JPH0511774B2 - - Google Patents

Info

Publication number
JPH0511774B2
JPH0511774B2 JP28998185A JP28998185A JPH0511774B2 JP H0511774 B2 JPH0511774 B2 JP H0511774B2 JP 28998185 A JP28998185 A JP 28998185A JP 28998185 A JP28998185 A JP 28998185A JP H0511774 B2 JPH0511774 B2 JP H0511774B2
Authority
JP
Japan
Prior art keywords
light
fiber bundle
probe
measured
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28998185A
Other languages
Japanese (ja)
Other versions
JPS62148819A (en
Inventor
Takusuke Izumi
Kazuo Mizuno
Hidetaka Kubozono
Tsuneo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP28998185A priority Critical patent/JPS62148819A/en
Publication of JPS62148819A publication Critical patent/JPS62148819A/en
Publication of JPH0511774B2 publication Critical patent/JPH0511774B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

【発明の詳細な説明】 <本発明の産業上の利用分野> 本発明は、被測定物体の照明及び被測定物体か
らの反射光の受光を行なう分光測色計の光検出プ
ローブに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field of the Present Invention> The present invention relates to a light detection probe for a spectrophotometer that illuminates an object to be measured and receives reflected light from the object to be measured.

<従来技術>(第6,7図) 近年、塗装、印刷、食品、化粧品当の色を測定
する必要性が増し、このため、被測定物に光を照
射し、その反射光をスペクトルに分光し、これに
基づいて被測定物の色を測定する分光測色計が使
用されている。
<Prior art> (Figures 6 and 7) In recent years, there has been an increasing need to measure the colors of paints, prints, foods, and cosmetics. However, a spectrophotometer is used to measure the color of an object based on this.

しかして、半透明の塗装膜あるいは繊維製品の
ように表面が決して一様で無いものを測色する場
合、照明及び受光の幾何学的条件として
JISZ8722−1982の条件cもしくは条件dが採用
されている。そして、この条件を満たすために、
被測定物の照明及び被測定物からの反射光の受光
を行なう光検出プローブには、積分球が使われて
いる。
However, when measuring the color of objects whose surfaces are not uniform, such as translucent paint films or textile products, the geometrical conditions of illumination and light reception
Condition c or condition d of JISZ8722-1982 is adopted. And in order to meet this condition,
An integrating sphere is used as a light detection probe that illuminates an object to be measured and receives reflected light from the object.

第6図はこの積分球を使用した前記条件cを満
たす従来の分光測色計の光検出プローブを示して
いる。
FIG. 6 shows a light detection probe of a conventional spectrophotometer that uses this integrating sphere and satisfies the above condition c.

即ち、積分球1は中空の球の内面に白色拡散反
射塗料を塗布し、窓2,3,4を設けたものであ
る。光源5からの光6は窓2から積分球1内に入
射し、積分球1の内面で拡散反射されて、窓3に
臨ませた被測定物体Aをあらゆる方向から均等に
照射される。そして、被測定物体Aの法線とのな
す角度が10°以下の方向の被測定物体Aからの反
射光が窓4から外部へ出て、分光測色計本体7に
受けられ、これに基づいて測色される。
That is, the integrating sphere 1 is a hollow sphere whose inner surface is coated with white diffuse reflection paint and provided with windows 2, 3, and 4. Light 6 from the light source 5 enters the integrating sphere 1 through the window 2, is diffusely reflected on the inner surface of the integrating sphere 1, and is uniformly irradiated from all directions onto the object A to be measured facing the window 3. Then, the reflected light from the object to be measured A in a direction that makes an angle of 10 degrees or less with the normal line of the object to be measured goes out through the window 4 and is received by the spectrophotometer main body 7, and based on this, The color is measured.

第7図は前記条件dを満たすもので、光源5か
らの光6は窓2から入射して窓3に臨ませた被測
定物体Aに、法線に対して角度が10°を超えない
光線束で照射され、被測定物体Aからの反射光は
積分球1の内面で拡散反射されて、窓4からあら
ゆる方向からの光が外部へ出て、分光測色計本体
7に受けられ、これに基づいて測色れる。
In FIG. 7, the above-mentioned condition d is satisfied, and the light 6 from the light source 5 enters through the window 2 and hits the object A to be measured facing the window 3, as a ray whose angle does not exceed 10° with respect to the normal. The reflected light from the object to be measured A is diffusely reflected on the inner surface of the integrating sphere 1, and the light from all directions exits from the window 4 and is received by the spectrophotometer body 7. The color can be measured based on

<本発明が解決しようとする問題点> しかしながら、このような従来の光検出プロー
ブでは、積分球1の外形が極めて大きいため、分
光測色計本体7に固定せざるを得なかつた。この
ため、被測定物体を測定するには、積分球1の窓
3まで、被測定物を運んで押し当てなければなら
なかつた。
<Problems to be Solved by the Present Invention> However, in such a conventional photodetection probe, the outer shape of the integrating sphere 1 is extremely large, so that it has to be fixed to the spectrophotometer main body 7. Therefore, in order to measure the object to be measured, it was necessary to carry the object to the window 3 of the integrating sphere 1 and press it against it.

しかし、例えばカラー鋼板あるいは大きな布地
を測色する場合には、鋼板あるいは布地全体を積
分球1の窓3まで持ち上げて押し当てることは困
難であるから、鋼板あるいは布地から小さなサン
プルに切り出して、これを積分球1の窓3に押し
当てて測色しなければならなかつたため、測色作
業が大変煩雑で多大な時間を要していた。また、
サンプルを切り取つた周辺部分は商品として使え
なくなるので、測色頻度を上げることができず、
製品の色の管理上、不都合であつた。
However, when measuring the color of a colored steel plate or a large cloth, for example, it is difficult to lift the entire steel plate or cloth to the window 3 of the integrating sphere 1 and press it against it. Therefore, it is necessary to cut a small sample from the steel plate or cloth. Because the color measurement had to be carried out by pressing the color against the window 3 of the integrating sphere 1, the color measurement work was very complicated and took a lot of time. Also,
Since the surrounding area of the sample cannot be used as a product, it is not possible to increase the frequency of color measurement.
This was inconvenient in terms of product color management.

また積分球は高価であり、大型であるという欠
点もあつた。
Integrating spheres also had disadvantages of being expensive and large.

<本発明の目的> 本発明は、このような問題を解決するためにな
されたものであり、その目的とするところは、積
分球を用いることなく小型、軽量であつて、しか
も片手で保持して、被測定物体に押し当てて測色
できるようにした、分光測色計の光検出プローブ
を提供することを目的としている。
<Object of the present invention> The present invention was made in order to solve such problems, and its purpose is to create a compact and lightweight device that can be held with one hand without using an integrating sphere. It is an object of the present invention to provide a light detection probe for a spectrophotometer that can measure color by pressing it against an object to be measured.

<本発明の実施例>(第1〜5図) 以下、本発明の一実施例を図面を用いて説明す
る。
<Embodiment of the present invention> (FIGS. 1 to 5) An embodiment of the present invention will be described below with reference to the drawings.

第1図は実施例の光検出プローブを用いた分光
測色計全体を示す模式図であり、図中10は分光
測色計本体、20は本発明による光検出プロー
ブ、Aは被測定物体を示す。
FIG. 1 is a schematic diagram showing the entire spectrocolorimeter using the photodetection probe of the example. show.

分光測色計本体10に設けられた標準光源11
から放射された光は、光検出プローブ20の照射
用フアイバ束21内へ導かれ、光検出プローブ2
0の先端面に押し当てられた被測定物体Aの表面
で反射され、受光用フアイバ束22を介して分光
器もしくはフイルターで構成される分光反射率測
定用光学系12に入射される。
Standard light source 11 provided in the spectrophotometer body 10
The light emitted from the light detection probe 20 is guided into the irradiation fiber bundle 21 of the light detection probe 20.
The light is reflected by the surface of the object to be measured A pressed against the tip end surface of the light beam, and enters the optical system 12 for measuring spectral reflectance, which is composed of a spectrometer or a filter, via the light-receiving fiber bundle 22.

第2図は、光検出プローブ20を示す外観図で
あり、第3図は光検出プローブ20の内部構成を
示す部分断面図である。
FIG. 2 is an external view showing the photodetection probe 20, and FIG. 3 is a partial sectional view showing the internal configuration of the photodetection probe 20.

図中、23は人が手で操作しやすいような外径
に形成された円筒ケースである。
In the figure, 23 is a cylindrical case formed with an outer diameter that is easy for a person to operate by hand.

円筒ケース23の一端には、固定具24によつ
てリング状のスペーサ25が固定され、このスペ
ーサ25には、固定具26によつて、例えばステ
ンレスから成るフレキシブルホース27の一端が
固定されている。フレキシブルホース27の他端
には、分光測色計本体10に連結するための連結
具27aが設けられている。
A ring-shaped spacer 25 is fixed to one end of the cylindrical case 23 by a fixture 24, and one end of a flexible hose 27 made of, for example, stainless steel is fixed to this spacer 25 by a fixture 26. . The other end of the flexible hose 27 is provided with a connector 27a for connecting to the spectrophotometer main body 10.

円筒ケース23の他端には、支持円板28が、
一部が外方へ露呈するように、固定具48aによ
つて固定されている。支持円板28の外周面の外
方へ露呈した部分にはネジ面28aが形成されて
いる。
At the other end of the cylindrical case 23, a support disk 28 is provided.
It is fixed by a fixture 48a so that a part of it is exposed to the outside. A threaded surface 28a is formed on an outwardly exposed portion of the outer peripheral surface of the support disk 28.

この支持円板28のネジ面28aに、プローブ
キヤツプ30がその一端の円筒部30aの内面の
ネジ面30bによつて取付けられている。プロー
ブキヤツプ30の先端は、先端側が次第に肉厚が
大となつた円錐部30cとなつていて、円錐部3
0cの先端には、窓31が設けられている。この
円錐部30cの先端面32は、円筒ケース23の
軸線に垂直な平面となつている。
A probe cap 30 is attached to the threaded surface 28a of the support disk 28 by a threaded surface 30b on the inner surface of a cylindrical portion 30a at one end thereof. The tip of the probe cap 30 has a conical portion 30c that gradually becomes thicker on the tip side.
A window 31 is provided at the tip of 0c. The tip surface 32 of this conical portion 30c is a plane perpendicular to the axis of the cylindrical case 23.

プローブキヤツプ30の円錐部30cの内壁
は、例えばアルミニウム板の表面にホーニング加
工などによつて梨地面にされた散乱反射面33と
なつている。
The inner wall of the conical portion 30c of the probe cap 30 is a scattering/reflection surface 33, which is made of a matte surface by honing the surface of an aluminum plate, for example.

なお、前記円筒ケース23の側面には先端部近
傍において、孔34が設けられ、この孔34から
外方へ突出するように、操作ボタン35が設けら
れている。操作ボタン35の内側には、この操作
ボタン35によつて動作するマイクロスイツチ3
6が設けられている。マイクロスイツチを取付け
たブロツクは固定具29により円筒ケース23の
内側に固定されている。
A hole 34 is provided in the side surface of the cylindrical case 23 near the tip, and an operation button 35 is provided so as to protrude outward from the hole 34. Inside the operation button 35 is a micro switch 3 that is operated by the operation button 35.
6 is provided. The block to which the microswitch is attached is fixed inside the cylindrical case 23 by a fixture 29.

前記照射用フアイバ束21および受光用フアイ
バ束22は、フレキシブルホース27の内部およ
び円筒ケース23の内部を通つて支持円板28に
固定されている。照射用フアイバ束21、受光用
フアイバ束22のフレキシブルホース27から露
出した部分の端部には、分光反射率測定用光学系
12に接続するための接続金具37および光源1
1に接続するための接続金具38がそれぞれ取付
けられている。
The irradiating fiber bundle 21 and the light receiving fiber bundle 22 are fixed to a support disk 28 through the inside of the flexible hose 27 and the inside of the cylindrical case 23. At the ends of the portions of the irradiation fiber bundle 21 and the light receiving fiber bundle 22 exposed from the flexible hose 27, a connecting fitting 37 for connecting to the optical system 12 for spectral reflectance measurement and a light source 1 are provided.
Connecting fittings 38 for connecting to 1 are respectively attached.

支持円板28の中心には、裏面側に円柱突起3
9が設けられ、表面側に、環状凹部40が設けら
れ、その中心に貫通口41が穿設されている。
At the center of the support disk 28, there is a cylindrical projection 3 on the back side.
9, an annular recess 40 is provided on the front side, and a through hole 41 is bored in the center of the annular recess 40.

この貫通孔41の円柱突起39の部分に、金属
製の固定管42が嵌入され、固定具43によつて
固定されている。この固定管42に受光用フアイ
バ束22の端部が挿入されている。
A metal fixing tube 42 is fitted into the cylindrical projection 39 of the through hole 41 and fixed by a fixing member 43. The end of the light-receiving fiber bundle 22 is inserted into this fixed tube 42 .

貫通孔41の他端には、受光用レンズ44が取
付けられている。
A light receiving lens 44 is attached to the other end of the through hole 41 .

そして、第4図に示すように、中心軸Oに対す
る最大傾斜角θ1(第4図参照)が略10°の視野(直
径d3の円形部分)が、受光用フアイバ束22の端
面22a(直径d1)に結像するように、受光用レ
ンズ44と受光用フアイバ束22の端面22a間
の距離a、受光用レンズ44と窓31間の距離b
及び受光用レンズ44の焦点距離fが設定されて
いる。
As shown in FIG. 4, the field of view (circular portion with diameter d 3 ) with a maximum inclination angle θ 1 (see FIG. 4) with respect to the central axis O of approximately 10° is located at the end surface 22 a ( The distance a between the light-receiving lens 44 and the end surface 22a of the light-receiving fiber bundle 22, and the distance b between the light-receiving lens 44 and the window 31, so that an image is formed on the diameter d1 ).
and the focal length f of the light receiving lens 44 are set.

視野d3以外からの光が受光用レンズ44に達す
るのを防ぐために、環状凹部40には、中心軸O
に軸心が一致するように、円筒部45aを有する
迷光除去用フード45の基部45bが固定されて
いる。
In order to prevent light from other than the field of view d3 from reaching the light receiving lens 44, the annular recess 40 has a central axis O.
A base portion 45b of a stray light removing hood 45 having a cylindrical portion 45a is fixed such that its axis coincides with the cylindrical portion 45a.

なお、第4図に示すように、受光用レンズ44
に達する受光光線束の中心線(中心軸O)に対す
る最大傾斜角θ2が5°以上とならないという前記
JISの条件cを満足するには、第4図の5°の傾斜
角の光線X1と接する位置より長くなるように、
円筒部45aの長さを設定する。
In addition, as shown in FIG. 4, the light receiving lens 44
The maximum inclination angle θ 2 with respect to the center line (central axis O) of the received light beam reaching the above is not more than 5°.
In order to satisfy JIS condition c, the length should be longer than the position where it touches the ray X1 with an inclination angle of 5° in Fig. 4.
The length of the cylindrical portion 45a is set.

迷光除去用フード45の外側には、迷光除去用
フード45方向から視野d3を照明して正反射した
光がそのまま受光用レンズ44に達することを防
ぐために、黒塗装が施されている。
The outside of the stray light removing hood 45 is painted black in order to prevent the light that is specularly reflected by illuminating the visual field d 3 from the direction of the stray light removing hood 45 from reaching the light receiving lens 44 as it is.

また、迷光除去用フード45の内側には、視野
d3以外から円筒部45a内に入り込んだ光が円筒
部45a内壁で反射しながら受光用レンズ44に
達することを防ぐために、黒塗装が施されてい
る。
In addition, inside the stray light removal hood 45, there is a visual field.
Black coating is applied to prevent light entering the cylindrical portion 45a from sources other than d 3 from reaching the light receiving lens 44 while being reflected by the inner wall of the cylindrical portion 45a.

また、支持円板28には、貫通孔41を中心と
した同心円上に、貫通孔46が等間隔に前記貫通
孔41とほぼ平行に4個設けられている。そし
て、各貫通孔46、……には、金属製の固定管4
7、……がプローブキヤツプ30側へ突出した状
態に嵌入され、固定具48bによつて固定されて
いる。照射用フアイバ束21を4本に分岐した照
射用フアイバ束21a、……が各固定管47、…
…に固定管47の先端に一致するように挿入され
ている。
In addition, four through holes 46 are provided in the support disk 28 on a concentric circle centered on the through hole 41 and substantially parallel to the through hole 41 at equal intervals. Each through hole 46, . . . is provided with a metal fixed tube 4.
7, . . . are fitted into the probe cap 30 so as to protrude toward the probe cap 30 side, and are fixed by a fixture 48b. The irradiation fiber bundle 21a, which is obtained by branching the irradiation fiber bundle 21 into four, is connected to each fixed tube 47, .
... is inserted so as to match the tip of the fixed tube 47.

受光用フアイバ束22の直径d1及び分岐された
4つの照射用フアイバ束21aの直径d2は、ほぼ
同一直径に設定されている。照射用フアイバ束2
1の光軸は、受光用フアイバ束22の光軸と略平
行で、且つ、半径Rの同心円上に配置されてい
る。
The diameter d 1 of the light-receiving fiber bundle 22 and the diameter d 2 of the four branched irradiation fiber bundles 21a are set to be approximately the same diameter. Irradiation fiber bundle 2
The optical axis of the light receiving fiber bundle 22 is substantially parallel to the optical axis of the light receiving fiber bundle 22, and is arranged on a concentric circle with a radius R.

前記半径R及び端面からキヤツプの先端面33
aとの距離cは、第4図に示すように、照射用フ
アイバ束21aの端面21a′から放射された光線
X2が、直接視野d3を照明しない略限界距離とな
るように設定されている。即ち、照射用フアイバ
束21aから放射された光のうち、視野d3に最も
近い光線は第4図の光線X2で示されるように、
フアイバ束21aの最も受光フアイバ束に近い側
からフアイバ束の許される最大角θ3で放射された
光線である。本実施例で用いたフアイバはプラス
チツクフアイバであり、その開口角は60°であり、
したがつて許される最大角θ3は略30°である。
From the radius R and the end face to the tip face 33 of the cap.
As shown in FIG. 4, the distance c from the irradiation fiber bundle 21a to the
X2 is set to be approximately the critical distance that does not directly illuminate the field of view d3 . That is, among the lights emitted from the irradiation fiber bundle 21a, the ray closest to the field of view d3 is as shown by the ray X2 in FIG.
This is a light ray emitted from the side of the fiber bundle 21a closest to the receiving fiber bundle at the maximum angle θ 3 allowed by the fiber bundle. The fiber used in this example is a plastic fiber, and its opening angle is 60°.
Therefore, the maximum angle θ 3 allowed is approximately 30°.

したがつて、第4図から明らかなように、Rと
Cとの間に R=d3+d2+c・tan30° なる関係が成り立つように、R,Cがそれぞれ設
定されている。
Therefore, as is clear from FIG. 4, R and C are respectively set so that the following relationship holds between R and C: R=d 3 +d 2 +c·tan30°.

なお、49(第2図)は、マイクロスイツチ3
6に接続されたリード線であつて、分光測色計本
体10の電気的演算回路(図示せず)に接続され
ており、同スイツチ36がONの状態の時に前記
演算回路で演算が行なわれ測色結果が分光測色計
本体10により表示される。
Furthermore, 49 (Fig. 2) is the micro switch 3.
6 is a lead wire connected to an electrical calculation circuit (not shown) of the spectrophotometer main body 10, and when the switch 36 is in the ON state, calculations are performed in the calculation circuit. The color measurement results are displayed by the spectrophotometer main body 10.

<上記実施例の動作> 次に、上記実施例の動作を説明する。<Operation of the above embodiment> Next, the operation of the above embodiment will be explained.

円筒ケース23はフレキシブルホース27で分
光測色計本体10に接続されているので、円筒ケ
ース23を片手に握つて、自由に被測定物体Aま
で動かすことができる。従つて、被測定物体Aを
測色するには、円筒ケース23を手に持つて、第
5図に示すように、被測定物体Aの表面にプロー
ブキヤツプ30の先端の窓31を押し当てればよ
い。このとき、円筒ケース23に対して垂直とな
つているプローブキヤツプ30の先端面32を被
測定物体Aに押し当てれば、被測定物体Aは照射
用フアイバ束21a及び受光用フアイバ束22の
光軸に対して垂直となる。
Since the cylindrical case 23 is connected to the spectrophotometer main body 10 by a flexible hose 27, the cylindrical case 23 can be held in one hand and freely moved to the object A to be measured. Therefore, to measure the color of the object to be measured A, hold the cylindrical case 23 in your hand and press the window 31 at the tip of the probe cap 30 onto the surface of the object to be measured A, as shown in FIG. good. At this time, if the tip end surface 32 of the probe cap 30, which is perpendicular to the cylindrical case 23, is pressed against the object to be measured A, the object to be measured A will be moved along the optical axis of the irradiation fiber bundle 21a and the light receiving fiber bundle 22. perpendicular to.

次に操作ボタン35を押すと測色が行なわれ
る。光源11は、測色計本体の電源スイツチ(図
示せず)を投入すると常時点灯しており、標準光
源11から放射された標準光は、照射用フアイバ
束21を通つて4つに分岐された照射用フアイバ
束21a、……の端面21a′から放射される。照
射用フアイバ束21a、……から放射された光
は、第5図に示すように、プローブキヤツプ30
内面の梨地加工された散乱反射面33によつて散
乱反射され、一部は窓31へ向い被測定物体Aの
表面を照明する。また、一部は、上方へ散乱さ
れ、支持円板28の表面によつて反射される。こ
の反射光は被測定物体Aの表面又は再度散乱反射
面33へ向い、再び散乱反射される。このように
して、照射用フアイバ束21a、……からの光は
最終的に、窓31に臨んだ被測定物体Aの表面を
照明する。
Next, when the operation button 35 is pressed, color measurement is performed. The light source 11 is always on when the power switch (not shown) of the colorimeter body is turned on, and the standard light emitted from the standard light source 11 is branched into four parts through the irradiation fiber bundle 21. The light is emitted from the end faces 21a' of the irradiation fiber bundles 21a, . As shown in FIG. 5, the light emitted from the irradiation fiber bundle 21a, . . .
The light is scattered and reflected by the scattering and reflecting surface 33, which has a satin finish on the inner surface, and a part of the light is directed toward the window 31 and illuminates the surface of the object A to be measured. A portion is also scattered upward and reflected by the surface of the support disk 28. This reflected light is directed toward the surface of the object to be measured A or the scattering/reflecting surface 33, and is again scattered and reflected. In this way, the light from the irradiation fiber bundle 21a, . . . finally illuminates the surface of the object A to be measured facing the window 31.

したがつて、被測定物体Aの表面から見れば、
あらゆる方向からの光によつて照明されているこ
とになり、第6図に示した条件cの積分球1を用
いた照明と等価な照明となる。
Therefore, when viewed from the surface of the object to be measured A,
This means that it is illuminated by light from all directions, and the illumination is equivalent to the illumination using the integrating sphere 1 under condition c shown in FIG.

被測定物体Aのうち、視野d3からの反射光が受
光用レンズ44によつて受光用フアイバ束22の
端面22aに受光される。この視野d3から反射し
た受光光線は、被測定物体Aに対する法線(中心
軸O)に対する最大傾斜角θ1が略10°で、且つ、
受光光線の中心線(中心軸O)に対する最大傾斜
角θ2が略5°である。また、前記したように、視野
d3には照射用フアイバ束21aからの直接光は照
射されておらず、受光用レンズ44の受光光線に
は前記したように正反射光が含まれておらず、ま
た迷光除去用フード45によつて視野d3以外から
の反射光は含まれておらず、迷光除去用フード4
5の内壁を反射して達する光線も含まれていな
い。従つて、この受光は、第6図に示した条件c
の積分球1の窓4からの受光と等価な受光とな
る。
The reflected light from the field of view d 3 of the object to be measured A is received by the light receiving lens 44 on the end surface 22 a of the light receiving fiber bundle 22 . The received light beam reflected from this field of view d 3 has a maximum inclination angle θ 1 of approximately 10° with respect to the normal to the measured object A (central axis O), and
The maximum inclination angle θ 2 of the received light beam with respect to the center line (center axis O) is approximately 5°. Also, as mentioned above, the visual field
d 3 is not irradiated with direct light from the irradiation fiber bundle 21a, the light beam received by the light receiving lens 44 does not include specularly reflected light as described above, and the hood 45 for removing stray light does not contain any specularly reflected light. Therefore, reflected light from fields other than field d 3 is not included, and stray light removal hood 4
The light rays reflected from the inner wall of 5 are also not included. Therefore, this light reception is possible under the condition c shown in FIG.
The light reception is equivalent to the light reception from the window 4 of the integrating sphere 1.

このようにして受光用フアイバ束22の端面2
2aに受光された光は受光用フアイバ束22を通
つて分光反射率測定用光学系12に導かれて、分
光測色がなされ、操作ボタン35を押した時にそ
の測色値が出力される。
In this way, the end face 2 of the light-receiving fiber bundle 22 is
The light received by 2a is guided to the spectral reflectance measuring optical system 12 through the light receiving fiber bundle 22, where spectral colorimetry is performed, and when the operation button 35 is pressed, the colorimetric value is output.

<本発明の他の実施例> 以上本発明の一実施例を説明したが、本発明は
前記実施例に限定されず、種々の変形が可能であ
り、例えば、分岐する照射用フアイバ束21aの
数は、前記した4つに限らず、任意の数にするこ
とができる。
<Other embodiments of the present invention> Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications are possible. For example, the branching irradiation fiber bundle 21a may be The number is not limited to the four mentioned above, but can be any number.

また、前記実施例の照射と受光の関係を逆にし
てもよい。即ち、同心円上の複数の照射用フアイ
バ束21a,21a,……を受光用フアイバ束と
して用い、中央の受光用フアイバ束22を照射用
フアイバ束として用いてもよい。
Furthermore, the relationship between irradiation and light reception in the above embodiments may be reversed. That is, a plurality of concentric irradiation fiber bundles 21a, 21a, . . . may be used as a light-receiving fiber bundle, and the light-receiving fiber bundle 22 in the center may be used as an irradiation fiber bundle.

このように照射と受光の関係を逆にすれば、中
央のフアイバ束からの照射光は被測定物体A平面
の法線に対する最大傾斜角θが10°以下となり、
視野d3からの散乱反射光は支持円板28で反射さ
れ且つプローブキヤツプ30の散乱反射面33で
散乱反射されて、同心円上のフアイバ束にあらゆ
る方向の反射光として受光されるから、第7図に
示した条件dによる積分球1を用いた場合と等価
となる。
If the relationship between irradiation and light reception is reversed in this way, the irradiation light from the central fiber bundle will have a maximum inclination angle θ of 10° or less with respect to the normal to the plane of the object to be measured A.
The scattered reflected light from the field of view d 3 is reflected by the support disk 28 and scattered reflected by the scattering reflection surface 33 of the probe cap 30, and is received by the concentric fiber bundle as reflected light in all directions. This is equivalent to using the integrating sphere 1 under condition d shown in the figure.

なお、本発明のプローブは回析格子分光測色計
にもフイルターを用いた測色計にも接続して用い
ることができる。
Note that the probe of the present invention can be used by being connected to a diffraction grating spectrophotometer or a colorimeter using a filter.

<本発明の効果> 以上、説明したように本発明の光検出プローブ
は、手に持って自由に被測定物体表面に押し当て
るだけで測色できるから、従来のようにサンプル
を切り出したりすることが不要となり、測色作業
が容易となり、製品の色の管理を著しく向上でき
る。また、従来の光検出プローブのように積分球
を用いないので、光検出プローブ自体はもとよ
り、分光測色計も小型、安価となる。
<Effects of the present invention> As explained above, the photodetection probe of the present invention can measure color simply by holding it in the hand and freely pressing it against the surface of the object to be measured, so there is no need to cut out a sample as in the conventional method. This eliminates the need for color measurement, which simplifies color measurement work and significantly improves product color management. Furthermore, since an integrating sphere is not used as in conventional photodetection probes, not only the photodetection probe itself but also the spectrophotometer can be made smaller and less expensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光検出プローブを
用いた分光測色計全体の構成を示す概略図、第2
図は光検出プローブを示す平面図、第3図はAは
光検出プローブの先端部分の断面図、同図Bは同
図AにおけるB−B断面図、第4図は光検出プロ
ーブの先端部分における各構成部分の位置関係を
示す図、第5図は光線の反射を示す模式図であ
る。第6,7図は積分球を用いた従来の光検出プ
ローブを示す模式図である。 A……被測定物体、10……分光測色計本体、
11……標準光源、12……分光反射率測定用光
学系、20……被検出プローブ、21……照射用
フアイバ束、22……受光用フアイバ束、23…
…円筒ケース、27……フレキシブルホース、2
8……支持円板、30……プローブキヤツプ、3
0c……円錐部、31……窓、33……散乱反射
面、35……操作ボタン、36……マイクロスイ
ツチ、41……貫通孔、42……固定管、44…
…受光用レンズ、45……迷光除去用フード、4
6……貫通孔、47……固定管。
FIG. 1 is a schematic diagram showing the overall configuration of a spectrophotometer using a photodetection probe according to an embodiment of the present invention, and FIG.
The figure is a plan view showing the photodetection probe, Figure 3A is a sectional view of the tip of the photodetection probe, B is a sectional view taken along line B-B in figure A, and Figure 4 is the tip of the photodetection probe. FIG. 5 is a schematic diagram showing the reflection of light rays. 6 and 7 are schematic diagrams showing a conventional photodetection probe using an integrating sphere. A...Object to be measured, 10...Spectrophotometer body,
DESCRIPTION OF SYMBOLS 11... Standard light source, 12... Optical system for spectral reflectance measurement, 20... Probe to be detected, 21... Fiber bundle for irradiation, 22... Fiber bundle for light reception, 23...
...Cylindrical case, 27...Flexible hose, 2
8...Support disk, 30...Probe cap, 3
0c...Conical part, 31...Window, 33...Scattering reflection surface, 35...Operation button, 36...Micro switch, 41...Through hole, 42...Fixed tube, 44...
... Lens for light reception, 45 ... Hood for removing stray light, 4
6...Through hole, 47...Fixed pipe.

Claims (1)

【特許請求の範囲】 1 先端に軸心と同心の開口部を有し、内壁が該
開口部に向つて次第に縮径され、該内壁に散乱反
射面が形成されたプローブキヤツプと、 前記プローブキヤツプに取付けられ、前記開口
部側に反射面が形成された支持円板と、 前記支持円板に前記プローブキヤツプの軸心を
通るように固定された受光用又は照射用の第1の
フアイバ束と、 前記第1のフアイバ束と平行に、且つその軸心
の延長線が前記プローブキヤツプの内壁を通るよ
うに、配置した照射用又は受光用の第2のフアイ
バ束とを備え、 前記開口部に臨ませた被測定物からの正反射光
が前記第1又は第2のフアイバ束に入射しないよ
うに互いに離れて前記第2又は第1のフアイバ束
が配置された分光測色計の光検出プローブ。
[Scope of Claims] 1. A probe cap having an opening concentric with the axis at its tip, an inner wall whose diameter is gradually reduced toward the opening, and a scattering reflection surface formed on the inner wall; a support disk attached to the probe cap and having a reflective surface formed on the opening side; a first fiber bundle for light reception or irradiation fixed to the support disk so as to pass through the axis of the probe cap; a second fiber bundle for irradiation or light reception disposed parallel to the first fiber bundle and such that an extension of its axis passes through the inner wall of the probe cap; A light detection probe of a spectrophotometer, wherein the second or first fiber bundles are arranged apart from each other so that specularly reflected light from the object to be measured does not enter the first or second fiber bundles. .
JP28998185A 1985-12-23 1985-12-23 Photodetecting probe of spectocolorimeter Granted JPS62148819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28998185A JPS62148819A (en) 1985-12-23 1985-12-23 Photodetecting probe of spectocolorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28998185A JPS62148819A (en) 1985-12-23 1985-12-23 Photodetecting probe of spectocolorimeter

Publications (2)

Publication Number Publication Date
JPS62148819A JPS62148819A (en) 1987-07-02
JPH0511774B2 true JPH0511774B2 (en) 1993-02-16

Family

ID=17750232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28998185A Granted JPS62148819A (en) 1985-12-23 1985-12-23 Photodetecting probe of spectocolorimeter

Country Status (1)

Country Link
JP (1) JPS62148819A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63300923A (en) * 1987-05-30 1988-12-08 Minolta Camera Co Ltd Colorimeter
JP2624273B2 (en) * 1987-11-30 1997-06-25 松下電器産業株式会社 Spectrophotometer
US6369895B1 (en) * 2000-02-16 2002-04-09 Electronics For Imaging, Inc. Color measurement instrument with asymmetric tapered sample area optical enclosure
JP5224178B2 (en) * 2008-08-12 2013-07-03 株式会社松風 Dental colorimeter
JP6252700B2 (en) * 2012-03-01 2017-12-27 株式会社リコー Imaging unit, color measuring device, image forming device, color measuring system
JP6272051B2 (en) * 2014-01-29 2018-01-31 キヤノン株式会社 Optical detection apparatus and image forming apparatus including the same

Also Published As

Publication number Publication date
JPS62148819A (en) 1987-07-02

Similar Documents

Publication Publication Date Title
US5754283A (en) Color measuring device having interchangeable optical geometries
US5268749A (en) Apparatus and method for providing uniform illumination of a sample plane
US4886355A (en) Combined gloss and color measuring instrument
EP0964244B1 (en) Multi-channel integrating sphere
US4022534A (en) Reflectometer optical system
US5369481A (en) Portable spectrophotometer
US3806256A (en) Colorimeters
ES2203658T3 (en) PROCEDURE AND DEVICE FOR MEASUREMENTS OF AND REMISSION AND SPECTRAL TRANSMISSION.
US4900923A (en) Reflectance measuring apparatus including a cylinder-shaped light conducting device between the measuring aperture and the specimen
US4659229A (en) Readhead with reduced height sensitivity
US5584557A (en) High efficiency compact illumination system
JPH0511774B2 (en)
JPS61292043A (en) Photodetecting probe for spectocolorimeter
JPH02114151A (en) Refractometer having aperture distribution depending upon refractive index
JP2005062192A (en) Method for obtaining angle spectrum, gonio spectrophotometer and method for inspecting product during machining
CN111707370A (en) Large-diameter light-splitting color photometer and color measuring method
CN215727622U (en) Fixing device suitable for portable spectrum detection device of multipurpose
GB2178869A (en) Optical switch having rotatable reflector
US20080144012A1 (en) Apparatus, system and method for optical spectroscopic measurements
JP3871415B2 (en) Spectral transmittance measuring device
JPH10137194A (en) Surface color measuring apparatus, luster measuring apparatus and spectral colorimetric apparatus
JPS6212994Y2 (en)
JPH05273042A (en) State measuring apparatus for space reflected light
US6172751B1 (en) High efficiency reflectometry illuminator and collector system
JPH0979906A (en) Spectrocolorimeter