
に,出力光路内にバンドパスフィルタと部分反射鏡とを
配置して外部共振光器を形成する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single-wavelength semiconductor laser light source for transmitting a signal in optical communication or the like, and more particularly to a bandpass filter and a partial reflection mirror arranged in an output optical path to provide an external resonance light. Form a vessel.

【0002】[0002]

【従来の技術】単一波長発振する半導体レーザーの代表
的なものとしてDFB半導体レーザーが挙げられる。こ
のレーザーは本来単一波長で発振しているため,単独で
使用するものであった。最近の光通信増幅装置の発展に
伴い,電送速度の高速化と長距離化が急速に発展してき
た。DFB半導体レーザーでは発振線幅が太過ぎる(第
2図の曲線c)ので,このレーザーの非出力光路側に集
光レンズと反射鏡とで外部共振回路を形成し,狭線幅化
を図っている。この方式は確かに発振線幅は細くなる
が,半導体レーザーが元来もっている自然発光は必ず伴
うため,発振光の波長純度は悪い。そのためにこの外部
共振回路付きの半導体レーザーの出力光路側に,バンド
パスフィルタを配置して半導体レーザーの自然発光を取
り除く(第2図の曲線b)。しかし,この方法では,邪
魔な自然発光を取り除く能力は,フィルタの除去能力以
上には上がらないため,フィルタに過酷な性能が要求さ
れ,その製作上の困難さから,製作費等の多くの弊害を
招いている。
2. Description of the Related Art A typical example of a semiconductor laser that oscillates a single wavelength is a DFB semiconductor laser. Since this laser originally oscillates at a single wavelength, it was used alone. With the recent development of optical communication amplifiers, the increase in transmission speed and the increase in distance have been rapidly developing. Since the oscillation line width is too thick in the DFB semiconductor laser (curve c in FIG. 2), an external resonance circuit is formed by the condenser lens and the reflecting mirror on the non-output optical path side of this laser to reduce the line width. There is. Although this method certainly reduces the oscillation line width, the wavelength purity of the oscillated light is poor because the spontaneous emission inherent in semiconductor lasers is always involved. Therefore, a bandpass filter is arranged on the output optical path side of the semiconductor laser with the external resonance circuit to eliminate spontaneous emission of the semiconductor laser (curve b in FIG. 2). However, with this method, the ability to remove the disturbing spontaneous emission does not exceed the ability to remove the filter, so that the filter is required to have harsh performance, and its manufacturing difficulty makes many adverse effects such as manufacturing cost. Is invited.

【0003】[0003]

【発明が解決しようとする課題】一方,本発明者は,既
に,半導体レーザーの非出力光路側にバンドパスフィル
タからなる外部共振回路を配置し,このバンドパスフィ
ルタを回転することで発振波長を変更する方式を提案し
ている(特願平2-182181号) 。この波長可変半導体レー
ザーを更に発展させた特願平4-197645号も提案してい
る。単一波長を発振する半導体レーザー光源に,バンド
パスフィルタと部分反射鏡からなる外部共振回路を組み
込むことで上記課題を解決せんとするのが本発明であ
る。
On the other hand, the present inventor has already arranged an external resonance circuit consisting of a bandpass filter on the non-output optical path side of a semiconductor laser and rotating the bandpass filter to change the oscillation wavelength. We propose a method to change it (Japanese Patent Application No. 2-182181). Japanese Patent Application No. 4-197645, which is a further development of this tunable semiconductor laser, is also proposed. The present invention is intended to solve the above problems by incorporating an external resonance circuit including a bandpass filter and a partial reflector into a semiconductor laser light source that oscillates a single wavelength.

【0004】[0004]

【課題を解決するための手段】温度管理されるヒートシ
ンクに半導体レーザーと集光レンズを固定し,出力光を
光ファイバーへと導く別の集光レンズとの出力光軸上
に,バンドパスフィルタと部分反射鏡とを配置して外部
共振回路をモジュール化する。そして単一波長を発振す
るDFB半導体レーザーの出射面に反射防止膜を施し,
その反対面には高反射膜を施す。
[Means for Solving the Problems] A semiconductor laser and a condenser lens are fixed to a heat sink whose temperature is controlled, and a bandpass filter and a part are provided on the output optical axis of another condenser lens for guiding the output light to an optical fiber. A reflector is arranged to modularize the external resonance circuit. Then, an antireflection film is applied to the emission surface of the DFB semiconductor laser that oscillates a single wavelength,
A highly reflective film is applied to the opposite surface.

【0005】[0005]

【作用】ヒートシンクとペルチェ素子そしてサーミスタ
によって,DFB半導体レーザーは常に所定温度に維持
される。発振波長は温度によって微妙に変化するので,
希望の発振波長がえられるように常に温度制御される。
温度管理されたこの半導体レーザーからは当初は自然発
光分を含む比較的狭線幅の単色光が発振される。この単
色光は,集光レンズを経てバンドパスフィルタを通過
し,部分反射鏡にて一部が反射して再びバンドパスフィ
ルタを通過し,半導体レーザーへの共振光となる。半値
幅が1nmのバンドパスフィルタを二度も通過するこの
共振光は,自然発光分が除去され単色性の優れた光とな
り,この優れた共振光だけが半導体レーザー内で増幅さ
れる。
The DFB semiconductor laser is constantly maintained at a predetermined temperature by the heat sink, Peltier element and thermistor. Since the oscillation wavelength changes subtly with temperature,
The temperature is constantly controlled so that the desired oscillation wavelength can be obtained.
Initially, the temperature-controlled semiconductor laser oscillates monochromatic light having a relatively narrow line width including spontaneous emission. This monochromatic light passes through the bandpass filter through the condenser lens, is partially reflected by the partial reflecting mirror, passes through the bandpass filter again, and becomes resonant light to the semiconductor laser. The resonance light that passes through the band-pass filter having a half-value width of 1 nm twice has natural light removed and becomes light with excellent monochromaticity, and only the excellent resonance light is amplified in the semiconductor laser.

【0006】[0006]

【実施例】ペルチェ素子6と一体のヒートシンク9上
に,半導体レーザー1とサーミスタ8そして集光レンズ
2を配置する。サーミスタ8とペルチェ素子6との温度
管理手段によって半導体レーザーは常に所定温度に維持
される。半導体レーザー1の出射面に反射防止膜を施
し,その反対面には高反射膜を施す。同じ基台上に光フ
ァイバー10と集光レンズ5を光軸合わせして配置し,
両集光レンズ間の光軸上にバンドパスフィルタ3と部分
反射鏡4を第1図のように配置する。半導体レーザー
1,集光レンズ2,バンドパスフィルタ3そして部分反
射鏡4とで外部共振光路は形成される。この外部共振光
路の光路長は極めて正確に設定される必要がある。その
ために,外部共振器や光ファイバーを含めた全てを同じ
基台上に配置してモジール化を図っている。本発明で使
用するバンドパスフィルタ3は,所望の発振波長に合っ
た透過特性を有するものが選定され,透過波長の半値幅
が1nmと優れた単色光のみ透過させる。平行な入射光
の光軸に対する傾きによって単色光が選択される。この
バンドパスフィルタ3を所定角度に設定すべく,回転台
7にて支承される支軸にバンドパスフィルタ3を取り付
ける。
EXAMPLE A semiconductor laser 1, a thermistor 8 and a condenser lens 2 are arranged on a heat sink 9 integrated with a Peltier element 6. The semiconductor laser is always maintained at a predetermined temperature by the temperature control means of the thermistor 8 and the Peltier element 6. The emission surface of the semiconductor laser 1 is provided with an antireflection film, and the opposite surface is provided with a high reflection film. The optical fiber 10 and the condenser lens 5 are arranged on the same base with their optical axes aligned,
The bandpass filter 3 and the partial reflection mirror 4 are arranged on the optical axis between both condenser lenses as shown in FIG. An external resonance optical path is formed by the semiconductor laser 1, the condenser lens 2, the bandpass filter 3, and the partial reflection mirror 4. The optical path length of this external resonance optical path needs to be set extremely accurately. For this reason, all the components including the external resonator and the optical fiber are placed on the same base to create a module. The bandpass filter 3 used in the present invention is selected to have a transmission characteristic suitable for a desired oscillation wavelength, and transmits only monochromatic light excellent in a half value width of the transmission wavelength of 1 nm. Monochromatic light is selected by the inclination of the parallel incident light with respect to the optical axis. In order to set the bandpass filter 3 at a predetermined angle, the bandpass filter 3 is attached to a spindle supported by a rotary table 7.

【0007】第2図の曲線(b,c)と同じDFB半導
体レーザー1を用いた時の発振スペクトルは,曲線
(a)であった。従来の非出力光路側に外部共振器を配
置し反対の出力光路側に外フィルタを配置した時の曲線
(b)に較べて,格段と自然発光が抑制されていること
が理解される。半導体レーザー1の出力光をフィルタで
狭線幅化する従来方式よりも,当初から共振光をフィル
タで狭線幅化し自然発光を予め除去しておく本発明の方
が,理論的にも優れた単色光がえられることが第2図の
スペクトル曲線によって立証されたことになる。
The oscillation spectrum when the same DFB semiconductor laser 1 as the curves (b, c) in FIG. 2 was used was the curve (a). It is understood that spontaneous emission is significantly suppressed as compared with the conventional curve (b) when an external resonator is arranged on the non-output optical path side and an outer filter is arranged on the opposite output optical path side. The present invention, in which the resonance light is narrowed by the filter from the beginning and the spontaneous emission is removed in advance, is theoretically superior to the conventional method in which the output light of the semiconductor laser 1 is narrowed by the filter. The fact that monochromatic light can be obtained is proved by the spectrum curve of FIG.

【0008】バンドパスフィルタ3としては,誘電体多
層膜のものが採用され,光軸に対して回転させることで
共振波長を変化させるが,液晶を利用したエタロンでは
印加する電圧を変化させれば良い。
As the bandpass filter 3, a dielectric multilayer film is adopted, and the resonance wavelength is changed by rotating it with respect to the optical axis. However, in the etalon using liquid crystal, if the applied voltage is changed. good.

【0009】[0009]

【発明の効果】要するに,本発明は単一波長半導体レー
ザー1の出力光路側に,レンズとバンドパスフィルタ3
そして部分反射鏡4とを順次配列して外部共振経路を形
成するため,半導体レーザーの自然発光が除去され優れ
た単色光が発振される。また,DFB半導体レーザー1
が,ペルチェ素子6,ヒートシンク9そしてサーミスタ
8によって温度管理されるため,発振波長は希望波長に
維持される。更に,全体がモジュール化されているた
め,外部共振光路長の安定や光軸合わせの容易化をもた
らし,高速,長距離光通信に適した半導体レーザー光源
を提供できる。
In summary, according to the present invention, the lens and the bandpass filter 3 are provided on the output optical path side of the single wavelength semiconductor laser 1.
Since the partial reflection mirrors 4 are sequentially arranged to form the external resonance path, the spontaneous emission of the semiconductor laser is removed and excellent monochromatic light is oscillated. Also, DFB semiconductor laser 1
However, since the temperature is controlled by the Peltier device 6, the heat sink 9, and the thermistor 8, the oscillation wavelength is maintained at the desired wavelength. Furthermore, since the whole is modularized, it is possible to provide a semiconductor laser light source suitable for high-speed, long-distance optical communication by stabilizing the external resonance optical path length and facilitating optical axis alignment.

【図面の簡単な説明】[Brief description of drawings]

【図1】外部共振光路等を説明する概略説明図である。FIG. 1 is a schematic explanatory diagram illustrating an external resonance optical path and the like.

【図2】発振スペクトル図である。FIG. 2 is an oscillation spectrum diagram.

【符号の説明】[Explanation of symbols]

1 半導体レーザー 2 集光レンズ 3 バンドパスフィルタ 4 部分反射鏡 5 集光レンズ 6 ペルチェ素子 7 回転台 8 サーミスタ 9 ヒートシンク 1 Semiconductor Laser 2 Condenser Lens 3 Bandpass Filter 4 Partial Reflector 5 Condenser Lens 6 Peltier Element 7 Rotating Table 8 Thermistor 9 Heat Sink

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 単一波長半導体レーザーの出力光路側
に,レンズと発振波長を透過させるバンドパスフィルタ
そして部分反射鏡とを順次配列して外部共振経路とす
る,外部共振半導体レーザー。
1. An external resonance semiconductor laser in which a lens, a bandpass filter for transmitting an oscillation wavelength, and a partial reflector are sequentially arranged on the output optical path side of a single wavelength semiconductor laser to form an external resonance path.
【請求項2】 単一波長発振するDFB半導体レーザー
の出射面に反射防止膜を施し,その反対面には高反射膜
を施してなる,請求項1記載の外部共振半導体レーザ
ー。
2. The external resonance semiconductor laser according to claim 1, wherein the emission surface of the DFB semiconductor laser that oscillates at a single wavelength is provided with an antireflection film and the opposite surface is provided with a high reflection film.
【請求項3】 単一波長半導体レーザーの出力光路側に
集光レンズと回転自在なバンドパスフィルタそして部分
反射鏡とを順次配列して外部共振路を形成し,部分反射
鏡を通過した単一波長を集光レンズにて光ファイバーへ
と導く,外部共振半導体レーザー。
3. An external resonance path is formed by sequentially arranging a condenser lens, a rotatable band-pass filter and a partial reflection mirror on the output optical path side of a single wavelength semiconductor laser, and a single light passing through the partial reflection mirror. An external resonant semiconductor laser that guides wavelengths to an optical fiber with a condenser lens.
【請求項4】 温度管理されるヒートシンクに半導体レ
ーザーと集光レンズを固定し,出力光を光ファイバーへ
と導く別の集光レンズとの出力光軸上に,発振波長を透
過させるバンドパスフィルタと,部分反射鏡とを配置し
て外部共振回路等をモジュール化した,外部共振半導体
レーザー。
4. A bandpass filter which fixes a semiconductor laser and a condenser lens to a heat sink whose temperature is controlled, and which transmits an oscillation wavelength on an output optical axis with another condenser lens which guides output light to an optical fiber. External resonance semiconductor laser in which a partial reflection mirror is arranged and the external resonance circuit is modularized.
JP13682393A 1993-05-14 1993-05-14 External resonance semiconductor laser Pending JPH06326382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13682393A JPH06326382A (en) 1993-05-14 1993-05-14 External resonance semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13682393A JPH06326382A (en) 1993-05-14 1993-05-14 External resonance semiconductor laser

Publications (1)

Publication Number Publication Date
JPH06326382A true JPH06326382A (en) 1994-11-25

Family

ID=15184347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13682393A Pending JPH06326382A (en) 1993-05-14 1993-05-14 External resonance semiconductor laser

Country Status (1)

Country Link
JP (1) JPH06326382A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202322A (en) * 1993-12-29 1995-08-04 Nec Corp Thermistor
EP1059712A2 (en) * 1999-06-11 2000-12-13 Nec Corporation Semiconductor laser module
EP1209783A2 (en) * 2000-11-02 2002-05-29 The Furukawa Electric Co., Ltd. Semiconductive laser module, laser unit, and raman amplifier
US6788717B2 (en) 2000-03-10 2004-09-07 Nec Corporation Wavelength stabilized laser module
EP1475868A2 (en) * 1997-10-23 2004-11-10 Ando Electric Co., Ltd. External cavity laser
JP2005217428A (en) * 2004-01-30 2005-08-11 Osram Opto Semiconductors Gmbh Surface emission semiconductor laser having interference filter
JP2006216860A (en) * 2005-02-04 2006-08-17 Eudyna Devices Inc Laser module, controlling apparatus and controlling method therefor, control data thereof, and light communication equipment
CN112945909A (en) * 2021-01-29 2021-06-11 武汉光谷航天三江激光产业技术研究院有限公司 Laser reflection element power detection device and method based on resonance enhancement effect

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202322A (en) * 1993-12-29 1995-08-04 Nec Corp Thermistor
EP1475868A2 (en) * 1997-10-23 2004-11-10 Ando Electric Co., Ltd. External cavity laser
EP1475868A3 (en) * 1997-10-23 2005-07-20 Ando Electric Co., Ltd. External cavity laser
EP1059712A2 (en) * 1999-06-11 2000-12-13 Nec Corporation Semiconductor laser module
EP1059712A3 (en) * 1999-06-11 2001-10-04 Nec Corporation Semiconductor laser module
US6788717B2 (en) 2000-03-10 2004-09-07 Nec Corporation Wavelength stabilized laser module
EP1209783A2 (en) * 2000-11-02 2002-05-29 The Furukawa Electric Co., Ltd. Semiconductive laser module, laser unit, and raman amplifier
EP1209783A3 (en) * 2000-11-02 2004-06-30 The Furukawa Electric Co., Ltd. Semiconductive laser module, laser unit, and raman amplifier
JP2005217428A (en) * 2004-01-30 2005-08-11 Osram Opto Semiconductors Gmbh Surface emission semiconductor laser having interference filter
US7903716B2 (en) 2004-01-30 2011-03-08 Osram Opto Semiconductors Gmbh Surface emitting semiconductor laser having an interference filter
JP2006216860A (en) * 2005-02-04 2006-08-17 Eudyna Devices Inc Laser module, controlling apparatus and controlling method therefor, control data thereof, and light communication equipment
CN112945909A (en) * 2021-01-29 2021-06-11 武汉光谷航天三江激光产业技术研究院有限公司 Laser reflection element power detection device and method based on resonance enhancement effect

Similar Documents

Publication Publication Date Title
US4685107A (en) Dispersion compensated fiber Raman oscillator
CA2011361C (en) Narrow-band laser apparatus
US6301274B1 (en) Tunable external cavity laser
US6411639B1 (en) Semiconductor laser module with an external resonator including a band-pass filter and reflective element
JPH06326382A (en) External resonance semiconductor laser
JPH0381318B2 (en)
US6078598A (en) Laser apparatus, pulsed laser oscillation method and projection exposure apparatus using the same
US20210036489A1 (en) Narrow linewidth external cavity laser and optical module
JP2001085774A (en) Variable wavelength laser and laser oscillation wavelength switching method
JP4613272B2 (en) Laser resonator and adjustment method thereof
JPH0621549A (en) Semiconductor laser capable of changing wavelength and external resonance unit
JP2003069146A (en) External resonator type wavelength variable semiconductor laser
JPS6431485A (en) Optical fiber communication device
JPS6354235B2 (en)
JPH06140717A (en) External resonator type semiconductor laser light source
JPH0595067U (en) Tunable semiconductor laser
JP4303427B2 (en) Wavelength stabilized laser and optical wavelength conversion module
JP2004220008A (en) Volume type phase grating, its manufacturing method, optical module and semiconductor laser module using the same
JP2002353555A (en) External resonator type tunable semiconductor laser
JPH11177178A (en) Semiconductor laser module
JP2695376B2 (en) CTA optical parametric oscillator
JPS616888A (en) External resonator type semiconductor laser device
JPH07106681A (en) Laser
JPH06237050A (en) Variable wavelength semiconductor laser
JP2001018084A (en) Laser beam machining optical system and laser beam output monitoring optical system