JPH06323911A - Colorimeter for semitransparent body - Google Patents

Colorimeter for semitransparent body

Info

Publication number
JPH06323911A
JPH06323911A JP11182793A JP11182793A JPH06323911A JP H06323911 A JPH06323911 A JP H06323911A JP 11182793 A JP11182793 A JP 11182793A JP 11182793 A JP11182793 A JP 11182793A JP H06323911 A JPH06323911 A JP H06323911A
Authority
JP
Japan
Prior art keywords
light
sample
colorimeter
optical fiber
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11182793A
Other languages
Japanese (ja)
Inventor
Kazumasa Kisaka
和正 木坂
Hiroshi Kanda
寛 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP11182793A priority Critical patent/JPH06323911A/en
Publication of JPH06323911A publication Critical patent/JPH06323911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To obtain a colorimetric result whose correlation with a luminous evaluation is high with reference to a semitransparent sample, CONSTITUTION:A measuring probe part 1 for a colorimeter is composed of a cylindrical light conductor 10 which transmits light, of a optical fiber 12 for light-receiving and of the like. In the light conductor 10, a through hole 10a is made from the surface 11 toward the lower part, and a conical hole 10b is made from the rear surface toward the upper part. In a measurement, a sing-shaped bottom face 13 which is formed by the conical hole 10b is brought into contract with the surface of a sample 36. The optical fiber 12 is inserted into the through hole 10a from the side of the surface 11, and it is fixed in such a way that its tip face 112 is situated in the boundary to a conical face 14. Then, illumination light from a light source is made incident on the light conductor 10 from the surface 11, it is transmitted through the light conductor 10, it goes out from the ring-shaped bottom face 13 and the conical face 14, and the sample 36 is irradiated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半透明体からなる試料
の色彩を測定する半透明体用色彩計に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a translucent colorimeter for measuring the color of a translucent sample.

【0002】[0002]

【従来の技術】各種産業分野においては、色彩の重要性
がますます高くなっている。すなわち、塗装、印刷、繊
維、窯業、農林水産その他多くの分野においては、生産
現場等で各種試料の分光反射率や色彩計算値等の色彩デ
ータが利用されている。従来、目視で標準色と比較する
視感評価により行われてきた色彩計測は、最近になっ
て、CIE-1931及び1964勧告による標準観察者と等しい感
度を有する測定器による客観的な計測が一般化しつつあ
り、例えば、JIS Z 8722に規定されている測定方法等が
知られている。
2. Description of the Related Art Color is becoming more and more important in various industrial fields. That is, in painting, printing, textiles, ceramics, agriculture, forestry and fisheries, and many other fields, color data such as spectral reflectances and color calculation values of various samples are used at production sites. Conventionally, color measurement, which has been performed by visual evaluation by visual comparison with standard colors, has recently become more common in objective measurement with a measuring instrument that has the same sensitivity as the standard observer according to CIE-1931 and 1964 recommendations. It is becoming more and more common, and for example, a measuring method defined in JIS Z 8722 and the like are known.

【0003】従来の色彩計の一例について、図5に基づ
いて説明する。この色彩計は、拡散照明された試料面
を、その法線から8°傾斜した方向から観察するD/8
光学系を有するもので、積分球31、光源35及び観察
光学系70等から構成されている。積分球31の内壁に
は、高拡散率、高反射率を有する白色粉末が塗布されて
いる。例えばXeフラッシュランプで構成された光源3
5からの光束は、開口部32から積分球31内に入射
し、内壁で多重反射して拡散光となり、開口部33に配
置された試料36を一様に照明する。試料36は、照射
された光を拡散透過する半透明体からなる。観察光学系
70は、この試料36の法線に対して8°傾斜した方向
から観察するもので、試料36で反射された光は、開口
部34を通過してレンズ71により集束され、受光セン
サ72に入射する。この受光センサ72の大きさ及びレ
ンズ71の倍率により、試料36表面の観察域が決定さ
れる。なお、この観察域は照明域よりも狭く設定され
る。
An example of a conventional colorimeter will be described with reference to FIG. This colorimeter observes the diffusely illuminated sample surface from a direction inclined by 8 ° from its normal line D / 8
It has an optical system and is composed of an integrating sphere 31, a light source 35, an observation optical system 70, and the like. The inner wall of the integrating sphere 31 is coated with white powder having a high diffusivity and a high reflectance. For example, a light source 3 composed of a Xe flash lamp
The light flux from 5 enters the integrating sphere 31 through the opening 32, is multiply reflected by the inner wall and becomes diffused light, and uniformly illuminates the sample 36 arranged in the opening 33. The sample 36 is composed of a semitransparent body that diffuses and transmits the irradiated light. The observation optical system 70 observes from a direction inclined by 8 ° with respect to the normal line of the sample 36, and the light reflected by the sample 36 passes through the opening 34 and is focused by the lens 71, so that the light receiving sensor. It is incident on 72. The size of the light receiving sensor 72 and the magnification of the lens 71 determine the observation area on the surface of the sample 36. The observation area is set narrower than the illumination area.

【0004】このように、従来の色彩計では、試料上の
観察域よりも広く試料を照明し、観察域における光の照
射の均一性が高められている。
As described above, in the conventional colorimeter, the sample is illuminated more widely than the observation area on the sample, and the uniformity of light irradiation in the observation area is improved.

【0005】図6は図5の部分拡大図で、上記従来の色
彩計により試料36の色彩測定を行ったときの光路を示
す説明図である。積分球31の内壁にて拡散された照明
光は、試料36を均一に照射する。このとき、試料36
は半透明体であることによる拡散透過性を有するため、
照明光の一部は、試料36の表面あるいは表面近傍で反
射される反射光37となり、残りは、試料36の内部に
入射して拡散する内部拡散光38となる。
FIG. 6 is a partially enlarged view of FIG. 5 and is an explanatory view showing an optical path when the color of the sample 36 is measured by the conventional colorimeter. The illumination light diffused on the inner wall of the integrating sphere 31 uniformly illuminates the sample 36. At this time, sample 36
Has a translucency due to being a semi-transparent material,
Part of the illumination light becomes reflected light 37 that is reflected on or near the surface of the sample 36, and the rest becomes internal diffused light 38 that enters the sample 36 and diffuses.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の色彩計により半透明である天然歯の色彩測定を行う
と、視感評価との相関が極めて低いことが判明した。こ
れは、上記内部拡散光38のうち、試料36の内部を通
って積分球31外に出る放出拡散光39が色彩計に受光
されないため、特に明度等の測定結果は、視感評価より
も小さい値になってしまうからである。なお、この放出
拡散光39等のように、色彩計に受光されない光のこと
を、特にエッジ・ロス・エラーという。
However, when the color of a semitransparent natural tooth is measured by the conventional colorimeter, it has been found that the correlation with the visual evaluation is extremely low. This is because, of the internal diffused light 38, the emitted diffused light 39 that passes through the inside of the sample 36 and goes out of the integrating sphere 31 is not received by the colorimeter, so that the measurement result of the brightness and the like is smaller than the visual evaluation. This is because it becomes a value. It should be noted that light that is not received by the colorimeter, such as the emitted diffused light 39 and the like, is particularly called edge loss error.

【0007】一方、内側が受光用、外側が投光用に、同
心円状の2層に分離して形成された光ファイバに、例え
ば合成樹脂製の透明体からなり、突起部を有する凸型形
状の測定プローブが取り付けられた構成の色彩計が知ら
れている。上記突起部の外周面には、高反射率の金属膜
が蒸着されており、色彩を測定するときは、この突起部
を試料の観察域に密着させて試料からの光を受光するよ
うになっている。
On the other hand, an optical fiber formed by separating into two concentric layers for receiving light on the inside and projecting light on the outside is made of, for example, a transparent body made of synthetic resin, and has a convex shape having a protruding portion. There is known a colorimeter having a configuration in which the measurement probe of the above is attached. A metal film having a high reflectance is vapor-deposited on the outer peripheral surface of the protrusion, and when the color is measured, the protrusion is brought into close contact with the observation area of the sample to receive light from the sample. ing.

【0008】ところが、この色彩計は、照明光の大部分
が観察域周辺の試料表面を照射するようになっている。
そのため、試料から戻ってくる光は、試料の内部で透
過、拡散された光のみで、試料の表面あるいは表面近傍
で反射された光は含まれていない。従って、視感評価と
の相関が高い測定結果を得ることは困難である。
However, in this colorimeter, most of the illumination light illuminates the sample surface around the observation area.
Therefore, the light returning from the sample is only the light transmitted and diffused inside the sample, and does not include the light reflected on or near the surface of the sample. Therefore, it is difficult to obtain a measurement result having a high correlation with the visual evaluation.

【0009】本発明は、上記問題を解決するもので、視
感評価との相関の高い測定結果が得られる半透明体用色
彩計を提供することを目的とする。
An object of the present invention is to solve the above problems and to provide a colorimeter for a translucent body which can obtain a measurement result having a high correlation with the visual evaluation.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、照明光を試料に照射する照射部と、上記
試料の所定領域からの反射光を受光して上記試料の色彩
を計測する計測手段からなる色彩計において、上記照射
部は、上記照明光を上記所定領域内に導く第1光照射部
と上記所定領域周辺に導く第2光照射部とを有し、上記
第1光照射部が導く光量に比して、上記第2光照射部が
導く光量が大きくなるように構成されている。
In order to achieve the above object, the present invention provides an irradiation unit for irradiating a sample with illumination light and a reflected light from a predetermined region of the sample to receive the color of the sample. In the colorimeter including a measuring unit for measuring, the irradiation section has a first light irradiation section that guides the illumination light into the predetermined area and a second light irradiation section that guides the illumination light to the periphery of the predetermined area. The light quantity guided by the second light irradiation section is larger than the light quantity guided by the light irradiation section.

【0011】[0011]

【作用】本発明によれば、試料への光の照射が均一に行
われるのではなく、所定領域内に比べて、所定領域周辺
の光量が大きくなっているので、試料の表面あるいは表
面近傍での反射光だけではなく、試料の内部まで透過し
た光の反射光が、相対的に多く受光されることとなる。
According to the present invention, the light irradiation to the sample is not performed uniformly, but the light amount around the predetermined region is larger than that inside the predetermined region. In addition to the reflected light, the reflected light of the light transmitted to the inside of the sample is relatively received.

【0012】[0012]

【実施例】以下、本発明に係る半透明体用色彩計の一実
施例について、図面に基づいて説明する。図1は同実施
例における測定プローブ部を示す図で、(a)は断面
図、(b)は斜視図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of a color meter for a translucent body according to the present invention will be described below with reference to the drawings. 1A and 1B are views showing a measurement probe portion in the embodiment, wherein FIG. 1A is a sectional view and FIG. 1B is a perspective view.

【0013】測定プローブ部1は、光を透過する円柱状
の光導体10、受光用の光ファイバ12等から構成され
ている。光導体10は、外周面に遮光処理が施されてい
るとともに、上面11の中央から下方に向けて貫通穴1
0aが穿設され、一方、下面からは上方向に向けて先狭
まりの円錐状の穴10bが穿設されてなり、貫通穴10
aと円錐状の穴10bは、ほぼ中間位置で連通してい
る。円錐状の穴10bの底面の径は、光導体10の径に
比し、多少小さく、その径差間部分が環状底面13とし
て形成され、円錐状の穴10bの側周面は、円錐面14
として形成されている。測定時は、環状底面13を例え
ば天然歯等の半透明の試料36の表面に接触させるよう
になっている。光ファイバ12は、上面11側から貫通
穴10aに挿入され、その先端面112が円錐面14と
の境界に位置するように固定されている。
The measurement probe portion 1 is composed of a cylindrical light conductor 10 that transmits light, an optical fiber 12 for receiving light, and the like. The light guide 10 is light-shielded on the outer peripheral surface thereof, and the through hole 1 extends downward from the center of the upper surface 11.
0a is formed on the other hand, and on the other hand, from the lower surface, a conical hole 10b is formed which is tapered toward the upper side.
The a and the conical hole 10b communicate with each other at a substantially intermediate position. The diameter of the bottom surface of the conical hole 10b is slightly smaller than the diameter of the light guide 10, and the portion between the diameters is formed as an annular bottom surface 13. The side peripheral surface of the conical hole 10b is the conical surface 14
Is formed as. At the time of measurement, the annular bottom surface 13 is brought into contact with the surface of a semitransparent sample 36 such as a natural tooth. The optical fiber 12 is inserted into the through hole 10 a from the upper surface 11 side, and is fixed so that its tip end surface 112 is located at the boundary with the conical surface 14.

【0014】なお、光ファイバ12の光導体10への固
定は、例えば保持筒12aが貫通穴10aに圧入、ある
いは接着されるなどして、あるいは図3のように光ファ
イバ12と光導体10とを別部材を介して位置固定する
ようにして行われている。かかる構成の測定プローブ部
1において、円錐上の穴10bの底面が観察域となり、
環状底面13が観察域周辺となる。
The optical fiber 12 is fixed to the optical conductor 10 by, for example, press-fitting or adhering the holding cylinder 12a into the through hole 10a, or as shown in FIG. Is fixed through a separate member. In the measurement probe unit 1 having such a configuration, the bottom surface of the conical hole 10b serves as an observation area,
The annular bottom surface 13 becomes the periphery of the observation area.

【0015】この測定プローブ部1を備えた色彩計によ
る測定動作について説明すると、図外の光源からの照明
光は、上面11から光導体10に入射し、光導体10を
透過して、環状底面13と円錐面14から出て試料36
を照射する。
The measurement operation of the colorimeter provided with the measurement probe section 1 will be described. Illumination light from a light source (not shown) enters the light guide 10 from the upper surface 11 and passes through the light guide 10 to form an annular bottom surface. 13 and conical surface 14 and sample 36
Irradiate.

【0016】円錐面14から出た光は、試料36表面の
観察域を照射し、その一部は試料36の表面あるいは表
面近傍で反射される表面反射光7となり、残りは、試料
36の内部に進入していく内部進入光8となる。
The light emitted from the conical surface 14 illuminates the observation area on the surface of the sample 36, part of which becomes the surface reflected light 7 which is reflected on the surface of the sample 36 or in the vicinity of the surface, and the rest is the inside of the sample 36. It becomes the light 8 entering the inside.

【0017】環状底面13から出た光は、環状底面13
が試料36の表面に接触しているため、その全てが試料
36の観察域周辺を照射する。そして、その一部が試料
36の表面あるいは表面近傍で反射され、大部分が試料
36の内部に進入する。
The light emitted from the annular bottom surface 13 is
Are in contact with the surface of the sample 36, all of them illuminate the periphery of the observation area of the sample 36. Then, a part thereof is reflected on the surface of the sample 36 or in the vicinity of the surface, and most of the light enters the inside of the sample 36.

【0018】この内部に進入した光及び上記内部進入光
8の一部は、試料36の内部あるいは裏面で拡散、反射
される。その拡散、反射された光の一部が観察域内に入
射してくる内部拡散光15となり、残りが外部に出てい
く放出拡散光16となる。これらの光の中で、光ファイ
バ12に到達して色彩計に受光されるのは、表面反射光
7及び内部拡散光15の内、光ファイバ12の先端面1
12に帰来する分である。
The light that has entered the inside and a part of the light 8 that has entered the inside are diffused and reflected inside or on the back surface of the sample 36. Part of the diffused and reflected light becomes the internal diffused light 15 that enters the observation area, and the rest becomes the emitted diffused light 16 that goes out. Of these lights, what reaches the optical fiber 12 and is received by the colorimeter is the tip surface 1 of the optical fiber 12 out of the surface reflected light 7 and the internal diffused light 15.
It is the time to return to 12.

【0019】このように、環状底面13により観察域周
辺に照射される光量を観察域に比して相対的に増大さ
せ、内部拡散光15の光量を増大させることにより、色
彩計に受光される内部拡散光15の光量を相対的に増加
させている。これによって、試料36内部の色情報が測
定結果によりよく反映され、視感評価と相関性の高い測
定結果を得ることができる。
As described above, the light quantity irradiated to the periphery of the observation area by the annular bottom surface 13 is relatively increased as compared with the observation area, and the light quantity of the internal diffused light 15 is increased to be received by the colorimeter. The light amount of the internal diffused light 15 is relatively increased. As a result, the color information inside the sample 36 is better reflected in the measurement result, and the measurement result having a high correlation with the visual evaluation can be obtained.

【0020】なお、観察域周辺に照射される光量が観察
域に照射される光量の4倍以上となるように光導体10
の形状を設計したときに、視感評価との相関が高い結果
が得られている。観察域周辺と観察域に対する照射光量
の比率変更は、例えば光導体10の径を円錐状の穴10
bの底面の径に比べて相対的に大きくしたり、円錐面1
4の傾斜を大きくするなどすれば可能である。また、光
導体10を屈折率の異なる材質で形成し、円錐面14で
の光の反射率を変更するようにしてもよい。
The light guide 10 is arranged so that the amount of light applied to the periphery of the observation area is at least four times the amount of light applied to the observation area.
When the shape is designed, the result that the correlation with the visual evaluation is high is obtained. For changing the ratio of the irradiation light amount to the periphery of the observation area and the observation area, for example, the diameter of the light guide 10 is changed to the conical hole
It is relatively larger than the diameter of the bottom surface of b, or the conical surface 1
It is possible by increasing the inclination of 4. Alternatively, the light guide 10 may be formed of materials having different refractive indexes, and the light reflectance at the conical surface 14 may be changed.

【0021】また、光導体10の形状は図1に示したも
のに限られない。例えば、外形を先細りにすれば、狭い
領域でも測定できる。また、円錐状の穴10bを円柱状
の穴にしてもよい。また、円柱形状の光導体10を多角
柱にしてもよい。また、円錐状の穴10bも、多角錐状
の穴にしてもよい。
The shape of the light guide 10 is not limited to that shown in FIG. For example, if the outer shape is tapered, it is possible to measure even a narrow area. Further, the conical hole 10b may be a cylindrical hole. Further, the cylindrical light guide 10 may be a polygonal prism. Further, the conical hole 10b may also be a polygonal pyramidal hole.

【0022】また、この測定プローブ部1では、観察域
は光ファイバ12の開口角によって決まる。そこで、光
ファイバ12の開口角が大きい場合は、図2に示すよう
に、α≦開口角となるように、内面に反射防止処理が施
されたパイプ17を光ファイバ12の先端面112から
所定寸法だけ突出するように取り付け、入射瞳兼遮光筒
として開口角を制限するようにしてもよい。
In the measuring probe section 1, the observation area is determined by the opening angle of the optical fiber 12. Therefore, when the opening angle of the optical fiber 12 is large, as shown in FIG. 2, the pipe 17 having the inner surface subjected to the antireflection treatment is provided from the tip end surface 112 of the optical fiber 12 so that α ≦ opening angle. It may be attached so as to project by a size, and the aperture angle may be limited as an entrance pupil and a light blocking tube.

【0023】次に、測定プローブ部1を光源からの照明
光伝達手段に取り付けた例について、図3,図4に基づ
き説明する。この色彩計に用いられる照明光伝達手段と
しては、図3に示すように、光ファイバ等の光導体と、
図4に示すように、積分球等の拡散室がある。
Next, an example in which the measurement probe unit 1 is attached to the illumination light transmitting means from the light source will be described with reference to FIGS. As the illumination light transmission means used in this colorimeter, as shown in FIG. 3, an optical conductor such as an optical fiber,
As shown in FIG. 4, there is a diffusion chamber such as an integrating sphere.

【0024】図3は測定プローブ部1を光ファイバに取
り付けた例を示す。この光ファイバは、投光用の光ファ
イバ18が受光用の光ファイバ12を中心として同心円
状に取り巻く2層から形成されている。そして、投光用
の光ファイバ18の先端面に光導体10の上面11を接
触配置し、受光用の光ファイバ12を光導体10の貫通
穴10aに挿入し、この状態で固定具2で固定してい
る。図外の光源を出た光は、投光用の光ファイバ18を
通り、測定プローブ部1を経て試料36を照射する。そ
して、試料36からの光は、光ファイバ12によって集
光され、図外の受光センサに送られるようになってい
る。
FIG. 3 shows an example in which the measurement probe unit 1 is attached to an optical fiber. This optical fiber is formed of two layers in which a light projecting optical fiber 18 concentrically surrounds the light receiving optical fiber 12. Then, the upper surface 11 of the optical conductor 10 is placed in contact with the tip end surface of the optical fiber 18 for projecting light, the optical fiber 12 for receiving light is inserted into the through hole 10a of the optical conductor 10, and fixed by the fixture 2 in this state. is doing. Light emitted from a light source (not shown) passes through a light projecting optical fiber 18, passes through the measurement probe unit 1, and illuminates the sample 36. The light from the sample 36 is collected by the optical fiber 12 and sent to a light receiving sensor (not shown).

【0025】図4は測定プローブ部1を拡散室に取り付
けた例を示す。拡散室19の内壁には、高拡散率、高反
射率を有する白色粉末が塗布されており、光源35を出
た光は、拡散室19の内壁及び半透明体等からなる拡散
板20によって拡散され、遮光筒21に取り付けられた
光導体10を通って試料36を照射する。そして、試料
36からの光は、光ファイバ12によって集光され、図
外の受光センサに送られるようになっている。なお、光
ファイバ22は、光源35を補正するためのもので、図
外の受光センサに接続されている。
FIG. 4 shows an example in which the measurement probe unit 1 is attached to the diffusion chamber. White powder having a high diffusivity and a high reflectance is applied to the inner wall of the diffusion chamber 19, and the light emitted from the light source 35 is diffused by the inner wall of the diffusion chamber 19 and the diffusion plate 20 formed of a translucent body or the like. Then, the sample 36 is irradiated through the light guide 10 attached to the light shielding tube 21. The light from the sample 36 is collected by the optical fiber 12 and sent to a light receiving sensor (not shown). The optical fiber 22 is for correcting the light source 35 and is connected to a light receiving sensor (not shown).

【0026】[0026]

【発明の効果】以上説明したように、本発明は、観察域
内への照射光量に比べ、観察域周辺への照射光量を相対
的に増大させるとともに、この周辺の照射光による試料
内部からの反射光を受光可能にしたので、半透明試料に
対する測定値と視感評価との相関が向上した色彩計を提
供することができる。
As described above, according to the present invention, the irradiation light amount in the periphery of the observation area is relatively increased as compared with the irradiation light amount in the observation area, and the reflection light from the inside of the sample by the irradiation light in the periphery Since the light can be received, it is possible to provide a colorimeter in which the correlation between the measured value of the semitransparent sample and the visual evaluation is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半透明体用色彩計の一実施例にお
ける測定プローブ部の概略構成を示す図で、(a)は断
面図、(b)は斜視図である。
FIG. 1 is a diagram showing a schematic configuration of a measurement probe unit in an embodiment of a colorimeter for a translucent body according to the present invention, in which (a) is a sectional view and (b) is a perspective view.

【図2】図1の測定プローブ部の光ファイバにパイプが
取り付けられた例を示す断面図である。
FIG. 2 is a cross-sectional view showing an example in which a pipe is attached to the optical fiber of the measurement probe unit of FIG.

【図3】図1の測定プローブ部が光ファイバに取り付け
られた例を示す断面図である。
3 is a cross-sectional view showing an example in which the measurement probe unit of FIG. 1 is attached to an optical fiber.

【図4】図1の測定プローブ部が拡散室に取り付けられ
た例を示す断面図である。
FIG. 4 is a cross-sectional view showing an example in which the measurement probe unit of FIG. 1 is attached to a diffusion chamber.

【図5】従来の色彩計の概略構成を示す説明図である。FIG. 5 is an explanatory diagram showing a schematic configuration of a conventional colorimeter.

【図6】図5の部分拡大図で、半透明体の試料に光を照
射したときの光路を示す説明図である。
FIG. 6 is an enlarged view of a part of FIG. 5 and is an explanatory diagram showing an optical path when a semitransparent sample is irradiated with light.

【符号の説明】[Explanation of symbols]

1 測定プローブ部 7 表面反射光 8 内部進入光 10 光導体 10a 貫通穴 10b 円錐状の穴 11 上面 12,18,22 光ファイバ 12a 保持筒 13 環状底面(第2光照射部) 14 円錐面(第1光照射部) 15 内部拡散光 16 放出拡散光 17 パイプ 19 拡散室 20 拡散板 21 遮光筒 35 光源 36 試料 112 先端面 DESCRIPTION OF SYMBOLS 1 Measurement probe part 7 Surface reflected light 8 Internal entrance light 10 Optical conductor 10a Through hole 10b Conical hole 11 Upper surface 12, 18, 22 Optical fiber 12a Holding cylinder 13 Annular bottom surface (2nd light irradiation part) 14 Conical surface (No. 1 light irradiation part) 15 internal diffused light 16 emitted diffused light 17 pipe 19 diffusion chamber 20 diffuser plate 21 light-shielding cylinder 35 light source 36 sample 112 tip surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 照明光を試料に照射する照射部と、上記
試料の所定領域からの反射光を受光して上記試料の色彩
を計測する計測手段からなる色彩計において、上記照射
部は、上記照明光を上記所定領域内に導く第1光照射部
と上記所定領域周辺に導く第2光照射部とを有し、上記
第1光照射部が導く光量に比して、上記第2光照射部が
導く光量が大きくなるように構成されていることを特徴
とする半透明体用色彩計。
1. A colorimeter comprising: an irradiating section for irradiating a sample with illumination light; and a measuring means for measuring the color of the sample by receiving reflected light from a predetermined region of the sample, wherein the irradiating section is the It has a first light irradiation unit that guides the illumination light into the predetermined region and a second light irradiation unit that guides the periphery of the predetermined region, and the second light irradiation is performed in comparison with the amount of light guided by the first light irradiation unit. A colorimeter for a translucent body, characterized in that it is configured so that the amount of light guided by the section becomes large.
JP11182793A 1993-05-13 1993-05-13 Colorimeter for semitransparent body Pending JPH06323911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11182793A JPH06323911A (en) 1993-05-13 1993-05-13 Colorimeter for semitransparent body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11182793A JPH06323911A (en) 1993-05-13 1993-05-13 Colorimeter for semitransparent body

Publications (1)

Publication Number Publication Date
JPH06323911A true JPH06323911A (en) 1994-11-25

Family

ID=14571164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11182793A Pending JPH06323911A (en) 1993-05-13 1993-05-13 Colorimeter for semitransparent body

Country Status (1)

Country Link
JP (1) JPH06323911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355130B2 (en) 2009-07-08 2013-01-15 Seiko Epson Corporation Method for evaluating white color shielding degree, method for manufacturing white ink, support apparatus for manufacturing white ink, and method for manufacturing white color printed material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355130B2 (en) 2009-07-08 2013-01-15 Seiko Epson Corporation Method for evaluating white color shielding degree, method for manufacturing white ink, support apparatus for manufacturing white ink, and method for manufacturing white color printed material

Similar Documents

Publication Publication Date Title
US4886355A (en) Combined gloss and color measuring instrument
US5428450A (en) Method and apparatus for determining the color of an object that is transparent, diffusing, and absorbent, such as a tooth, in particular
KR100242670B1 (en) Method and device for spectral remission and transmission measurement
US5598843A (en) Colorimetric measurement head and method for determining the internal color of a non-opaque material
EP0857316B1 (en) Dark field illuminator ringlight adaptor
EP0102189A2 (en) Reflectometer
US4900923A (en) Reflectance measuring apparatus including a cylinder-shaped light conducting device between the measuring aperture and the specimen
KR100425412B1 (en) A device for measuring the photometric and colorimetric characteristics of an object
JPH07286957A (en) Refractometer
JP3464824B2 (en) Optical measuring device
US5661563A (en) Reflectance spectroscope with read head for minimizing singly-reflected light rays
AU2002310007B2 (en) Optical turbidimeter with a lens tube
CN212963235U (en) Detection device
JPH02114151A (en) Refractometer having aperture distribution depending upon refractive index
US5268732A (en) Apparatus for measuring spectral transmissivity of optical fiber
JPH06323911A (en) Colorimeter for semitransparent body
JP3568687B2 (en) Lighting device and color measuring device
CN117063049A (en) Optical system including optical multiplexer
JPH06207857A (en) Color measuring device
JP2006145374A (en) Reflection characteristics measuring apparatus and multi-angle colorimeter
JP2002139439A (en) Diffused light source for inspection
JPH0511774B2 (en)
JPH0979906A (en) Spectrocolorimeter
JPH06174452A (en) Lighting system for optical measuring instrument
EP2032968B1 (en) Diffuse reflection probe for optical measurements