JPS616888A - External resonator type semiconductor laser device - Google Patents

External resonator type semiconductor laser device

Info

Publication number
JPS616888A
JPS616888A JP12706584A JP12706584A JPS616888A JP S616888 A JPS616888 A JP S616888A JP 12706584 A JP12706584 A JP 12706584A JP 12706584 A JP12706584 A JP 12706584A JP S616888 A JPS616888 A JP S616888A
Authority
JP
Japan
Prior art keywords
mirror
semiconductor laser
beams
phase
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12706584A
Other languages
Japanese (ja)
Inventor
Yoshikazu Hori
義和 堀
Toshihiro Fujita
俊弘 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12706584A priority Critical patent/JPS616888A/en
Publication of JPS616888A publication Critical patent/JPS616888A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To eliminate the phase displacement of projecting beams and a reflecting mirror, and to realize a semiconductor laser light-source conducting stable single transverse mode oscillation by using a phase conjugate mirror as an external mirror. CONSTITUTION:A barium titanate group phase conjugate mirror 11 is used in place of a reflecting mirror, one part 12 of outputted beams 6 is divided by a beam splitter 13, and introduced to the phase conjugate mirror 11 by a reflecting mirror 14, an optical isolator 15 and a reflecting mirror 16 and functions as one excited beams, and beams transmitted through the conjugate mirror 11 progress in the opposite direction by a reflecting mirror 17, and serve as the other excited beams. The excited beams are interrupted by the isolator 15, and are not returned to a semiconductor laser 1. Consequently, the phase of light- beams emitted from the semiconductor laser 1 and the phase of beams reflected by the conjugate mirror 11 are made the same completely. Accordingly, no phase is displaced between projecting beams and return beams from the semiconductor laser, and the setting of a crystal in the conjugate mirror 11 need not be adjusted.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光通信用の半導体レーザに関するものであり、
特に高品質のレーザ光源を実現するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a semiconductor laser for optical communication.
In particular, it realizes a high quality laser light source.

従来例の構成とその問題点 近年、光通信技術の進展と需要の増加に伴い、捷すまず
、高速大容量の光通信が要求される様になってきている
。その為に、半導体レーザには、高速デジタル通信、高
速アナログ通信、或はコヒーレント通信等に対応できる
安定した単−縦モード発振が必須となってきている。
Conventional configurations and their problems In recent years, as optical communication technology has progressed and demand has increased, there has been an increasing demand for high-speed, large-capacity optical communication. For this reason, it has become essential for semiconductor lasers to have stable single-longitudinal mode oscillation that can support high-speed digital communication, high-speed analog communication, coherent communication, and the like.

半導体レーザにおいて、単−縦モード発振を実現する試
みとして半導体レーザ内の光導波路に発振波長の整数倍
のグレーティングを設置し、特定の縦モードだけが帰還
されて、発振できる様に構成された分布帰還型半導体レ
ーザ、及び複数の共振器を有する構造にして、それらの
共振条件をすべて満足できる単−縦モードだけが発振す
る複合共振器型レーザが検討されている。両者の性能の
優劣は現在では判断しがたく、また用途に応じて異なる
ものである。しかし、半導体レーザ(LD)の用途とし
て高速アナログ通信或はコヒーレント通信を考えると、
変調時の波長の安定性等の観点から後者或は両者の組み
合わせによる外部共振器型半導体レーザが優れた特性を
実現できる可能性を有している。
In an attempt to realize single-longitudinal mode oscillation in a semiconductor laser, a grating with an integral multiple of the oscillation wavelength is installed in the optical waveguide inside the semiconductor laser, and a distribution configured so that only a specific longitudinal mode is fed back and oscillation is possible. Feedback type semiconductor lasers and complex resonator lasers that have a structure having a plurality of resonators and that oscillate only in a single longitudinal mode that can satisfy all of the resonance conditions are being considered. It is currently difficult to judge whether the performance of the two is superior or inferior, and it differs depending on the purpose. However, when considering high-speed analog communication or coherent communication as the application of semiconductor laser (LD),
From the viewpoint of wavelength stability during modulation, etc., an external cavity semiconductor laser using the latter or a combination of both has the possibility of realizing excellent characteristics.

外部共振器型LDは基本的には、通常のシングルモード
LDと外部鏡で構成され、非常に単純な構造ではあるが
、光学系の調整が非常に困難であり、また長時間安定し
て単−縦モード発振を維持する事が困難という欠点を有
している。即ち、外部鏡により発振光を内部共振器に帰
還する際、その帰還状況によってはかえって多モード発
振する現象が生じ、また一度外部鏡を厳密に調整し単−
継モード発振を得ても、温度変化等によシ帰還状態が時
間的に変動し、再び多モード発振が生じてしまう。この
多モード発振の要因は、半導体レーザからの出射光と外
部鏡力・らの反射光の位相のずれによるものとして説明
される事が判明した。
External cavity type LDs basically consist of a normal single-mode LD and an external mirror, and although they have a very simple structure, it is very difficult to adjust the optical system, and it is difficult to adjust the optical system stably for a long time. - It has the disadvantage that it is difficult to maintain longitudinal mode oscillation. In other words, when the oscillated light is fed back to the internal resonator by the external mirror, depending on the feedback conditions, multi-mode oscillation may occur.
Even if multi-mode oscillation is obtained, the feedback state changes over time due to temperature changes, etc., and multi-mode oscillation occurs again. It has been found that the cause of this multimode oscillation can be explained as a phase shift between the emitted light from the semiconductor laser and the reflected light from the external mirror force.

発明の目的 本発明は、位相ずれをなくし、安定した単一モード発振
を可能とする外部共振器型半導体レーザ装置を提供せん
とするものである。
OBJECTS OF THE INVENTION The present invention aims to provide an external cavity type semiconductor laser device that eliminates phase shift and enables stable single mode oscillation.

発明の構成 本発明は、外部鏡として位相共役鏡を用いる事により、
前記の出射光と反射鏡の位相ずれを解消する事により、
安定した単−縦モード発振を行う半導体レーザ光源を実
現するものである。
Structure of the Invention The present invention uses a phase conjugate mirror as an external mirror.
By eliminating the phase shift between the emitted light and the reflecting mirror,
This realizes a semiconductor laser light source that performs stable single-longitudinal mode oscillation.

実施例の説明 まず、位相共役鏡は、結晶等の媒体の3次の非線型効果
を応用するものである。第1図に示す様に、非線型媒体
(NLM)に次式で表現されるA1゜A2及びムロの光
が入射するものとする。
Description of Embodiments First, a phase conjugate mirror applies the third-order nonlinear effect of a medium such as a crystal. As shown in FIG. 1, it is assumed that light of A1°A2 and unevenness expressed by the following equation is incident on a nonlinear medium (NLM).

(l−1,2,3) そしてA1及びA2は全く逆方向から入射するものとし
、即ちに+十に2=、 O13つの光の周波数はすべて
ωであるとする。更に、A3は2方向に進行する光とす
ると、次式の様に3次の非線型分極pN Lが生じる。
(l-1, 2, 3) It is assumed that A1 and A2 are incident from completely opposite directions, that is, +10/2=, and the frequencies of all three lights are ω. Furthermore, assuming that A3 is light traveling in two directions, third-order nonlinear polarization pN L occurs as shown in the following equation.

P(NL)(ω−ω十ω−ω) 一−X”AIA2Aiexpi((ω+ω−ω)t−(
k+ 十に2)r+kz)+c、c。
P(NL)(ω−ω1ω−ω) 1−X”AIA2Aiexpi((ω+ω−ω)t−(
k+ 10 to 2) r+kz)+c, c.

=  、(5)ム1ム2ム5 axpi(ωを十kz 
)十c 、c 。
= , (5) M1 M2 M5 axpi (ω = 10 kz
) 10c, c.

ここで、Xは3次の非線型感受率であシ、A二はA3の
複素共役である。
Here, X is a third-order nonlinear susceptibility, and A2 is a complex conjugate of A3.

上式より、ωの周波数の3つの波が入射する事により、
新たに周波数がωで進行方向が−2の波が発生する事が
判る。そして、入射光の−っE3E3=−A3 exp
i(ωt−kz)に対して、新たに発生する第4の波E
4はE4= aA5expi(ωt+kz)(aは比例
定数) と表わされ、F4けE3の位相共役波と呼ばれる。
From the above equation, when three waves of frequency ω are incident,
It can be seen that a new wave with a frequency of ω and a traveling direction of -2 is generated. Then, -E3E3=-A3 exp of the incident light
The newly generated fourth wave E for i(ωt-kz)
4 is expressed as E4=aA5expi(ωt+kz) (a is a proportionality constant), and is called a phase conjugate wave of F4 times E3.

こ(7)E、は物理的には、aA6expi (ω(−
t ) −kz )表等価であり、E3の波を逆戻りす
る形で進行する波が発生する事を示している。
This (7)E is physically aA6expi (ω(-
t ) - kz ) table is equivalent, indicating that a wave is generated that travels in the form of reversing the wave of E3.

要するに媒体に、2つの励起光(周波数ω)が全く逆方
向から入射されている時に、その媒体に周波数ωの第3
の光が入射すると、第3の波に対して完全に逆戻りをす
る第4の波が発生する事になる訳である。
In other words, when two excitation lights (frequency ω) are incident on a medium from completely opposite directions, a third excitation light with frequency ω is incident on the medium from completely opposite directions.
When this light is incident, a fourth wave is generated which is a complete reversal of the third wave.

従って半導体レーザの外部反射鏡として上記の様に位相
共役波を発生する位相共役鏡を用い、レーザから出射さ
れる光を上記の励起光、及び第3の波として働かせると
、発生する第4の波は第3の波の帰還光としてとり出さ
れ、しかも、その波長及び位相は、第3の光のそれらと
完全に一致している。即ち、位相共役鏡を用いる事によ
り、波長ずれ1位相ずれの全くない完璧な光帰還が実現
される訳である。
Therefore, if a phase conjugate mirror that generates a phase conjugate wave as described above is used as an external reflector of a semiconductor laser, and the light emitted from the laser is used as the excitation light and the third wave, the fourth wave generated is The wave is extracted as a return light of the third wave, and its wavelength and phase completely match those of the third light. That is, by using a phase conjugate mirror, perfect optical feedback with no wavelength shift or phase shift is achieved.

更に具体的に位相共役鏡の性質を第2図を用いて示す。More specifically, the properties of the phase conjugate mirror will be illustrated using FIG.

aは通常の反射鏡による反射の様子を示す。入射光]は
反射鏡11により、異なる方向に反射されて反射光11
1となる。曲線は等位相面を示している。そしてbけ位
相共役鏡による光の反射の様子を示しており、入射光I
vは位相共役鏡により、完全に同方向に反射される反射
光■1と々る。
A shows the state of reflection by a normal reflecting mirror. The incident light] is reflected in different directions by the reflecting mirror 11 and becomes reflected light 11.
It becomes 1. The curves show isophase surfaces. And b shows how the light is reflected by the phase conjugate mirror, and the incident light I
v is reflected light (1) completely reflected in the same direction by the phase conjugate mirror.

この時、反射光の位相は入射光の位相と全く同じであり
、入射した光は、位相を含めて完全に逆戻りをする様子
が理解される。
At this time, the phase of the reflected light is exactly the same as the phase of the incident light, and it can be seen that the incident light, including its phase, completely reverses.

以下に本発明の詳細を実施例を用いて説明する。The details of the present invention will be explained below using examples.

第3図に、まず通常の複合共振器型半導体レーザの概略
を示す。図に於て、1は半導体レーザ、2は外部反射鏡
、3,4は無収差レンズであシ、レーザ1より発射する
レーザビームの一方5は、レンズ3で平行ビームに変換
され、反射鏡2に達する。そして反射鏡2で反射された
光は、再度レンズ3によシ集光されレーザ1の活性層に
帰還される。一方、レーザ1より発射されるもう一方の
光出力ビームロの一部はビームスプリッタ7により分割
され、レンズ8により光ファイバ9に導かれ、スペクト
ロメータ10に入射し、これを通じ発振光のスペクトル
が観測される。
FIG. 3 first shows an outline of a conventional composite cavity type semiconductor laser. In the figure, 1 is a semiconductor laser, 2 is an external reflecting mirror, 3 and 4 are aberration lenses, and one of the laser beams emitted from the laser 1, 5, is converted into a parallel beam by the lens 3, and the reflecting mirror Reach 2. The light reflected by the reflecting mirror 2 is again focused by the lens 3 and returned to the active layer of the laser 1. On the other hand, a part of the other optical output beam emitted from the laser 1 is split by a beam splitter 7, guided to an optical fiber 9 by a lens 8, and incident on a spectrometer 10, through which the spectrum of the oscillated light is observed. be done.

さて第4図に、第3図に示した複合共振器型半導体レー
ザの光出力の発振スペクトルを示す。図で(a)は第2
図の外部反射鏡2を設置しない場合のスペクトルであり
、一応単一縦モード発振が得られているが、わずかにサ
イドバンドが見られる。
Now, FIG. 4 shows the oscillation spectrum of the optical output of the composite resonator type semiconductor laser shown in FIG. 3. In the figure, (a) is the second
This is a spectrum obtained when the external reflector 2 shown in the figure is not installed, and although single longitudinal mode oscillation is obtained, a slight side band can be seen.

一方(b)は外部鏡により適切な帰還が行なわれた場合
のスペクトルを示す。はぼ完璧な単−縦モード発振が実
現されている。それに対し、帰還が不適切な場合のスペ
クトルを(C)に示す。この場合、多モード発振が生じ
ており、外部鏡は半導体レーザの発振の単一モード性を
悪化させる結果となっている。以上の事から、外部共振
器型半導体レーザにおいて外部反射鏡の設定が極めて重
要であシ、また同時に不安定な要素を有している事が理
解できる。
On the other hand, (b) shows the spectrum when appropriate feedback is performed by an external mirror. Almost perfect single-longitudinal mode oscillation has been achieved. On the other hand, the spectrum when feedback is inappropriate is shown in (C). In this case, multimode oscillation occurs, and the external mirror deteriorates the single mode property of oscillation of the semiconductor laser. From the above, it can be understood that the setting of the external reflector is extremely important in an external cavity type semiconductor laser, and also has an unstable element.

次に、本発明にかかる外部反射鏡に位相共役鏡を用いた
場合の、複合共振器型半導体レーザの構成の概略を第6
図に示す。基本構成及び測定系は第3図と同様であるが
、反射鏡2の代わりにチタン酸バリウム系の位相共役鏡
11が用いられ、また出力ビームロの一部12がビーム
スプリッタ13によシ分割され、反射鏡14.光アイソ
レータ15゜反射鏡16により位相共役鏡11に導かれ
て一つの励起光として働き、更に共役鏡11を通過した
ビームが反射鏡17により逆方向に進行し、もう一方の
励起光として働く。この励起光ビームはアイソレータ1
6により遮断され、半導体レーザ1には戻らない様にな
っている。
Next, the outline of the configuration of a composite cavity semiconductor laser when a phase conjugate mirror is used as an external reflecting mirror according to the present invention will be explained in the sixth section.
As shown in the figure. The basic configuration and measurement system are the same as those shown in FIG. 3, but a barium titanate phase conjugate mirror 11 is used instead of the reflecting mirror 2, and a part 12 of the output beam is split by a beam splitter 13. , reflecting mirror 14. The beam is guided to the phase conjugate mirror 11 by the optical isolator 15° reflecting mirror 16 and serves as one excitation light, and the beam that has passed through the conjugate mirror 11 is further advanced in the opposite direction by the reflecting mirror 17 and serves as the other excitation light. This excitation light beam is applied to isolator 1
6, so as not to return to the semiconductor laser 1.

この結果半導体レーザ1から発する光ビームの位相と、
共役鏡11により反射されるビームの位相は全く同じと
なる。従って第3図の構成において起こる様な、半導体
レーザからの出射光と帰還光との間に位相のずれは第5
図の構成においては全く生ぜず、しかも共役鏡11の結
晶の設定には調整が不要である。
As a result, the phase of the light beam emitted from the semiconductor laser 1,
The phases of the beams reflected by the conjugate mirror 11 are exactly the same. Therefore, the phase shift between the emitted light from the semiconductor laser and the returned light, which occurs in the configuration shown in FIG.
In the configuration shown in the figure, this does not occur at all, and furthermore, the setting of the crystal of the conjugate mirror 11 does not require adjustment.

第6図に、第5図に示した構成で位相共役鏡を用いた場
合の半導体レーザの発振スペクトルを示す。第2図(b
lに見られる様な、はぼ完璧な単−縦モード発振が得ら
れ、反射鏡の設置条件とは無関係に安定した発振が得ら
れた。しかもこの単−縦モード発振は長時間にわたり安
定していた。
FIG. 6 shows the oscillation spectrum of a semiconductor laser when a phase conjugate mirror is used in the configuration shown in FIG. Figure 2 (b
Almost perfect single-longitudinal mode oscillation as seen in Figure 1 was obtained, and stable oscillation was obtained regardless of the installation conditions of the reflecting mirror. Furthermore, this single-longitudinal mode oscillation was stable over a long period of time.

発明の効果 以上に説明した如く、複合共振型の半導体レーザにおい
て、その外部反射鏡として位相共役鏡を用いる事は、そ
の単−縦モード発振を行う上で、極めて重要な効果を有
するものである。
Effects of the Invention As explained above, the use of a phase conjugate mirror as an external reflecting mirror in a complex resonant semiconductor laser has an extremely important effect in achieving single-longitudinal mode oscillation. .

位相共役鏡は、既に述べた様に結晶等の媒体の3次の非
線型効果に基づくものであり、3次の分極感受率の大き
な、チタン酸バリウム系結晶やC82が適しているが、
最近はMBE(分子線エピタキシ)等により多層量子井
戸構造の薄膜を形成する事ができ、そのエネルギー分布
の不連続性を応用して、高い非線形感受率を得る事も可
能となっている。従って、この多層量子井戸構造の薄膜
を位相共役鏡として利用できる事も考えられる。この場
合は半導体レーザと一体化する事も可能であり、更に大
きな効果を有する事が期待できる。
As mentioned above, the phase conjugate mirror is based on the third-order nonlinear effect of a medium such as a crystal, and barium titanate crystals and C82, which have high third-order polarization susceptibility, are suitable.
Recently, it has become possible to form a thin film with a multilayer quantum well structure by MBE (molecular beam epitaxy) or the like, and by applying the discontinuity of its energy distribution, it has become possible to obtain high nonlinear susceptibility. Therefore, it is conceivable that a thin film with this multilayer quantum well structure can be used as a phase conjugate mirror. In this case, it is also possible to integrate it with a semiconductor laser, and it can be expected to have even greater effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は位相共役鏡の原理構成の概略図、第2図(al
 、 (b)は通常の鏡と位相共役鏡による反射の相異
を示す図、第3図は従来の外部共振器型半導体レーザ装
置の構成の概略図、第4図はレーザの発りトルを示す図
、漉6図は位相共役鏡を用いた場合の外部共振器型半導
体レーザ装置の構成の概略図、第6図は第5図の装置に
よるレーザ光のスペクトルを示す図である。 1  半導体レーザ、11−位相共役鏡。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名A? 第2図 第3図 第4図 f1町 (Aン 第6図 遠投(4)
Figure 1 is a schematic diagram of the principle configuration of a phase conjugate mirror, and Figure 2 (al
, (b) is a diagram showing the difference in reflection between a normal mirror and a phase conjugate mirror, Figure 3 is a schematic diagram of the configuration of a conventional external cavity type semiconductor laser device, and Figure 4 is a diagram showing the laser starting torque. 6 is a schematic diagram of the configuration of an external cavity type semiconductor laser device using a phase conjugate mirror, and FIG. 6 is a diagram showing the spectrum of laser light produced by the device of FIG. 5. 1 semiconductor laser, 11-phase conjugate mirror. Name of agent: Patent attorney Toshio Nakao and one other person A? Figure 2 Figure 3 Figure 4 f1 town (A) Figure 6 Long throw (4)

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザ及び外部共振器で構成され、前記外
部共振器を形成する反射鏡が、位相共役鏡である事を特
徴とする外部共振器型半導体レーザ装置。
(1) An external cavity type semiconductor laser device comprising a semiconductor laser and an external cavity, characterized in that a reflecting mirror forming the external cavity is a phase conjugate mirror.
(2)位相共役鏡が、多層量子井戸構造の半導体薄膜で
形成されている事を特徴とする特許請求の範囲第1項記
載の外部共振器型半導体レーザ装置。
(2) The external cavity type semiconductor laser device according to claim 1, wherein the phase conjugate mirror is formed of a semiconductor thin film having a multilayer quantum well structure.
JP12706584A 1984-06-20 1984-06-20 External resonator type semiconductor laser device Pending JPS616888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12706584A JPS616888A (en) 1984-06-20 1984-06-20 External resonator type semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12706584A JPS616888A (en) 1984-06-20 1984-06-20 External resonator type semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS616888A true JPS616888A (en) 1986-01-13

Family

ID=14950714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12706584A Pending JPS616888A (en) 1984-06-20 1984-06-20 External resonator type semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS616888A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473692A (en) * 1987-09-14 1989-03-17 Yokogawa Electric Corp Laser light source
JPH03132725A (en) * 1989-10-10 1991-06-06 Hughes Aircraft Co Self-pump optical phase conjugating method and device by using dummy conjugator for forming retroreflected seed beam
JP2005519476A (en) * 2002-03-04 2005-06-30 フォルスクニングスセンター リスェ High power diode laser system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473692A (en) * 1987-09-14 1989-03-17 Yokogawa Electric Corp Laser light source
JPH03132725A (en) * 1989-10-10 1991-06-06 Hughes Aircraft Co Self-pump optical phase conjugating method and device by using dummy conjugator for forming retroreflected seed beam
JP2005519476A (en) * 2002-03-04 2005-06-30 フォルスクニングスセンター リスェ High power diode laser system

Similar Documents

Publication Publication Date Title
JP3734560B2 (en) Ultra short pulse laser equipment
US4685107A (en) Dispersion compensated fiber Raman oscillator
US7463664B2 (en) Coherent light source and optical device
US7426223B2 (en) Coherent light source and optical device
JP2505892B2 (en) Parametric pulse laser
US3611436A (en) Mode-selective laser using resonant prisms
JP2000261086A (en) Wavelength variable light source
JP2849233B2 (en) Optical wavelength converter with bulk resonator structure
US20030086466A1 (en) Laser cavity
JPS616888A (en) External resonator type semiconductor laser device
JP3255366B2 (en) Optical parametric oscillator
JP3176682B2 (en) Tunable laser device
JP3023725B2 (en) Harmonic generator
JPS59165488A (en) Fiber raman laser
JPH051989B2 (en)
JPH0786673A (en) Gas laser oscillator
KR100281642B1 (en) Inductive Brillouin Scattering and Erbium Multi Wavelength Generator
JPH0528915B2 (en)
JP2754991B2 (en) Wavelength converter
JP2001168437A (en) Wavelength-tunable single-frequency laser
JPH03108785A (en) Laser light wavelength conversion system
JPH118427A (en) Multiple laser beam generating apparatus and multiple laser beam generating element
JPS62136890A (en) Semiconductor laser device
JPH0414024A (en) Secondary higher harmonic generation device
JPS62229890A (en) Variable-wavelength semiconductor light source