JPH06320137A - Treatment of burned ash of shredder dust - Google Patents

Treatment of burned ash of shredder dust

Info

Publication number
JPH06320137A
JPH06320137A JP11192193A JP11192193A JPH06320137A JP H06320137 A JPH06320137 A JP H06320137A JP 11192193 A JP11192193 A JP 11192193A JP 11192193 A JP11192193 A JP 11192193A JP H06320137 A JPH06320137 A JP H06320137A
Authority
JP
Japan
Prior art keywords
matter
shredder dust
ash
crushing
incineration ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11192193A
Other languages
Japanese (ja)
Inventor
Katayuki Takahashi
堅之 高橋
Yuichi Komatsubara
裕一 小松原
Ariyoshi Saito
有可 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP11192193A priority Critical patent/JPH06320137A/en
Publication of JPH06320137A publication Critical patent/JPH06320137A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Electrostatic Separation (AREA)

Abstract

PURPOSE:To reuse valuable metals in furnace bottom ash resulting from shredder dust as resources and to make furnace bottom ash harmless. CONSTITUTION:The furnace bottom ash 1 separated as small pieces in a separation process 2 is separated into magnetic matter 2 and non-magnetic matter 5 in a magnetic separation process 3 and the non-magnetic matter 5 is classified into oversize matter 7 and undersize matter 8 in a classifying process 9. The undersize matter 8 is further applied to a crushing process 9 and, after the glassy substance and molten matter in the undersize matter 8 are ground, the ground matter is classified into coarse particles 11 containing high purity copper refuse, fine particles 12 of a mixture of copper wires, granular glassy matter and molten matter and fine particles 13 containing glassy matter and molten matter in a classifying process 10. The fine particles 12 are dried and classified into conductive matter 14 and non-conductive matter 16 not almost containing a metal in an electrostatic sorting process 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属を含む廃棄物をシ
ュレッダー装置により破砕してなるシュレッダーダスト
を焼却して得られたシュレッダーダスト焼却灰を再資源
化するための方法に係り、特に、前記シュレッダーダス
ト焼却灰からの有価金属の回収を目的としたシュレッダ
ーダスト焼却灰の乾式処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recycling shredder dust incineration ash obtained by incinerating shredder dust obtained by crushing waste containing metal with a shredder device, and more particularly, The present invention relates to a dry treatment method of shredder dust incineration ash for the purpose of recovering valuable metals from the shredder dust incineration ash.

【0002】[0002]

【従来の技術】廃自動車や大型の廃家電製品等、金属を
含む廃棄物を処理する場合、これら廃棄物を解体して直
接再使用可能な部品を取り外した後、直接再使用不能な
部品をシュレッダー装置により破砕してシュレッダーダ
ストとする方法がある。このシュレッダーダストは、プ
ラスチック、ゴム、繊維等を始めとする有機物を主体と
し、これら有機物に、鉄片、鉄線、銅片、銅線を始めと
する金属や、ガラス、土砂等が絡まった状態で混在した
もので、現在ではその多くがそのまま埋立処分されてい
る。
2. Description of the Related Art When disposing of metal-containing waste such as abandoned automobiles and large-scaled home electric appliances, the waste is disassembled and the directly reusable parts are removed. There is a method of crushing with a shredder device to produce shredder dust. This shredder dust is mainly composed of plastics, rubber, fibers and other organic substances, and these organic substances are mixed with iron pieces, iron wires, copper pieces, copper wires and other metals, glass, earth and sand, etc. Most of them are now landfilled.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、シュレ
ッダーダストの埋立処分に対しては、埋立地の不足とそ
れに伴う埋立費用の高騰化や、シュレッダーダストから
溶出する油分等による土壌汚染等の問題が生じている。
そこで、シュレッダーダストの減容化、無害化が検討さ
れ、その一つとして、シュレッダーダストを焼却炉を用
いて焼却して減容化を図るとともに、シュレッダーダス
ト中における有機物の燃焼に伴い発生する熱を熱源とし
て発電等を行う方法がある。
However, with respect to the landfill disposal of shredder dust, there are problems such as a shortage of landfill sites and a corresponding rise in landfill costs, and soil pollution due to oil, etc. eluted from the shredder dust. ing.
Therefore, volume reduction and detoxification of the shredder dust are considered, and one of them is to incinerate the shredder dust by using an incinerator to reduce the volume, and heat generated by the combustion of organic matter in the shredder dust. There is a method of generating electricity using the heat source as a heat source.

【0004】ところで、シュレッダーダストの焼却によ
り得られたシュレッダーダスト焼却灰(以下、焼却灰と
略す。)は、焼却炉底に残留する炉底灰と、排煙ととも
に大気中に排出される飛灰とに大別されるが、このう
ち、炉底灰には回収可能な鉄および銅がそれぞれ20〜
30%、および5〜15%程度含有され、しかも、これ
らの金属は埋め立てに伴い溶出する可能性がある。従っ
て、炉底灰をそのまま埋め立てることは、省資源および
環境保全の観点から決して望ましいことではない。
By the way, shredder dust incineration ash obtained by incineration of shredder dust (hereinafter abbreviated as incineration ash) is the bottom ash remaining on the bottom of the incinerator, and fly ash discharged into the atmosphere together with smoke. Of these, the bottom ash contains 20 to 20 iron and copper, respectively.
It is contained in about 30% and about 5 to 15%, and these metals may be eluted during landfill. Therefore, landfilling the bottom ash as it is is never desirable from the viewpoint of resource saving and environmental conservation.

【0005】そこで、これらの金属を炉底灰から分離回
収する方法も焼却方法と併せて研究され、現在では、例
えば金属と非金属との比重差を利用した重液選鉱による
湿式比重選鉱処理等が考案されている。しかしながら、
湿式比重選鉱処理では水を使用するため、選鉱にあたり
固液分離および脱水の各工程が必要となり、かつ選鉱後
の廃水処理も問題となる。また、選鉱に用いられる重液
および用水は回収、循環使用されるが、これらは炉底灰
に由来する微粉により汚染されるため、その回収、循環
使用に際してはシックナー等の大型設備が必要となる。
従って、コスト的にも問題がある。
Therefore, a method for separating and recovering these metals from the bottom ash has also been studied together with an incineration method, and at present, for example, wet specific gravity ore treatment by heavy liquid beneficiation utilizing the difference in specific gravity between metal and nonmetal. Has been devised. However,
Since water is used in the wet gravity separation process, each step of solid-liquid separation and dehydration is necessary for the separation process, and the waste water treatment after the separation process is also a problem. In addition, heavy liquid and water used for beneficiation are collected and circulated and used, but since these are contaminated by fine powder derived from bottom ash, large facilities such as thickeners are required for their collection and circulation. .
Therefore, there is a cost problem.

【0006】更に、炉底灰に含まれる金属には鉄線、銅
線等が相当程度混入しているが、これらは一般にシュレ
ッディング時に絡み合って塊状をなし、かつその塊中に
はしばしば非金属が抱き込まれているため、これら塊状
をなす鉄と非鉄金属または金属と非金属との分離は、前
記湿式比重選鉱処理を始めとする従来の分離方法では困
難となっている。
Further, the metal contained in the bottom ash contains a considerable amount of iron wire, copper wire, etc., which are generally entangled during shredding to form a lump, and a nonmetal is often contained in the lump. Because of being held, separation of these massive iron and non-ferrous metals or metal and non-metals is difficult with conventional separation methods such as the wet gravity separation.

【0007】本発明は上記事情に鑑みてなされたもの
で、焼却灰のうち、主に炉底灰に含有される鉄、銅等の
有価金属を脱水、廃水工程を必要としない乾式処理によ
り分離、回収してその再資源化を図るとともに、焼却灰
を無害化することを目的としている。
The present invention has been made in view of the above circumstances. Of the incineration ash, valuable metals such as iron and copper mainly contained in the bottom ash are dehydrated and separated by a dry process that does not require a wastewater process. The purpose is to make the incinerated ash harmless as well as to collect and recycle it.

【0008】[0008]

【課題を解決するための手段】本発明は、金属を含む廃
棄物をシュレッダー装置により粉砕してなるシュレッダ
ーダストを焼却して得られた焼却灰の処理方法であっ
て、前記焼却灰に所定の磁力を与え、着磁物と非着磁物
に分別する磁選工程と、前記非着磁物を優先粉砕する圧
壊工程と、この圧壊工程により得られた圧壊物を複数の
画分に分級する分級工程とを有するものである。
The present invention relates to a method for treating incinerated ash obtained by incinerating shredder dust obtained by crushing waste containing metal with a shredder device, wherein the incinerated ash has a predetermined size. A magnetic separation step of applying a magnetic force to separate into magnetized and non-magnetized material, a crushing step of preferentially crushing the non-magnetized material, and a classification for classifying the crushed material obtained by this crushing step into a plurality of fractions. And a process.

【0009】ここで、前記磁選工程の前に、前記焼却灰
中にて塊状となった線状金属類と粒状物とを解離させる
解離工程を設けてもよい。また、前記磁選工程と前記圧
壊工程との間に、前記非着磁物を複数の画分に分級する
第2の分級工程を設けたり、前記分級工程の後に、前記
複数の画分のうち少なくとも1つの画分について静電選
別を行う静電選別工程を設けることも可能である。
Here, before the magnetic separation step, a dissociation step of dissociating the granular metal and the lumpy linear metals in the incinerated ash may be provided. Further, between the magnetic separation step and the crushing step, a second classification step for classifying the non-magnetized material into a plurality of fractions may be provided, or at least one of the plurality of fractions may be provided after the classification step. It is also possible to provide an electrostatic selection step of performing electrostatic selection on one fraction.

【0010】[0010]

【作用】本発明に係る焼却灰の処理方法においては、ま
ず磁選工程にて前記焼却灰から着磁物を回収し、次に圧
壊工程にて、容易に粉砕されるガラス類および溶融物の
粉砕特性と、粉砕されない金属類の粉砕特性との差を利
用して、前記磁選工程における非着磁物から粒度の異る
圧壊物を形成する。更に、分級工程にて、前記ガラス類
および溶融物と前記金属類とを粒度差により分離回収す
る。
In the method for treating incinerated ash according to the present invention, the magnetized material is first recovered from the incinerated ash in the magnetic separation step, and then the easily crushed glass and melt are crushed in the crushing step. By utilizing the difference between the characteristics and the crushing characteristics of non-crushed metals, a crushed material having a different particle size is formed from the non-magnetized material in the magnetic separation step. Further, in the classification step, the glass and the melt and the metals are separated and recovered due to the difference in particle size.

【0011】また、前記磁選工程の前に解離工程を設け
た場合には、前記磁選工程における着磁物の回収が容易
となり、金属の回収率が高められる。更に、前記磁選工
程と前記圧壊工程との間に第2の分級工程を設けること
により、圧壊工程に供するには不適当である粗大な金属
類が予め除去、回収される。更にまた、前記分級工程の
後に、前記複数の画分のうち少なくとも1つの画分を静
電選別する静電選別工程を設けることにより、前記分級
工程で非金属と分離できなかった微細な金属片が回収さ
れる。
Further, when the dissociation step is provided before the magnetic separation step, the magnetized matter can be easily recovered in the magnetic separation step, and the metal recovery rate can be increased. Further, by providing the second classification step between the magnetic separation step and the crushing step, coarse metals that are unsuitable for the crushing step are removed and collected in advance. Furthermore, by providing an electrostatic sorting step of electrostatically sorting at least one of the plurality of fractions after the classifying step, fine metal pieces that could not be separated from non-metals in the classifying step. Is recovered.

【0012】[0012]

【実施例】以下、図面に基づき、本発明の実施例につい
て、廃自動車をシュレッダー装置により粉砕し、生成さ
れたシュレッダーダストを流動床焼却炉にて焼却して得
た炉底灰を処理する場合を例として、更に詳しく説明す
る。
Examples In the following, based on the drawings, in the case of treating the bottom ash obtained by crushing an abandoned automobile with a shredder device and incinerating the produced shredder dust in a fluidized bed incinerator according to an example of the present invention Will be taken as an example for further explanation.

【0013】図1は、本発明に係る焼却灰の処理方法の
一例をフローチャートに示したものである。シュレッダ
ーダストを流動床炉にて焼却すると、炉底には炉底灰1
が残留する。この炉底灰1は比較的粒度の整った顆粒状
をなす非金属類と、板状ないしは線状をなす金属類とか
ら構成され、かつこれらの一部は絡み合って塊状となっ
ている。また、炉底灰1の大きさは平均して約5mmであ
る。なお、シュレッダーダストの焼却に伴い発生する熱
は、発電等に有効利用される。
FIG. 1 is a flow chart showing an example of a method for treating incinerated ash according to the present invention. When shredder dust is incinerated in a fluidized bed furnace, bottom ash 1
Remains. The hearth ash 1 is composed of non-metals in the form of granules having a relatively uniform grain size and metals in the form of plates or wires, and some of them are intertwined into a lump. The size of the bottom ash 1 is about 5 mm on average. The heat generated by the incineration of shredder dust is effectively used for power generation and the like.

【0014】この炉底灰1は、解離工程2において振動
スクリーン上に載置され、この振動スクリーンに振動を
与えることにより、前記塊状をなす部分が前記小片へと
解離される。そして、磁選工程3において、所定磁力の
磁石を用いて着磁物2を回収する。本実施例の場合、磁
選工程3には磁力400ガウスの磁石が用いられる。ま
た、着磁物2としては主に鉄片が回収される。
The furnace bottom ash 1 is placed on the vibrating screen in the dissociation step 2 and the vibrating screen is vibrated to dissociate the lumpy portion into the small pieces. Then, in the magnetic separation step 3, the magnetized object 2 is recovered using a magnet having a predetermined magnetic force. In the case of the present embodiment, a magnet with a magnetic force of 400 gauss is used in the magnetic separation step 3. Iron pieces are mainly collected as the magnetized material 2.

【0015】磁選工程3における非着磁物5は、分級工
程(第2の分級工程)6において、振動スクリーンを通
過しない網上物7と、振動スクリーンを通過する網下物
8とに分級される。本実施例の場合、網上物7としては
主に粗大な銅片が回収される。また、前記振動スクリー
ンには網径5mmの網目スクリーンが用いられる。
In the classification step (second classification step) 6, the non-magnetized material 5 in the magnetic separation step 3 is classified into a net material 7 that does not pass through the vibrating screen and a net material 8 that passes through the vibrating screen. It In the case of this embodiment, coarse copper pieces are mainly recovered as the net object 7. A mesh screen with a mesh diameter of 5 mm is used as the vibrating screen.

【0016】分級工程6における網下物8は、ロールク
ラッシャーにより連続的に圧壊される。これが圧壊工程
9である。圧壊工程9の結果、網下物8中のガラス質お
よび溶融物はその粒径が約1mm未満となるまで粉砕され
る一方、銅を始めとする非着磁金属は粉砕されずに原形
を留める。
The netting material 8 in the classification step 6 is continuously crushed by a roll crusher. This is the crushing step 9. As a result of the crushing step 9, the vitreous material and the melted material in the mesh material 8 are crushed until the particle diameter becomes less than about 1 mm, while non-magnetized metals such as copper retain their original shape without being crushed. .

【0017】圧壊工程9終了後の試料は2段振動スクリ
ーンにかけられ、粒径別に分級される。これが分級工程
10である。本実施例の場合、上記の通り、網下物8中
のガラス質および溶融物と金属とは粒径1mmを境界とし
て分離可能であるため、本実施例では、本工程にて、粒
径0.15mmを境として線状銅線類を含まない微粉ガラ
ス質および融解物を除去している。すなわち、前記試料
は粒径1mm以上の粗粒11と、粒径0.15mm以上1mm
未満の細粒12と、粒径0.15mm未満の微粒との分級
される。その結果、粗粒11には高純度の銅屑が回収さ
れ、細粒12には銅線類と粒状ガラス質ならびに融解物
との混合物が回収される。また、微粒13にはガラス質
および溶融物等が回収される。
The sample after the crushing step 9 is applied to a two-stage vibrating screen and classified by particle size. This is the classification step 10. In the case of the present embodiment, as described above, the vitreous material and the melt in the net cloth 8 can be separated from the metal with a grain size of 1 mm as a boundary. A fine glassy substance and a melt which do not contain linear copper wires are removed at a boundary of 0.15 mm. That is, the sample has coarse particles 11 with a particle size of 1 mm or more and particle size of 0.15 mm or more and 1 mm
And fine particles 12 having a particle diameter of less than 0.15 mm are classified. As a result, high-purity copper scrap is recovered in the coarse particles 11, and a mixture of copper wires, granular glass and melt is recovered in the fine particles 12. In addition, vitreous substances, melts, and the like are collected in the fine particles 13.

【0018】細粒12は乾燥された後、更に静電選別機
に投入され、静電選別機内において導電物14のみが選
別回収される。これが静電選別工程15である。本実施
例の場合、静電選別は温度27℃以下、湿度60%の条
件下で2回行い、1回目(粗選)は静電選別機の電圧を
3kV、ドラム回転速度を750r.p.m.とし、2回目(精
選)は静電選別機の電圧を2.5kV、ドラム回転速度を
900r.p.m.とした。静電選別工程15の結果、細粒1
2は、導電物14と、金属を殆ど含まない非導電物16
とに分別される。
After the fine particles 12 are dried, they are further put into an electrostatic sorter, and only the conductive material 14 is sorted and collected in the electrostatic sorter. This is the electrostatic selection step 15. In the case of the present embodiment, electrostatic screening is performed twice under the conditions of a temperature of 27 ° C. or less and a humidity of 60%, and the first time (coarse selection) is performed by setting the electrostatic screening machine voltage at 3 kV and the drum rotation speed at 750 rpm. At the second time (selection), the voltage of the electrostatic separator was set to 2.5 kV and the drum rotation speed was set to 900 rpm. As a result of the electrostatic selection step 15, fine particles 1
2 is a conductive material 14 and a non-conductive material 16 containing almost no metal.
Be sorted into

【0019】そして、以上の解離−磁選−分級−圧壊−
分級−静電選別の各工程を順次行うことにより、炉底灰
1から、鉄およびその合金、銅等の有価金属を高純度で
分別回収することができる。しかも、微粒13には金属
が殆ど含まれないため、これら微粒13を埋め立てに用
いた場合でも、周囲の土壌が汚染されることはない。す
なわち、本発明の焼却灰処理方法を用いることにより、
シュレッダーダストの減容化に加え、焼却灰中に含まれ
る有価金属の再資源化および焼却灰の無害化が可能とな
る。更に、脱水、廃水工程を必要としないため二次公害
の発生もなく、また設備投資や運転等に要するコストも
少なくて済む。
Then, the above dissociation-magnetic separation-classification-crushing-
By sequentially performing each of the classification-electrostatic sorting steps, valuable metals such as iron and its alloys and copper can be separated and collected with high purity from the bottom ash 1. Moreover, since the fine particles 13 contain almost no metal, the surrounding soil is not contaminated even when these fine particles 13 are used for landfill. That is, by using the incineration ash treatment method of the present invention,
In addition to reducing the volume of shredder dust, it is possible to recycle valuable metals contained in the incinerated ash and render the incinerated ash harmless. Furthermore, since no dehydration and wastewater processes are required, secondary pollution does not occur, and the cost required for capital investment and operation can be reduced.

【0020】しかも、炉底灰1内に絡み合って塊状をな
す部分がある場合でも、これを解離して鉄と非鉄金属ま
たは金属と非金属とに分離可能であるため、金属の回収
効率が高められるという効果もある。なお、上記実施例
では、磁選工程3における着磁操作を1回としたが、こ
の着磁操作は必要に応じ2回以上に分けて行ってもよ
い。
Moreover, even if there are entangled and lumpy parts in the bottom ash 1, it is possible to dissociate them and separate them into iron and non-ferrous metal or metal and non-metal, so that metal recovery efficiency is improved. There is also the effect of being able to be. In the above embodiment, the magnetizing operation in the magnetic separation step 3 was performed once, but this magnetizing operation may be performed twice or more if necessary.

【0021】また、上記の各実施例では焼却灰としてい
ずれも廃自動車由来のシュレッダーダストを流動床焼却
炉にて焼却したものを用いたが、これ以外にも、例えば
冷蔵庫等、金属を含む廃棄物の焼却灰であれば、本発明
にて処理可能であることはいうまでもない。
Further, in each of the above-mentioned examples, as the incineration ash, shredder dust derived from abandoned automobiles is incinerated in a fluidized bed incinerator. It goes without saying that incineration ash of the product can be treated by the present invention.

【0022】[0022]

【実験例】以下に実験例を示し、本発明の効果について
説明する。廃自動車由来のシュレダーダストを流動床炉
型焼却発電プラントにて減容化し、得られた炉底灰のう
ち炉底灰を回収して有価金属の存在状況調査、金属選別
試験を行ったところ、炉底灰の主成分は、鉄20〜30
%、銅5〜15%、ガラスおよび溶融物等からなる非金
属が約60%であった。また、その他に若干の鉛、亜
鉛、アルミニウムが含まれていた。
[Experimental Example] An experimental example is shown below to explain the effect of the present invention. The volume of shredder dust derived from abandoned automobiles was reduced in a fluidized bed furnace-type incinerator power plant, and the bottom ash of the obtained bottom ash was recovered and the presence of valuable metals was investigated and a metal selection test was conducted. Main component of hearth ash is iron 20-30
%, Copper 5 to 15%, and about 60% of nonmetals such as glass and melt. In addition, some lead, zinc, and aluminum were contained.

【0023】そこで、今回は、炉底灰中の鉄と銅とをそ
れぞれ非金属から分離回収することを目的として以下の
操作を行った。まず、炉底灰を振動スクリーン(1段
目)を用いて解離後、磁力400ガウスの磁石で磁選を
行って鉄屑などの着磁物を回収した。更に、回収後の非
着磁物を編目径5mmの振動スクリーン(2段目)により
分級し、板状、コイル状の金属類を網上に回収した。
Therefore, this time, the following operations were performed for the purpose of separating and recovering iron and copper in the bottom ash from non-metals. First, the bottom ash was dissociated using a vibrating screen (first stage), and then magnetic separation was performed with a magnet having a magnetic force of 400 gauss to recover magnetized substances such as iron scraps. Further, the non-magnetized material after collection was classified by a vibrating screen (second step) having a stitch diameter of 5 mm, and plate-like and coil-like metals were collected on a net.

【0024】また、網下に落下した画分はロールクラッ
シャーにて圧壊し、非金属を完全に粉末化させた後、更
に振動スクリーン(三段目)により分級し、粒径1mm以
上の粗粒、同0.15mm以上〜1mm以下の細粒、および
同0.15mm未満の微粒の3画分を得た。ここで、粗粒
および微粒にはそれぞれ銅線類および非金属が回収され
ていることが認められた。
Further, the fraction dropped under the net is crushed by a roll crusher to completely powder the non-metal, and then classified by a vibrating screen (third stage) to obtain coarse particles having a particle size of 1 mm or more. , 0.15 mm or more and 1 mm or less, and fine particles less than 0.15 mm were obtained. Here, it was confirmed that copper wires and non-metals were recovered in the coarse particles and the fine particles, respectively.

【0025】一方、細粒には多量のガラス粉末と細かい
金属線等の混合物が認められたため、この細かい金属線
を回収するため静電選別を行った。この場合、選別条件
としては電圧2.5〜3.0kV、ドラム回転速度750
〜900rpmとし、高電圧、低ドラム回転速度にて第
1回目の選別を行った後、低電圧、高ドラム回転速度で
第2回目の選別を行った。その結果、金属線とガラス粉
末とが極めて高い分離能で分離されていることが確認さ
れた。
On the other hand, since a large amount of a mixture of glass powder and fine metal wires was found in the fine particles, electrostatic screening was performed to recover the fine metal wires. In this case, the selection conditions are a voltage of 2.5 to 3.0 kV and a drum rotation speed of 750.
The first selection was performed at a high voltage and a low drum rotation speed at ˜900 rpm, and then the second selection was performed at a low voltage and a high drum rotation speed. As a result, it was confirmed that the metal wire and the glass powder were separated with extremely high separation ability.

【0026】ここで、上記各画分を、鉄含有画分(40
0G磁選における着磁物)、銅含有画分(2段目の振動
スクリーンにおける網上物+粗粒+静電選別における導
電物)、および非金属画分(微粒+静電選別における非
導電物)との3つに大別し、上記各画分の主成分を分析
し、そのマテリアルバランスを算出したところ、表1に
示すような結果が得られた。
Here, each of the above-mentioned fractions is replaced with an iron-containing fraction (40
Magnetized matter in 0G magnetic separation), copper-containing fraction (mesh on the second stage vibrating screen + coarse particles + conductive material in electrostatic sorting), and non-metal fraction (fine particles + non-conductive material in electrostatic sorting) ) And the main components of each of the above fractions were analyzed and the material balance thereof was calculated. The results shown in Table 1 were obtained.

【0027】[0027]

【表1】 注:表中、「他金属」とは、亜鉛、鉛、アルミニウムの
混合物を示す。
[Table 1] Note: In the table, "other metal" refers to a mixture of zinc, lead and aluminum.

【0028】表1の結果から、上記方法により、炉底灰
中の鉄と銅とがそれぞれ非金属から分離回収されている
ことは明かである。また、回収した鉄の純度は82%、
回収率は87%で、回収した銅の純度は43%、回収率
は90%であった。
From the results shown in Table 1, it is clear that iron and copper in the bottom ash were separated and recovered from nonmetals by the above method. The purity of the recovered iron is 82%,
The recovery rate was 87%, the purity of the recovered copper was 43%, and the recovery rate was 90%.

【0029】[0029]

【発明の効果】以上説明した通り、本発明のシュレッダ
ーダスト焼却灰の処理方法を用いることにより、シュレ
ッダーダストの減容化に加え、焼却灰のうち、特に炉底
灰に含まれる有価金属が高効率で再資源化され、かつ前
記炉底灰が無害化されるという優れた効果を奏すること
ができる。また、本発明のシュレッダーダスト焼却灰の
処理方法による二次公害の発生もない。
As described above, by using the shredder dust incineration ash treatment method of the present invention, in addition to reducing the volume of the shredder dust, valuable metal contained in the incinerator ash, especially in the bottom ash, is high. It is possible to achieve the excellent effects of being efficiently recycled and detoxifying the bottom ash. Further, no secondary pollution occurs due to the method for treating shredder dust incinerated ash of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る焼却灰の処理方法の一例を示すフ
ローチャートである。
FIG. 1 is a flowchart showing an example of a method for treating incinerated ash according to the present invention.

【符号の説明】[Explanation of symbols]

1 炉底灰 2 解離工程 3 磁選工程 4 着磁物 5 非着磁物 6 分級工程 7 網上物 8 網下物 9 圧壊工程 10 分級工程 11 粗粒 12 細粒 13 微粒 14 導電物 15 静電選別工程 16 非導電物 1 Furnace bottom ash 2 Dissociation process 3 Magnetic separation process 4 Magnetized product 5 Non-magnetized product 6 Classification process 7 Netting product 8 Netting product 9 Crushing process 10 Classification process 11 Coarse particles 12 Fine particles 13 Fine particles 14 Conductive material 15 Electrostatic Sorting process 16 Non-conductive material

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属を含む廃棄物をシュレッダー装置に
より粉砕してなるシュレッダーダストを流動床式焼却炉
を用いて焼却して得られたシュレッダーダスト焼却灰
(炉底灰)の乾式処理方法であって、 前記シュレッダーダスト焼却灰に所定の磁力を与え、前
記画分を着磁物と非着磁物に分別する磁選工程と、前記
非着磁物を圧壊し、非金属類を優先粉砕する圧壊工程
と、その結果得られた圧壊物を複数の画分に分級する分
級工程とを有することを特徴とするシュレッダーダスト
焼却灰の処理方法。
1. A dry treatment method of shredder dust incineration ash (furnace bottom ash) obtained by incinerating shredder dust obtained by pulverizing waste containing metal with a shredder device using a fluidized bed incinerator. Then, a predetermined magnetic force is applied to the shredder dust incineration ash to separate the fraction into a magnetized material and a non-magnetized material, and a crushing method for crushing the non-magnetized material and preferentially crushing non-metals. A method for treating shredder dust incineration ash, comprising a step and a step of classifying the resulting crushed material into a plurality of fractions.
【請求項2】 前記磁選工程における着磁操作が複数回
に分けて行われることを特徴とする請求項1記載のシュ
レッダーダスト焼却灰の処理方法。
2. The method for treating shredder dust incineration ash according to claim 1, wherein the magnetizing operation in the magnetic separation step is performed a plurality of times.
【請求項3】 前記磁選工程の前に、前記シュレッダー
ダスト焼却灰中にて塊状となった線状金属類と粒状物と
を解離させる解離工程が設けられていることを特徴とす
る請求項1または2記載のシュレッダーダスト焼却灰の
処理方法。
3. Before the magnetic separation step, a dissociation step of dissociating the granular linear metal and the granular material in the shredder dust incinerated ash is provided. Or the method for treating shredder dust incineration ash according to 2.
【請求項4】 前記磁選工程と前記圧壊工程との間に、
前記非着磁物を複数の画分に分級する第2の分級工程が
設けられていることを特徴とする請求項1,2または3
記載のシュレッダーダスト焼却灰の処理方法。
4. Between the magnetic separation step and the crushing step,
4. A second classification step for classifying the non-magnetized material into a plurality of fractions is provided.
Method for treating shredder dust incineration ash described.
【請求項5】 前記分級工程の後に、前記複数の画分の
うち少なくとも1つの画分について静電選別を行う静電
選別工程が設けられていることを特徴とする請求項1,
2,3または4記載のシュレッダーダスト焼却灰の処理
方法。
5. The electrostatic selection step of performing electrostatic selection on at least one of the plurality of fractions is provided after the classification step.
The method for treating shredder dust incineration ash according to 2, 3, or 4.
JP11192193A 1993-05-13 1993-05-13 Treatment of burned ash of shredder dust Withdrawn JPH06320137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11192193A JPH06320137A (en) 1993-05-13 1993-05-13 Treatment of burned ash of shredder dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11192193A JPH06320137A (en) 1993-05-13 1993-05-13 Treatment of burned ash of shredder dust

Publications (1)

Publication Number Publication Date
JPH06320137A true JPH06320137A (en) 1994-11-22

Family

ID=14573459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11192193A Withdrawn JPH06320137A (en) 1993-05-13 1993-05-13 Treatment of burned ash of shredder dust

Country Status (1)

Country Link
JP (1) JPH06320137A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168685A (en) * 1994-12-19 1996-07-02 Toshiba Corp Crushing and sorting device and method
JPH08290147A (en) * 1995-02-22 1996-11-05 Mitsubishi Materials Corp Treatment of chlorine-containing plastic scrap
JPH1024282A (en) * 1996-07-11 1998-01-27 Naoki Shigetani Method for recovering fine-grain nonferrous metal or the like contained in waste incineration ash and shredder dust
JP2000033340A (en) * 1998-07-16 2000-02-02 Toshiba Corp Method for separating and recovering different kinds of materials
JP2000033287A (en) * 1998-07-21 2000-02-02 Takuma Co Ltd Separation of stainless steel and apparatus therefor
JP2001232341A (en) * 2000-02-24 2001-08-28 Nippon Steel Corp Method for recovering nonferrous metal resources contained in waste material
JP2011094208A (en) * 2009-10-30 2011-05-12 Jfe Steel Corp Method for recovering dust in scrap shredder facility
CN103433140A (en) * 2013-08-26 2013-12-11 攀钢集团矿业有限公司 Recycling process of coarse ilmenite
CN105195313A (en) * 2015-08-24 2015-12-30 同济大学 Method for recycling metal and combustibles from domestic waste incineration slag
JP2017140555A (en) * 2016-02-08 2017-08-17 株式会社エコネコル Method and apparatus for recovering noble metal from incineration ash
JP2019055407A (en) * 2019-01-08 2019-04-11 株式会社エコネコル Method and device for recovery of noble metal from burned ash
JP2020037068A (en) * 2018-09-03 2020-03-12 Jx金属株式会社 Processing method of electronic and electrical equipment component scraps

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168685A (en) * 1994-12-19 1996-07-02 Toshiba Corp Crushing and sorting device and method
JPH08290147A (en) * 1995-02-22 1996-11-05 Mitsubishi Materials Corp Treatment of chlorine-containing plastic scrap
JPH1024282A (en) * 1996-07-11 1998-01-27 Naoki Shigetani Method for recovering fine-grain nonferrous metal or the like contained in waste incineration ash and shredder dust
JP2000033340A (en) * 1998-07-16 2000-02-02 Toshiba Corp Method for separating and recovering different kinds of materials
JP2000033287A (en) * 1998-07-21 2000-02-02 Takuma Co Ltd Separation of stainless steel and apparatus therefor
JP2001232341A (en) * 2000-02-24 2001-08-28 Nippon Steel Corp Method for recovering nonferrous metal resources contained in waste material
JP2011094208A (en) * 2009-10-30 2011-05-12 Jfe Steel Corp Method for recovering dust in scrap shredder facility
CN103433140A (en) * 2013-08-26 2013-12-11 攀钢集团矿业有限公司 Recycling process of coarse ilmenite
CN105195313A (en) * 2015-08-24 2015-12-30 同济大学 Method for recycling metal and combustibles from domestic waste incineration slag
JP2017140555A (en) * 2016-02-08 2017-08-17 株式会社エコネコル Method and apparatus for recovering noble metal from incineration ash
JP2020037068A (en) * 2018-09-03 2020-03-12 Jx金属株式会社 Processing method of electronic and electrical equipment component scraps
JP2019055407A (en) * 2019-01-08 2019-04-11 株式会社エコネコル Method and device for recovery of noble metal from burned ash

Similar Documents

Publication Publication Date Title
Holm et al. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany
US9539581B2 (en) Method for recycling ash
JP4823175B2 (en) Incineration ash treatment system
JP3617767B2 (en) Method and apparatus for recovering metal from solid waste
KR920703206A (en) Method and apparatus for waste recovery
JP2017516656A (en) System and method for recovering metals from waste logistics
JP2002059082A (en) Method and apparatus for producing recyclable plastic
JPH06320137A (en) Treatment of burned ash of shredder dust
Menad Physical separation processes in waste electrical and electronic equipment recycling
JP3664586B2 (en) Method and apparatus for metal recovery from solid waste
JP2000301128A (en) Method and apparatus for recycling incineration ash of fluidized bed incinerator and incombustible material residue at bottom of gasification furnace of gasifying/ melting furnace
JP2020069406A (en) Processing device and processing method of metal-containing waste
JP2001046975A (en) Treatment of composite waste and treating device
JP2881393B2 (en) How to treat shredder dust incineration ash
Sullivan et al. Economics of recycling metals and minerals from urban refuse
JP2013138975A (en) Incineration ash treatment system
JPH1024282A (en) Method for recovering fine-grain nonferrous metal or the like contained in waste incineration ash and shredder dust
JPH0810743A (en) Treatment of waste and equipment therefor
JP2020059003A (en) Processing apparatus and processing method of metal-containing waste
JP7406407B2 (en) Manufacturing method of chromium-reduced cement raw material
Veasey An overview of metals recycling by physical separation methods
JPH08238472A (en) Metal grinding and classifying method and apparatus
JP2020093184A (en) Processing method and processing equipment for metal-containing waste
JP7101637B2 (en) Combustible waste treatment equipment and treatment method
JP2659319B2 (en) Method and apparatus for recycling waste incineration residue

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801