JPH06318731A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH06318731A
JPH06318731A JP22177293A JP22177293A JPH06318731A JP H06318731 A JPH06318731 A JP H06318731A JP 22177293 A JP22177293 A JP 22177293A JP 22177293 A JP22177293 A JP 22177293A JP H06318731 A JPH06318731 A JP H06318731A
Authority
JP
Japan
Prior art keywords
groove
light emitting
conductivity type
light
type layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22177293A
Other languages
Japanese (ja)
Inventor
Tetsuya Okamoto
哲也 岡本
Yasuhiro Wada
安弘 和田
Masahiko Kimoto
匡彦 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP22177293A priority Critical patent/JPH06318731A/en
Publication of JPH06318731A publication Critical patent/JPH06318731A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To provide a semiconductor light emitting device which can be improved in light emitting efficiency and, at the same time, can be easily mounted. CONSTITUTION:This device is provided with a groove 9 which reaches an N-type substrate 1 from the surface 3a of a P-type semiconductor section 3 counterposed to a P-N junction surface J through the P-N junction surface J and N-type semiconductor section 2 and a P- and N-electrodes 5 and 4 formed on the surface 3a on both sides of the groove 9. In addition, bump electrodes 12 are respectively installed to the electrodes 5 and 4. Therefore, no light intercepting electrode is formed on the light emitting surface 1a of the device. In addition, flip chip bonding can be performed by using the bump electrodes 12 and 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、PN接合近傍で発生
した光を効率良く外部に取り出すことができ、かつ、容
易に実装できる半導体発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device capable of efficiently extracting light generated in the vicinity of a PN junction to the outside and easily mounting it.

【0002】[0002]

【従来の技術】従来、この種の半導体発光装置として
は、図6に示すものがある。この半導体発光装置60
は、次のようにして作製される。即ち、N型基板61上
に、エピタキシャル成長法によってN型半導体部62,
P型半導体部63を順に形成し、次に、上記N型基板6
1の表面全体およびP型半導体部63の表面の必要部分
に、オーミックコンタクト用金属材料を付着させてN電
極64とP電極65を形成する。次に、ダイシングソー
やスクライブマシンによってチップ化する。
2. Description of the Related Art A conventional semiconductor light emitting device of this type is shown in FIG. This semiconductor light emitting device 60
Is produced as follows. That is, on the N-type substrate 61, the N-type semiconductor portion 62,
The P-type semiconductor portion 63 is sequentially formed, and then the N-type substrate 6 is formed.
The N electrode 64 and the P electrode 65 are formed by attaching a metal material for ohmic contact to the entire surface of 1 and a necessary portion of the surface of the P-type semiconductor portion 63. Next, it is made into chips by a dicing saw or a scribe machine.

【0003】上記半導体発光装置60の実装例を図7に
示す。上記半導体発光装置のN電極64は、銀ペースト
等の導電性ペースト66でリードフレーム67にダイボ
ンドされている。また、上記半導体発光装置のP電極6
5は、リード線68でリードフレーム70に接続されて
いる。そして、図7に示すように、上記半導体発光装置
60の全体を被う透光性樹脂69によるモールドがなさ
れている。
An example of mounting the semiconductor light emitting device 60 is shown in FIG. The N electrode 64 of the semiconductor light emitting device is die-bonded to the lead frame 67 with a conductive paste 66 such as silver paste. In addition, the P electrode 6 of the semiconductor light emitting device
5 is connected to a lead frame 70 by a lead wire 68. Then, as shown in FIG. 7, the semiconductor light emitting device 60 is molded with a translucent resin 69 that covers the entire semiconductor light emitting device 60.

【0004】上記半導体発光装置60は、上記P電極6
5とN電極64に電圧が印加されると、上記N型半導体
部62と上記P型半導体部63とのPN接合面近傍から
光を発生し、この光を上記P型半導体部63のP電極6
5側の光出射面63aから取り出すようにしている。
The semiconductor light emitting device 60 includes the P electrode 6
5 and the N electrode 64 are applied with voltage, light is generated from the vicinity of the PN junction surface between the N-type semiconductor portion 62 and the P-type semiconductor portion 63, and this light is emitted from the P electrode of the P-type semiconductor portion 63. 6
The light is emitted from the light exit surface 63a on the fifth side.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の半導体発光装置は、以下に述べるような種々の欠点
がある。
However, the above-described conventional semiconductor light emitting device has various drawbacks as described below.

【0006】(1) 半導体発光装置60をリードフレ
ームに実装する時に、N電極64を下にしてN電極64
をリードフレーム67にダイボンドする工程と、上方の
P電極65をリード線68でリードフレーム67に接続
する工程とが不可欠であるから、実装工数が大きい。
(1) When the semiconductor light emitting device 60 is mounted on a lead frame, the N electrode 64 is placed downwards.
Since the step of die-bonding the lead electrode 67 to the lead frame 67 and the step of connecting the upper P electrode 65 to the lead frame 67 by the lead wire 68 are indispensable, the number of mounting steps is large.

【0007】(2) 上面のP電極65が発光光の遮光
面となって光を遮えぎるので、光出射効率が悪い。
(2) Since the P electrode 65 on the upper surface serves as a light shielding surface for the emitted light and blocks the light, the light emitting efficiency is poor.

【0008】(3) PN接合と平行方向に進行する光
が、上記PN接合面に対して垂直な端面から、横方向に
透過してしまうので、その分だけ光出射面63aから出
射する光が減少し、光出射効率が低下する。
(3) Since the light traveling in the direction parallel to the PN junction is transmitted in the lateral direction from the end face perpendicular to the PN junction surface, the light emitted from the light emitting surface 63a is correspondingly emitted. The light emission efficiency is reduced.

【0009】(4) 上記半導体発光装置のP型半導体
部63は、たとえば、GaP,GaAs,GaAlAs,
GaAsP他で構成されており、その屈折率nが約3.
5であるから、上記P型半導体部63の光出射面63a
での反射率Rは、空気に対しては約30%になり、エポ
キシ樹脂に対しては約16%になる。このため、発光光
の一部が、上記光出射面63aで内側に反射し、内部に
閉じ込められるので、光出射効率が低下する。尚、上記
反射率Rの値は、光の進行方向が界面に垂直な場合のフ
レネルの式R=(n1−n22/(n1+n22より求め
た。
(4) The P-type semiconductor portion 63 of the semiconductor light emitting device is made of, for example, GaP, GaAs, GaAlAs,
It is composed of GaAsP and the like, and its refractive index n is about 3.
5, the light emitting surface 63a of the P-type semiconductor portion 63 is
The reflectance R is about 30% for air and about 16% for epoxy resin. Therefore, a part of the emitted light is reflected inward by the light emitting surface 63a and is confined inside, so that the light emitting efficiency is reduced. The value of the reflectance R was obtained from the Fresnel equation R = (n 1 −n 2 ) 2 / (n 1 + n 2 ) 2 when the light traveling direction was perpendicular to the interface.

【0010】(5) N型基板61と銀ペーストとの界
面反射率は約50%であるから、図7に示すように、上
記半導体発光装置60を銀ペーストからなる導電性ペー
スト66を用いてリードフレーム67に実装した場合、
N型基板61と銀ペーストとの界面に向かって進行した
発光光の約50%が、上記界面から銀ペーストに吸収さ
れてしまう。
(5) Since the interface reflectance between the N-type substrate 61 and the silver paste is about 50%, as shown in FIG. 7, the semiconductor light emitting device 60 is formed by using the conductive paste 66 made of silver paste. When mounted on the lead frame 67,
About 50% of the emitted light traveling toward the interface between the N-type substrate 61 and the silver paste is absorbed by the silver paste through the interface.

【0011】そこで、この発明の目的は、上記(1)〜
(5)の欠点を解消でき、光出射効率を向上させることが
でき、かつ、実装が容易な半導体発光装置を提供するこ
とにある。
Therefore, an object of the present invention is to provide the above (1) to
An object of the present invention is to provide a semiconductor light emitting device which can solve the drawback of (5), improve the light emission efficiency, and can be easily mounted.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の半導体発光装置は、第1導電型層と第2
導電型層との接合面近傍から光を発生させる半導体発光
装置において、上記接合面に対向する上記第1導電型層
の対向面または上記接合面に対向する上記第2導電型層
の対向面の一方から、上記接合面を貫通し、上記第2導
電型層または第1導電型層に達する溝と、上記第1導電
型層の対向面または第2導電型層の対向面の一方に、上
記溝を挟んで設けられた正電極および負電極と、上記正
電極および負電極に設けられた突起電極とを備え、上記
接合面近傍で発生し、上記第1導電型層の対向面または
第2導電型層の対向面の他方を通過した光を外部に取り
出すようにしたことを特徴としている。
In order to achieve the above object, a semiconductor light emitting device according to claim 1 has a first conductivity type layer and a second conductivity type layer.
In a semiconductor light-emitting device that emits light from the vicinity of a joint surface with a conductive type layer, an opposing surface of the first conductive type layer facing the bonding surface or an opposing surface of the second conductive type layer facing the bonding surface. From one side, a groove penetrating the bonding surface and reaching the second conductivity type layer or the first conductivity type layer, and one of the facing surface of the first conductivity type layer or the facing surface of the second conductivity type layer, A positive electrode and a negative electrode provided with a groove sandwiched between them, and a protruding electrode provided on the positive electrode and the negative electrode, which are generated in the vicinity of the joint surface and which face the first conductivity type layer or the second surface. The feature is that the light passing through the other of the facing surfaces of the conductive type layer is extracted to the outside.

【0013】また、請求項2の半導体発光装置は、請求
項1に記載の半導体発光装置において、上記溝が上記溝
の底面に向かって先細になるように、上記溝の側面を上
記接合面に対して傾斜面にし、上記接合面近傍で発生し
て上記接合面に略平行に進行する光を、上記傾斜面で反
射して、上記他方の対向面に向かわせるようにしたこと
を特徴としている。
A semiconductor light emitting device according to a second aspect is the semiconductor light emitting device according to the first aspect, wherein the side surface of the groove is the joining surface so that the groove tapers toward a bottom surface of the groove. On the other hand, an inclined surface is provided, and light generated in the vicinity of the joint surface and traveling substantially parallel to the joint surface is reflected by the slant surface and directed toward the other facing surface. .

【0014】また、請求項3の半導体発光装置は、請求
項1または2に記載の半導体発光装置において、発光し
た光を外部に取り出すための光出射面に反射防止膜を形
成したことを特徴としている。
A semiconductor light emitting device according to a third aspect is the semiconductor light emitting device according to the first or second aspect, characterized in that an antireflection film is formed on a light emitting surface for taking out the emitted light to the outside. There is.

【0015】また、請求項4の半導体発光装置は、請求
項1乃至3のいずれか1つに記載の半導体発光装置にお
いて、上記一方の対向面または上記溝の側面の少なくと
も一方に、反射膜を設け、上記一方の対向面に向かう光
または上記溝の側面に向かう光の少なくとも一方を、上
記反射膜で反射して上記他方の対向面に向かわせるよう
にしたことを特徴としている。
A semiconductor light emitting device according to a fourth aspect is the semiconductor light emitting device according to any one of the first to third aspects, in which at least one of the facing surface and the side surface of the groove is provided with a reflective film. It is characterized in that at least one of the light directed to the one opposing surface and the light directed to the side surface of the groove is reflected by the reflective film and directed to the other opposing surface.

【0016】また、請求項5の半導体発光装置は、第1
導電型層と第2導電型層との接合面近傍から光を発生さ
せる半導体発光装置において、上記接合面に対向する上
記第1導電型層の対向面または上記接合面に対向する上
記第2導電型層の対向面の一方から、上記接合面を貫通
し、上記第2導電型層または第1導電型層に達する溝
と、上記溝底面に形成され、上記溝の側面との間に所定
の間隔を隔てて上記接合面を横切る第2導電型または第
1導電型の凸部と、上記第1導電型層の対向面または第
2導電型層の対向面の一方と、上記凸部の上面とに、上
記溝の側面と凸部との間の空間を挟んで設けられた正電
極および負電極と、上記正電極および負電極に設けられ
た突起電極とを備え、上記接合面近傍で発生し、上記第
1導電型層の対向面または第2導電型層の対向面の他方
を通過した光を外部に取り出すようにしたことを特徴と
している。
According to a fifth aspect of the semiconductor light emitting device of the present invention,
In a semiconductor light emitting device that emits light from the vicinity of a joint surface between a conductive type layer and a second conductive type layer, the second conductive surface facing the bonding surface or the facing surface of the first conductive type layer or the second conductive surface facing the bonding surface. A predetermined groove is formed between the groove that penetrates the bonding surface from one of the facing surfaces of the mold layer and reaches the second conductive type layer or the first conductive type layer, and the side surface of the groove formed on the bottom surface of the groove. A second-conductivity-type or first-conductivity-type convex portion that crosses the bonding surface with a gap, one of the facing surface of the first conductive-type layer and the facing surface of the second conductive-type layer, and the upper surface of the convex portion. And a positive electrode and a negative electrode provided with a space between the side surface of the groove and the convex portion, and a protruding electrode provided on the positive electrode and the negative electrode. The light passing through the other surface of the first conductivity type layer or the other surface of the second conductivity type layer is exposed to the outside. It is characterized in that they were taken out.

【0017】また、請求項6の半導体発光装置は、請求
項5に記載の半導体発光装置において、上記溝の側面と
上記凸部との間の空間が上記溝の底面に向かって先細に
なるように、上記溝の側面及び上記凸部の側面が上記接
合面に対して傾斜面に形成されており、上記接合面近傍
で発生して上記接合面に略平行に進行する光を、上記傾
斜面で反射して、上記他方の対向面に向かわせるように
したことを特徴としている。
A semiconductor light emitting device according to a sixth aspect is the semiconductor light emitting device according to the fifth aspect, wherein the space between the side surface of the groove and the convex portion tapers toward the bottom surface of the groove. In addition, the side surface of the groove and the side surface of the convex portion are formed on an inclined surface with respect to the joint surface, and light that is generated in the vicinity of the joint surface and travels substantially parallel to the joint surface is formed on the inclined surface. It is characterized in that it is reflected by and is directed to the other facing surface.

【0018】また、請求項7の半導体発光装置は、請求
項5または6に記載の半導体発光装置において、発光し
た光を外部に取り出すための光出射面に反射防止膜を形
成したことを特徴としている。
A semiconductor light emitting device according to a seventh aspect is the semiconductor light emitting device according to the fifth or sixth aspect, characterized in that an antireflection film is formed on a light emitting surface for taking out the emitted light to the outside. There is.

【0019】また、請求項8の半導体発光装置は、請求
項5乃至7のいずれか1つに記載の半導体発光装置にお
いて、上記一方の対向面または上記溝の側面または上記
凸部の側面のうちの少なくとも1つに反射膜を設け、上
記一方の対向面に向かう光または上記溝の側面に向かう
光または上記凸部の側面に向かう光のうちの少なくとも
1つを、上記反射膜で反射して上記他方の対向面に向か
わせるようにしたことを特徴としている。
The semiconductor light-emitting device according to claim 8 is the semiconductor light-emitting device according to any one of claims 5 to 7, wherein one of the facing surfaces, the side surface of the groove, or the side surface of the convex portion is provided. At least one of which is provided with a reflection film, and at least one of the light directed to the one opposing surface, the light directed to the side surface of the groove, and the light directed to the side surface of the convex portion is reflected by the reflection film. It is characterized in that it is directed toward the other facing surface.

【0020】[0020]

【作用】上記請求項1の半導体発光装置は、上記接合面
に対向する第1導電型層の対向面または上記接合面に対
向する第2導電型層の対向面の一方に、上記溝を挟んで
正電極および負電極の両方を設け、第1導電型層の対向
面または上記接合面に対向する第2導電型層の対向面の
他方から外部に光を取り出すようにした。したがって、
請求項1の発明によれば、光を取り出す面つまり光出射
面に電極を形成する必要がなくなる。したがって、請求
項1の発明によれば、光出射効率を向上させることがで
きる。
In the semiconductor light emitting device according to claim 1, the groove is sandwiched between one of the facing surfaces of the first conductivity type layer facing the bonding surface and the facing surface of the second conductivity type layer facing the bonding surface. Thus, both the positive electrode and the negative electrode are provided, and the light is extracted to the outside from the other surface of the first conductivity type layer or the other surface of the second conductivity type layer which faces the bonding surface. Therefore,
According to the invention of claim 1, it is not necessary to form an electrode on the light extraction surface, that is, the light emission surface. Therefore, according to the invention of claim 1, the light emission efficiency can be improved.

【0021】また、上記一方の対向面に正電極および負
電極の両方を設け、この正電極および負電極に突起電極
を設けたので、リード線を用いないフリップチップボン
ディングによる実装が可能になり、簡単に実装できるよ
うになる。
Further, since both the positive electrode and the negative electrode are provided on the one opposing surface and the protruding electrodes are provided on the positive electrode and the negative electrode, mounting by flip chip bonding without using a lead wire becomes possible, It will be easy to implement.

【0022】また、請求項2の発明によれば、上記溝が
上記溝の底面に向かって先細になるように、上記溝の側
面を上記接合面に対して傾斜面にして、上記接合面近傍
で発生して上記接合面に略平行に進行する光を、上記傾
斜面で反射して、上記他方の対向面に向かわせる。した
がって、上記溝の側面が上記接合面に対して垂直である
場合に比べて、光出射効率を向上させることができる。
Further, according to the invention of claim 2, the side surface of the groove is inclined with respect to the joint surface so that the groove is tapered toward the bottom surface of the groove, and the vicinity of the joint surface is formed. The light that is generated in step S3 and travels substantially parallel to the joint surface is reflected by the inclined surface and directed toward the other facing surface. Therefore, as compared with the case where the side surface of the groove is perpendicular to the joint surface, the light emission efficiency can be improved.

【0023】また、請求項3の発明によれば、発光した
光を外部に取り出すための光出射面に反射防止膜を形成
している。したがって、上記光出射面で発光光が反射す
ることを防止でき、上記発光した光を光出射面から出射
させて、光出射効率を向上させることができる。
Further, according to the invention of claim 3, an antireflection film is formed on the light emitting surface for taking out the emitted light to the outside. Therefore, it is possible to prevent the emitted light from being reflected on the light emitting surface, and to emit the emitted light from the light emitting surface to improve the light emitting efficiency.

【0024】また、請求項4の発明によれば、上記一方
の対向面または上記溝の側面の少なくとも一方に、反射
膜を設け、上記一方の対向面に向かう光または上記側面
に向かう光の少なくとも一方を、上記反射膜で反射して
上記他方の対向面に向かわせるようにしている。したが
って、上記一方の対向面または上記溝の側面に、臨界角
以内の入射角で入射した光が透過することを防止でき、
上記光を光出射面から外部に取り出すことができるよう
になるので、光出射効率が向上する。
According to the invention of claim 4, a reflecting film is provided on at least one of the one opposing surface or the side surface of the groove, and at least light directed to the one opposing surface or light directed to the side surface is provided. One of them is reflected by the reflection film and directed toward the other facing surface. Therefore, it is possible to prevent the light incident at an incident angle within the critical angle from being transmitted to the one facing surface or the side surface of the groove,
Since the light can be extracted from the light emitting surface to the outside, the light emitting efficiency is improved.

【0025】上記請求項5の半導体発光装置は、上記接
合面を貫通する溝に形成した凸部を有し、上記溝の側面
と凸部との間の空間を挟んで、上記第1または第2導電
型層の対向面の一方と上記凸部の上面とに正電極および
負電極の両方を設け、第1導電型層の対向面または第2
導電型層の対向面の他方から外部に光を取り出すように
した。したがって、請求項5の発明によれば、光を取り
出す面つまり光出射面に電極を形成する必要がなくな
る。したがって、請求項5の発明によれば、光出射効率
を向上させることができる。
A semiconductor light emitting device according to a fifth aspect of the present invention has a convex portion formed in a groove penetrating the joint surface, and the first or the first portion is sandwiched with a space between the side surface of the groove and the convex portion. The positive electrode and the negative electrode are both provided on one of the facing surfaces of the second conductivity type layer and the upper surface of the convex portion, and the facing surface of the first conductivity type layer or the second surface is provided.
Light was extracted to the outside from the other opposite surface of the conductive type layer. Therefore, according to the invention of claim 5, it is not necessary to form an electrode on the light extraction surface, that is, the light emission surface. Therefore, according to the invention of claim 5, the light emission efficiency can be improved.

【0026】また、上記一方の対向面に正電極および負
電極の両方を設け、この正電極および負電極に突起電極
を設けたので、リード線を用いないフリップチップボン
ディングによる実装が可能になり、簡単に実装できるよ
うになる。
Further, since both the positive electrode and the negative electrode are provided on the one opposing surface and the protruding electrodes are provided on the positive electrode and the negative electrode, mounting by flip chip bonding without using a lead wire is possible, It will be easy to implement.

【0027】また、請求項6の発明によれば、上記溝の
側面と上記凸部との間の空間が上記溝の底面に向かって
先細になるように、上記溝の側面および上記凸部の側面
を上記接合面に対して傾斜面にして、上記接合面近傍で
発生して上記接合面に略平行に進行する光を、上記傾斜
面で反射して、上記他方の対向面に向かわせる。したが
って、上記溝の側面および上記凸部の側面が上記接合面
に対して垂直である場合に比べて、光出射効率を向上さ
せることができる。
According to the invention of claim 6, the side surface of the groove and the convex portion are formed so that the space between the side surface of the groove and the convex portion tapers toward the bottom surface of the groove. The side surface is an inclined surface with respect to the joint surface, and light generated in the vicinity of the joint surface and traveling substantially parallel to the joint surface is reflected by the inclined surface and directed toward the other facing surface. Therefore, the light emission efficiency can be improved as compared with the case where the side surface of the groove and the side surface of the convex portion are perpendicular to the joint surface.

【0028】また、請求項7の発明によれば、発光した
光を外部に取り出すための光出射面に反射防止膜を形成
している。したがって、上記光出射面で発光光が反射す
ることを防止でき、上記発光した光を光出射面から出射
させて、光出射効率を向上させることができる。
According to the invention of claim 7, an antireflection film is formed on the light emitting surface for taking out the emitted light to the outside. Therefore, it is possible to prevent the emitted light from being reflected on the light emitting surface, and to emit the emitted light from the light emitting surface to improve the light emitting efficiency.

【0029】また、請求項8の発明によれば、上記一方
の対向面または上記溝の側面または上記凸部の側面のう
ちのの少なくとも1つに反射膜を設け、上記一方の対向
面に向かう光または上記側面に向かう光または上記凸部
の側面に向かう光のうちの少なくとも1つを、上記反射
膜で反射して上記他方の対向面に向かわせるようにして
いる。従って、上記一方の対向面または上記溝の側面ま
たは上記凸部の側面に、臨界角以内の入射角で入射した
光が透過することを防止でき、上記光を光出射面から外
部に取り出すことができるようになるので、光出射効率
が向上する。
According to the invention of claim 8, a reflective film is provided on at least one of the one opposing surface, the side surface of the groove or the side surface of the convex portion, and the reflective film is provided toward the one opposing surface. At least one of the light, the light traveling toward the side surface, and the light traveling toward the side surface of the convex portion is reflected by the reflective film and directed toward the other facing surface. Therefore, it is possible to prevent the light incident at an incident angle within the critical angle from passing through the one facing surface, the side surface of the groove, or the side surface of the convex portion, and to extract the light from the light emitting surface to the outside. As a result, the light emission efficiency is improved.

【0030】[0030]

【実施例】以下、この発明を図示の実施例により詳細に
説明する。
The present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0031】本発明の半導体発光装置の第1実施例を、
その製造工程に沿って、図1を参照しながら説明する。
The first embodiment of the semiconductor light emitting device of the present invention is
The manufacturing process will be described with reference to FIG.

【0032】まず、図1(A)に示すように、N型基板1
上にエピタキシャル成長法によってN型半導体部2とP
型半導体部3を順次形成して作製したウェハのエピタキ
シャル層表面つまりP型半導体部3の表面3aからPN
接合面Jを通過して上記N型基板1に達する深さの溝9
をダイシングまたはエッチングによって形成する。な
お、上記溝9の形成時に、上記溝9の傾斜面9aが上記
PN接合面Jとなす角度θを30°〜60°になるよう
にした。つまり、上記溝9は、その底面9bに向かって
先細になっている。
First, as shown in FIG. 1 (A), an N-type substrate 1
The N-type semiconductor portion 2 and the P
From the surface of the epitaxial layer of the wafer manufactured by sequentially forming the p-type semiconductor part 3, that is, from the surface 3a of the p-type semiconductor part 3 to pn
A groove 9 having a depth that passes through the joint surface J and reaches the N-type substrate 1.
Are formed by dicing or etching. When forming the groove 9, the angle θ formed by the inclined surface 9a of the groove 9 and the PN junction surface J is set to 30 ° to 60 °. That is, the groove 9 is tapered toward the bottom surface 9b.

【0033】次に、図1(B)に示すように、上記溝9の
傾斜面9aから上記P型半導体部3の表面3aおよび上
記溝9の底面9bに延びた反射膜10を、溝9と溝9と
が挟む凸部Mを挟む一対の傾斜面9a,9aに形成す
る。上記反射膜10は、上記凸部Mに、1つおきに形成
する。上記反射膜10は、光学的膜厚(屈折率n×厚さ
d)=(1/4)・λp〔nm〕のSiO2(屈折率n=
1.46)と光学的膜厚(屈折率n×厚さd)=(1/4)
・λp〔nm〕のTiO2(屈折率n=2.3)との対を4
対有する誘電体多層膜である。ここで、λp〔nm〕は
発光波長である。フォトリソグラフィと湿式エッチング
によってパターン形成されるか、もしくはリフトオフ法
によってパターン形成される。
Next, as shown in FIG. 1B, the reflection film 10 extending from the inclined surface 9a of the groove 9 to the surface 3a of the P-type semiconductor portion 3 and the bottom surface 9b of the groove 9 is provided with a groove 9a. Is formed on the pair of inclined surfaces 9a, 9a sandwiching the convex portion M sandwiched between the groove 9 and the groove 9. The reflective films 10 are formed on every other convex portion M. The reflective film 10 has an optical film thickness (refractive index n × thickness d) = (1/4) · λ p [nm] of SiO 2 (refractive index n =
1.46) and optical film thickness (refractive index n × thickness d) = (1/4)
・ 4 pairs of λ p [nm] with TiO 2 (refractive index n = 2.3)
It is a dielectric multilayer film having a pair. Here, λ p [nm] is an emission wavelength. It is patterned by photolithography and wet etching or by lift-off method.

【0034】次に、図1(C)に示すように、上記反射膜
10を形成した凸部MのP型半導体部3の表面3aおよ
びこの表面3aに形成した反射面10の表面に正(P)電
極5を形成ずる。このP電極5は、例えば、Au/Au
Znからなり、蒸着とフォトリソグラフィと湿式エッチ
ングによって形成される。また、上記反射膜10を形成
した凸部Mの隣の凸部MのP型半導体部3の表面3aお
よびこの表面3aに隣接する傾斜面9a,9aおよびこ
の傾斜面9aに隣接する溝底面9bの一部に負(N)電極
4を形成する。このN電極4は、例えば、AuGe/N
iからなり、蒸着とフォトリソグラフィと湿式エッチン
グによって形成される。N電極4は電気的にはN型半導
体部2とP型半導体部3を短絡し、N型基板1と電気的
接続することとなる。つまり、上記N電極4側の凸部は
電極導出用として形成される。
Next, as shown in FIG. 1C, the surface 3a of the P-type semiconductor portion 3 of the convex portion M on which the reflection film 10 is formed and the surface of the reflection surface 10 formed on the surface 3a are positive ( P) The electrode 5 is formed. The P electrode 5 is made of, for example, Au / Au.
It is made of Zn and is formed by vapor deposition, photolithography, and wet etching. Further, the surface 3a of the P-type semiconductor portion 3 of the convex portion M adjacent to the convex portion M on which the reflection film 10 is formed, the inclined surfaces 9a and 9a adjacent to the surface 3a, and the groove bottom surface 9b adjacent to the inclined surface 9a. The negative (N) electrode 4 is formed on a part of the surface. The N electrode 4 is made of, for example, AuGe / N.
i, and is formed by vapor deposition, photolithography, and wet etching. The N electrode 4 electrically short-circuits the N-type semiconductor portion 2 and the P-type semiconductor portion 3 and is electrically connected to the N-type substrate 1. That is, the convex portion on the N electrode 4 side is formed for leading out the electrode.

【0035】次に、図1(D)に示すように、N型基板1
の表面1aに、反射防止膜11を形成する。この反射防
止膜11は、たとえば、光学的膜厚n×d=(1/4)
・λp〔nm〕のTiO2(屈折率n=2.3)からなる。
Next, as shown in FIG. 1D, the N-type substrate 1
An antireflection film 11 is formed on the surface 1a of the. The antireflection film 11 has, for example, an optical film thickness n × d = (1/4)
· Lambda p consisting TiO 2 (refractive index n = 2.3) of [nm].

【0036】次に、図1(E)に示すように、上記P型半
導体部3の表面3aと対向する領域にあるN電極4の表
面に、Auや半田等からなるバンプ電極12を形成す
る。また、P型半導体部3の表面3aと対向する領域に
あるP電極5の表面に、Auや半田等からなるバンプ電
極12を形成する。
Next, as shown in FIG. 1 (E), a bump electrode 12 made of Au, solder or the like is formed on the surface of the N electrode 4 in a region facing the surface 3a of the P-type semiconductor portion 3. . Further, the bump electrode 12 made of Au, solder, or the like is formed on the surface of the P electrode 5 in the region facing the surface 3a of the P-type semiconductor portion 3.

【0037】そして、最後に、図1(E)に示すウェハ
を、ダイシングによって分割して、図2に示すチップを
作製する。このチップが、この実施例の半導体発光装置
すなわち発光ダイオードである。
Then, finally, the wafer shown in FIG. 1E is divided by dicing to produce the chips shown in FIG. This chip is the semiconductor light emitting device of this embodiment, that is, the light emitting diode.

【0038】上記構成の半導体発光装置は、P電極5と
N電極4との間に電圧を印加すると、上記P電極5に対
向するPN接合面Jの近傍で発光する。N電極4に対向
するPN接合面Jでは、上記の如く短絡されており発光
しない。上記発光による発光光は、上記PN接合面Jに
対向するN型半導体部2の対向面2aを通過して、N型
基板1の表面1aつまり光出射面から外部に出射する。
When a voltage is applied between the P electrode 5 and the N electrode 4, the semiconductor light emitting device having the above structure emits light in the vicinity of the PN junction surface J facing the P electrode 5. The PN junction surface J facing the N electrode 4 is short-circuited as described above and does not emit light. The light emitted by the light emission passes through the facing surface 2a of the N-type semiconductor portion 2 facing the PN junction surface J, and is emitted to the outside from the surface 1a of the N-type substrate 1, that is, the light emitting surface.

【0039】また、上記PN接合面Jの近傍で発光し、
上記溝9の傾斜面9aに達した光は、上記傾斜面9aに
形成した反射膜10で反射されて、上記光出射面に向か
って進み、上記光出射面から外部に出射する。
Further, light is emitted in the vicinity of the PN junction surface J,
The light reaching the inclined surface 9a of the groove 9 is reflected by the reflection film 10 formed on the inclined surface 9a, travels toward the light emitting surface, and is emitted from the light emitting surface to the outside.

【0040】また、上記PN接合面Jの近傍で発光し、
上記光出射面と逆方向に進行してP電極5に向かう光
は、上記P型半導体部3の表面3aに有る反射膜10で
反射されて、上記光出射面に向かって進み、上記光出射
面から外部に出射する。
Further, light is emitted in the vicinity of the PN junction surface J,
The light traveling toward the P electrode 5 in the direction opposite to the light emitting surface is reflected by the reflection film 10 on the surface 3a of the P-type semiconductor portion 3 and travels toward the light emitting surface to emit the light. Emitted from the surface to the outside.

【0041】上記半導体発光装置は、溝9を挟むP型半
導体部3の表面3aにP電極5およびN電極4を形成す
る一方、上記PN接合面Jを挟んで上記表面3aに対向
するN型基板1の表面1aを光出射面にした。つまり、
この実施例は、光出射面に電極5,4を形成していない
から、電極5,4が光出射面から出射する光を遮ること
がない。したがって、この実施例によれば、光出射面に
電極を形成する必要がある従来例に比べて、光出射効率
を向上させることができる。
In the semiconductor light emitting device described above, the P electrode 5 and the N electrode 4 are formed on the surface 3a of the P type semiconductor portion 3 which sandwiches the groove 9, while the N type which faces the surface 3a with the PN junction surface J sandwiched therebetween. The surface 1a of the substrate 1 was used as a light emitting surface. That is,
In this embodiment, since the electrodes 5 and 4 are not formed on the light emitting surface, the electrodes 5 and 4 do not block the light emitted from the light emitting surface. Therefore, according to this embodiment, the light emission efficiency can be improved as compared with the conventional example in which the electrode needs to be formed on the light emission surface.

【0042】また、上記P型半導体部3の表面3aに形
成したP電極5およびN電極4にバンプ電極12を形成
したので、この実施例は、リード線を用いないフリップ
チップボンディングによる実装が可能になり、簡単に実
装できるようになる。
Since the bump electrodes 12 are formed on the P electrode 5 and the N electrode 4 formed on the surface 3a of the P-type semiconductor portion 3, this embodiment can be mounted by flip chip bonding without using lead wires. And can be easily implemented.

【0043】また、上記溝9が、その底面9bに向かっ
て先細になるように、上記溝9の側面を上記PN接合面
Jに対して傾斜面9aにし、上記PN接合面J近傍で発
生して上記PN接合面Jに略平行に進行する光を、上記
傾斜面9aで反射して、上記N型基板1の表面1a(光
出射面)に向かわせるようにしたので、上記溝9の側面
が上記接合面Jに対して垂直である場合に比べて、光出
射効率を向上させることができる。
Further, the side surface of the groove 9 is formed as an inclined surface 9a with respect to the PN junction surface J so that the groove 9 is tapered toward the bottom surface 9b. Since the light traveling substantially parallel to the PN junction surface J is reflected by the inclined surface 9a and directed toward the surface 1a (light emission surface) of the N-type substrate 1, the side surface of the groove 9 is formed. The light emission efficiency can be improved as compared with the case where is perpendicular to the joint surface J.

【0044】また、発光した光を外部に取り出すための
表面1a(光出射面)に反射防止膜11を形成したので、
上記光出射面で発光光が反射することを防止でき、光出
射効率を向上させることができる。
Since the antireflection film 11 is formed on the surface 1a (light emitting surface) for taking out the emitted light to the outside,
It is possible to prevent the emitted light from being reflected on the light emitting surface and improve the light emitting efficiency.

【0045】また、上記P型半導体部3の表面3a及び
上記傾斜面9aに反射膜10を形成したので、上記表面
3aまたは上記傾斜面9aに、臨界角以内の入射角で入
射した発光光が透過することを防止でき、上記発光光を
上記反射膜10で反射して、光出射面から外部に取り出
すことができるようになるので、光出射効率が向上す
る。さらに、上記反射膜10はSiO2膜およびTiO2
膜を含む絶縁膜であるので、上記反射膜10は、この実
施例を実装するときにダイボンド時に使用する導電性ペ
ーストや半田によって各半導体部が電気的に短絡するこ
とを防止する。尚、上記実施例では、傾斜面9aを平面
にしたが、傾斜面9aを曲面にしてもよい。
Further, since the reflection film 10 is formed on the surface 3a of the P-type semiconductor portion 3 and the inclined surface 9a, the emitted light incident on the surface 3a or the inclined surface 9a at an incident angle within the critical angle. It is possible to prevent the light from being transmitted, and the emitted light can be reflected by the reflective film 10 and taken out from the light emitting surface, so that the light emitting efficiency is improved. Further, the reflection film 10 is made of SiO 2 film and TiO 2 film.
Since it is an insulating film including a film, the reflective film 10 prevents each semiconductor portion from being electrically short-circuited by the conductive paste or solder used during die bonding when mounting this embodiment. Although the inclined surface 9a is a flat surface in the above embodiment, the inclined surface 9a may be a curved surface.

【0046】次に、本発明の第2実施例を、その製造工
程に沿って、図3を参照しながら説明する。
Next, a second embodiment of the present invention will be described along with its manufacturing process with reference to FIG.

【0047】まず、図3(A)に示すように、N型基板3
1上にエピタキシャル成長法によってN型半導体部32
とP型半導体部33を順次形成して作製したウェハのエ
ピタキシャル層表面つまりP型半導体部33の表面33
aからPN接合面Kを通過して上記N型基板31に達す
る深さの溝39をダイシングまたはエッチングによって
形成する。なお、上記溝39の形成時に、上記溝39の
側面39aが上記PN接合面Kとなす角度θ1を30°
〜60°にすることが望ましい。つまり、上記溝39
は、その底面39bに向かって先細にすることが望まし
い。この溝39を形成することによって、溝39の両側
に、PN接合面Kを含む凸部Wが形成される。
First, as shown in FIG. 3A, the N-type substrate 3
N-type semiconductor portion 32 formed on the substrate 1 by the epitaxial growth method.
Surface of the P-type semiconductor portion 33, that is, the surface of the epitaxial layer of the wafer manufactured by sequentially forming
A groove 39 having a depth passing from a to the PN junction surface K and reaching the N-type substrate 31 is formed by dicing or etching. When forming the groove 39, an angle θ1 formed by the side surface 39a of the groove 39 and the PN junction surface K is 30 °.
It is desirable to set it to -60 °. That is, the groove 39
Is preferably tapered toward its bottom surface 39b. By forming the groove 39, the convex portions W including the PN junction surface K are formed on both sides of the groove 39.

【0048】次に、図3(B)に示すように、エピタキシ
ャル成長法を使用して、溝39にN型半導体部42を埋
め込む。その後、上記P型半導体部33の表面33aお
よび上記N型半導体部42の表面42aを研磨する。
Next, as shown in FIG. 3B, the N-type semiconductor portion 42 is embedded in the groove 39 by using the epitaxial growth method. Then, the surface 33a of the P-type semiconductor portion 33 and the surface 42a of the N-type semiconductor portion 42 are polished.

【0049】次に、図3(C)に示すように、エッチング
またはダイシングによって、上記N型半導体部42の表
面42aから上記PN接合面Kを横切って通過する溝4
3を形成する。この溝43は、上記溝39の側面39a
である一方の側面43aと、垂線に関して側面43aと
対称な他方の側面43bとを有し、上記側面43aと側
面43bとは最底端で交わって鋭角をなしている。この
溝43を形成することによって、上記PN接合面Kを含
む凸部Wと凸部Wとの間に、溝43を介して、PN接合
面を含まないN型半導体からなる凸部Zが形成される。
この凸部Zは、凸部Wと略同一の形状になっている。そ
して、PN接合面Kの延長面と上記側面43bとがなす
角度θ2は、上記角度θ1に略等しい。
Next, as shown in FIG. 3C, a groove 4 passing from the surface 42a of the N-type semiconductor portion 42 across the PN junction surface K by etching or dicing.
3 is formed. This groove 43 is a side surface 39 a of the groove 39.
And the other side surface 43b symmetrical to the side surface 43a with respect to the vertical line, the side surfaces 43a and 43b intersect at the bottom end to form an acute angle. By forming the groove 43, a convex portion Z made of an N-type semiconductor not including the PN junction surface is formed between the convex portion W including the PN junction surface K and the convex portion W via the groove 43. To be done.
The protrusion Z has substantially the same shape as the protrusion W. The angle θ2 formed by the extension surface of the PN junction surface K and the side surface 43b is substantially equal to the angle θ1.

【0050】次に、図3(D)に示すように、上記凸部
Wの側面である溝39の側面39aと、上記P型半導体
部33の表面33aの周辺部と、上記凸部Zの側面であ
る溝43の側面43bと、上記凸部Zの上面の周辺部と
に、反射膜44を形成する。この反射膜44は、たとえ
ば、光学的膜厚(屈折率n×厚さd)=(1/4)・λ
P〔nm〕のSiO2(屈折率n=1.46)と、光学的
膜厚(屈折率n×厚さd)=(1/4)・λp〔nm〕のT
iO2(屈折率n=2.3)との対を8対有する誘電体多層
膜である。ここで、λp〔nm〕は発光波長である。こ
の誘電体多層膜は、フォトリソグラフィと湿式エッチン
グによってパターン形成されるか、もしくはリフトオフ
法によってパターン形成される。
Next, as shown in FIG. 3D, the side surface 39a of the groove 39 which is the side surface of the convex portion W, the peripheral portion of the surface 33a of the P-type semiconductor portion 33, and the convex portion Z are formed. The reflection film 44 is formed on the side surface 43b of the groove 43 which is the side surface and on the peripheral portion of the upper surface of the convex portion Z. The reflective film 44 has, for example, an optical film thickness (refractive index n × thickness d) = (1/4) · λ.
T of P SiO in [nm] 2 (refractive index n = 1.46), an optical film thickness (refractive index n × thickness d) = (1/4) · λ p [nm]
It is a dielectric multilayer film having 8 pairs with iO 2 (refractive index n = 2.3). Here, λ p [nm] is an emission wavelength. This dielectric multilayer film is patterned by photolithography and wet etching, or by lift-off method.

【0051】次に、図3(E)に示すように、上記PN接
合面Kを含む凸部Wの上面であるP型半導体部33の表
面33aの中央部に正(P)電極35を形成し、上記P
N接合面Kを含まない凸部Zの上面に負(N)電極34
を形成する。上記正電極35は、例えば、Au/AuZ
nからなり、蒸着とフォトリソグラフィと湿式エッチン
グによって形成される。また、上記負電極34は、例え
ば、AuGe/Niからなり、蒸着とフォトリソグラフ
ィと湿式エッチングによって形成される。この負電極3
4側の凸部Zは、電極導出用として形成されたものであ
る。
Next, as shown in FIG. 3E, a positive (P) electrode 35 is formed at the center of the surface 33a of the P-type semiconductor portion 33 which is the upper surface of the convex portion W including the PN junction surface K. And above P
The negative (N) electrode 34 is provided on the upper surface of the convex portion Z not including the N-junction surface K.
To form. The positive electrode 35 is, for example, Au / AuZ.
n, and is formed by vapor deposition, photolithography, and wet etching. The negative electrode 34 is made of AuGe / Ni, for example, and is formed by vapor deposition, photolithography, and wet etching. This negative electrode 3
The convex portion Z on the fourth side is formed to lead out the electrode.

【0052】次に、図3(E)に示すように、N型基板3
1の表面31aに、反射防止膜45を形成する。この反
射防止膜45は、例えば、光学的膜厚n×d=(1/
4)・λp〔nm〕のTiO2(屈折率n=2.3)で形成
する。
Next, as shown in FIG. 3 (E), the N-type substrate 3
The antireflection film 45 is formed on the first surface 31 a. The antireflection film 45 has, for example, an optical film thickness n × d = (1 /
4) λ p [nm] of TiO 2 (refractive index n = 2.3).

【0053】次に、図3(E)に示すように、上記N電極
34の表面およびP電極35の表面に、Auや半田等か
らなるバンプ電極46を形成する。
Next, as shown in FIG. 3E, bump electrodes 46 made of Au, solder or the like are formed on the surfaces of the N electrode 34 and the P electrode 35.

【0054】そして、最後に、図3(E)に示すウェハ
を、ダイシングまたは劈開によって分割して、図4に示
すチップを作製する。このチップが、この実施例の半導
体発光装置すなわち発光ダイオードである。
Finally, the wafer shown in FIG. 3E is divided by dicing or cleavage to produce the chips shown in FIG. This chip is the semiconductor light emitting device of this embodiment, that is, the light emitting diode.

【0055】上記構成の半導体発光装置は、P電極35
とN電極34との間に電圧を印加すると、上記P電極3
5に対向するPN接合面Kの近傍で発光する。上記発光
による発光光は、上記PN接合面Kに対向するN型半導
体部32の対向面32aを通過して、N型基板31の表
面31aつまり光出射面から外部に出射する。
The semiconductor light emitting device having the above-mentioned structure is provided with the P electrode 35.
When a voltage is applied between the P electrode 3 and the N electrode 34,
Light is emitted in the vicinity of the PN junction surface K facing 5 The light emitted by the light emission passes through the facing surface 32a of the N-type semiconductor portion 32 facing the PN junction surface K and is emitted to the outside from the surface 31a of the N-type substrate 31, that is, the light emitting surface.

【0056】また、上記PN接合面Kの近傍で発光し、
上記溝43の傾斜面43aに達した光は、上記傾斜面4
3aに形成した反射膜44で反射されて、上記光出射面
に向かって進み、上記光出射面から外部に出射する。
Further, light is emitted in the vicinity of the PN junction surface K,
The light that has reached the inclined surface 43 a of the groove 43 is
The light is reflected by the reflection film 44 formed on 3a, travels toward the light emitting surface, and is emitted to the outside from the light emitting surface.

【0057】また、上記PN接合面Kの近傍で発光し、
上記光出射面と逆方向に進行してP電極35に向かう光
は、上記P型半導体部33の表面33aに有る反射膜4
4で反射されて、上記光出射面に向かって進み、上記光
出射面から外部に出射する。上記半導体発光装置は、溝
43を挟む凸部Wの上面と凸部Zの上面に、P電極35
とN電極34を形成する一方、上記凸部WおよびZの底
面側のN型基板31の表面31aを光出射面とした。つ
まり、この実施例は、光出射面に電極35,34を形成
していないから、電極35,34が光出射面から出射す
る光を遮ることがない。したがって、この実施例によれ
ば、光出射面に電極を形成する必要がある従来例に比べ
て、光出射効率を向上させることができる。
Further, light is emitted in the vicinity of the PN junction surface K,
The light traveling in the opposite direction to the light emitting surface and traveling toward the P electrode 35 is reflected by the reflection film 4 on the surface 33 a of the P type semiconductor portion 33.
The light is reflected at 4, travels toward the light exit surface, and exits from the light exit surface. In the semiconductor light emitting device, the P electrode 35 is provided on the upper surface of the convex portion W and the upper surface of the convex portion Z that sandwich the groove 43.
While the N electrode 34 is formed with the above, the surface 31a of the N-type substrate 31 on the bottom side of the convex portions W and Z is used as the light emitting surface. That is, in this embodiment, since the electrodes 35 and 34 are not formed on the light emitting surface, the electrodes 35 and 34 do not block the light emitted from the light emitting surface. Therefore, according to this embodiment, the light emission efficiency can be improved as compared with the conventional example in which the electrode needs to be formed on the light emission surface.

【0058】また、凸部W上のP電極35および凸部Z
上のN電極34にバンプ電極46を形成したので、この
実施例は、リード線を用いないフリップチップボンディ
ングによる実装が可能になり、簡単に実装できるように
なる。たとえば、図5に示すように、この実施例50
は、導電性ペースト56を用いたフリップチップボンデ
ィングによって、簡単にリードフレーム57に実装する
ことができる。図5において、59は透光性樹脂であ
る。
In addition, the P electrode 35 on the convex portion W and the convex portion Z
Since the bump electrode 46 is formed on the upper N electrode 34, this embodiment can be mounted by flip chip bonding without using a lead wire, and can be easily mounted. For example, as shown in FIG.
Can be easily mounted on the lead frame 57 by flip-chip bonding using the conductive paste 56. In FIG. 5, reference numeral 59 is a translucent resin.

【0059】また、上記溝43が、その底に向かって先
細になるように、上記溝43の側面43aを上記PN接
合面Kに対して傾斜面にし、上記PN接合面K近傍で発
生して上記PN接合面Kに略平行に進行する光を、上記
側面43aで反射して、上記N型基板31の表面31a
(光出射面)に向かわせるようにしたので、上記溝43の
側面43aが上記接合面Kに対して垂直である場合に比
べて、光出射効率を向上させることができる。
The side surface 43a of the groove 43 is inclined with respect to the PN junction surface K so that the groove 43 is tapered toward the bottom thereof, and the side surface 43a is generated in the vicinity of the PN junction surface K. The light that travels substantially parallel to the PN junction surface K is reflected by the side surface 43a, and the surface 31a of the N-type substrate 31 is reflected.
Since the light is directed toward the (light emitting surface), the light emitting efficiency can be improved as compared with the case where the side surface 43a of the groove 43 is perpendicular to the joint surface K.

【0060】また、発光した光を外部に取り出すための
表面31a(光出射面)に反射防止膜45を形成したの
で、上記光出射面で発光光が反射することを防止でき、
光出射効率を向上させることができる。
Further, since the antireflection film 45 is formed on the surface 31a (light emitting surface) for taking out the emitted light to the outside, it is possible to prevent the emitted light from being reflected on the light emitting surface,
The light emission efficiency can be improved.

【0061】また、上記P型半導体部33の表面33a
及び上記側面43aに反射膜44を形成したので、上記
表面33aまたは上記側面43aに、臨界角以内の入射
角で入射した発光光が透過することを防止でき、上記発
光光を上記反射膜44で反射して、光出射面から外部に
取り出すことができるようになるので、光出射効率が向
上する。また、上記発光光透過防止によって、従来の図
7に示すようにリードフレーム67をカップ形状にする
必要がなくなり、コストダウンを図れる。
The surface 33a of the P-type semiconductor portion 33 is also provided.
Since the reflective film 44 is formed on the side surface 43a, it is possible to prevent the emitted light incident on the surface 33a or the side surface 43a at an incident angle within the critical angle from passing therethrough, and the emitted light is reflected by the reflective film 44. Since the light can be reflected and taken out from the light emitting surface, the light emitting efficiency is improved. Further, by preventing the emitted light transmission, it is not necessary to form the lead frame 67 into a cup shape as shown in FIG.

【0062】更に、上記反射膜44はSiO2膜および
TiO2膜を含む絶縁膜であるので、上記反射膜44
は、この実施例を実装するときにダイボンド時に使用す
る導電性ペーストや半田によって各半導体部が電気的に
短絡することを防止する。更に、上記反射膜44は、接
合部の保護膜としての作用がある。
Further, since the reflecting film 44 is an insulating film including a SiO 2 film and a TiO 2 film, the reflecting film 44 is
Prevents the semiconductor parts from being electrically short-circuited by the conductive paste or solder used during die bonding when mounting this embodiment. Further, the reflective film 44 has a function as a protective film for the joint.

【0063】尚、上記実施例では、溝43の側面43a
を平面にしたが、側43aを曲面にしてもよい。
In the above embodiment, the side surface 43a of the groove 43 is formed.
Although the side 43a is a flat surface, the side 43a may be a curved surface.

【0064】[0064]

【発明の効果】以上より明らかなように、請求項1の発
明の半導体発光装置は、第1導電型層と第2導電型層と
の接合面に対向する第1導電型層の対向面または上記接
合面に対向する第2導電型層の対向面の一方に、上記溝
を挟んで正電極および負電極の両方を設け、第1導電型
層の対向面または上記接合面に対向する第2導電型層の
対向面の他方から外部に光を取り出すようにした。即
ち、請求項1の発明は、光を取り出す面つまり光出射面
に電極を形成していないから、光出射面から出射する光
を電極で遮ることがなく、光出射効率を向上させること
ができる。
As is apparent from the above, the semiconductor light emitting device according to the first aspect of the invention has the first conductive type layer facing the bonding surface between the first conductive type layer and the second conductive type layer, or A positive electrode and a negative electrode are provided on one of the facing surfaces of the second conductivity type layer facing the bonding surface, with the groove interposed therebetween, and a second surface facing the facing surface of the first conductivity type layer or the bonding surface. Light was extracted to the outside from the other opposite surface of the conductive type layer. That is, in the invention of claim 1, since no electrode is formed on the light extraction surface, that is, the light emission surface, the light emission efficiency can be improved without blocking the light emitted from the light emission surface by the electrode. .

【0065】また、上記一方の対向面に正電極および負
電極の両方を設け、この正電極および負電極に突起電極
を設けたので、リード線を用いないフリップチップボン
ディングによる実装が可能になり、簡単に実装できるよ
うになる。
Further, since both the positive electrode and the negative electrode are provided on the one opposing surface and the protruding electrodes are provided on the positive electrode and the negative electrode, mounting by flip chip bonding without using a lead wire is possible, It will be easy to implement.

【0066】また、請求項2の半導体発光装置は、上記
溝が上記溝の底面に向かって先細になるように、上記溝
の側面を上記接合面に対して傾斜面にして、上記接合面
近傍で発生して上記接合面に略平行に進行する光を、上
記傾斜面で反射して、上記他方の対向面に向かわせるよ
うにしている。したがって、上記溝の側面が上記接合面
に対して垂直である場合に比べて、光出射効率を向上さ
せることができる。
According to a second aspect of the semiconductor light emitting device of the present invention, the side surface of the groove is inclined with respect to the joint surface so that the groove is tapered toward the bottom surface of the groove, and the vicinity of the joint surface is provided. The light that is generated in step S3 and proceeds substantially parallel to the joint surface is reflected by the inclined surface and directed toward the other facing surface. Therefore, as compared with the case where the side surface of the groove is perpendicular to the joint surface, the light emission efficiency can be improved.

【0067】また、請求項3に記載の半導体発光装置
は、発光した光を外部に取り出すための光出射面に反射
防止膜を形成している。したがって、上記光出射面で発
光光が反射することを防止でき、上記発光光を光出射面
から出射させて、光出射効率を向上させることができ
る。
Further, in the semiconductor light emitting device according to the third aspect, the antireflection film is formed on the light emitting surface for taking out the emitted light to the outside. Therefore, it is possible to prevent the emitted light from being reflected by the light emitting surface, and to emit the emitted light from the light emitting surface to improve the light emitting efficiency.

【0068】また、請求項4に記載の半導体発光装置
は、上記一方の対向面または上記溝の側面の少なくとも
一方に、反射膜を設け、上記一方の対向面に向かう光ま
たは上記溝の側面に向かう光の少なくとも一方を、上記
反射膜で反射して上記他方の対向面に向かわせるように
している。したがって、上記一方の対向面または上記溝
の側面に臨界角以内の入射角で入射した光が透過するこ
とを防止でき、上記光を光出射面から外部に取り出すこ
とができるようになるので、光出射効率が向上する。
Further, in the semiconductor light emitting device according to a fourth aspect of the present invention, a reflection film is provided on at least one of the one opposing surface or the side surface of the groove, and light directed toward the one opposing surface or the side surface of the groove is provided. At least one of the traveling lights is reflected by the reflective film and directed toward the other facing surface. Therefore, it is possible to prevent the light incident on the one opposing surface or the side surface of the groove at an incident angle within the critical angle from passing therethrough, and it becomes possible to take out the light from the light emitting surface to the outside. The emission efficiency is improved.

【0069】請求項5の発明の半導体発光装置は、溝の
側面と凸部との間の空間を挟んで、第1または第2導電
型層の対向面の一方と上記凸部の上面とに接合面を貫通
する溝に形成した凸部を有し、正電極および負電極の両
方を設け、第1導電型層の対向面または上記接合面に対
向する第2導電型層の対向面の他方から外部に光を取り
出すようにした。即ち、請求項5の発明は、光を取り出
す面つまり光出射面に電極を形成していないから、光出
射面から出射する光を電極で遮ることがなく、光出射効
率を向上させることができる。
According to a fifth aspect of the semiconductor light emitting device of the present invention, one of the facing surfaces of the first or second conductivity type layer and the upper surface of the convex portion are sandwiched by a space between the side surface of the groove and the convex portion. It has a convex portion formed in a groove penetrating the joint surface, is provided with both a positive electrode and a negative electrode, and is the other surface of the opposite surface of the first conductivity type layer or the opposite surface of the second conductivity type layer that opposes the joint surface. I tried to extract light from the outside. That is, in the invention of claim 5, since no electrode is formed on the light extraction surface, that is, the light emission surface, the light emission efficiency can be improved without blocking the light emitted from the light emission surface by the electrode. .

【0070】また、上記一方の対向面に正電極および負
電極の両方を設け、この正電極および負電極に突起電極
を設けたので、リード線を用いないフリップチップボン
ディングによる実装が可能になり、簡単に実装できるよ
うになる。
Further, since both the positive electrode and the negative electrode are provided on the one opposing surface and the protruding electrodes are provided on the positive electrode and the negative electrode, mounting by flip chip bonding without using a lead wire is possible, It will be easy to implement.

【0071】また、請求項6の半導体発光装置は、上記
溝の側面と上記凸部との間の空間が上記溝の底面に向か
って先細になるように、上記溝の側面および上記凸部の
側面を上記接合面に対して傾斜面にして、上記接合面近
傍で発生して上記接合面に略平行に進行する光を、上記
傾斜面で反射して、上記他方の対向面に向かわせるよう
にしている。したがって、上記溝の側面および凸部の側
面が上記接合面に対して垂直である場合に比べて、光出
射効率を向上させることができる。
According to a sixth aspect of the semiconductor light emitting device of the present invention, the side surface of the groove and the convex portion are formed so that the space between the side surface of the groove and the convex portion tapers toward the bottom surface of the groove. The side surface is inclined with respect to the joint surface, and light generated in the vicinity of the joint surface and traveling substantially parallel to the joint surface is reflected by the inclined surface and directed toward the other opposing surface. I have to. Therefore, the light emission efficiency can be improved as compared with the case where the side surface of the groove and the side surface of the convex portion are perpendicular to the joint surface.

【0072】また、請求項7に記載の半導体発光装置
は、発光した光を外部に取り出すための光出射面に反射
防止膜を形成している。したがって、上記光出射面で発
光光が反射することを防止でき、上記発光光を光出射面
から出射させて、光出射効率を向上させることができ
る。
Further, in the semiconductor light emitting device according to the seventh aspect, the antireflection film is formed on the light emitting surface for taking out the emitted light to the outside. Therefore, it is possible to prevent the emitted light from being reflected by the light emitting surface, and to emit the emitted light from the light emitting surface to improve the light emitting efficiency.

【0073】また、請求項8に記載の半導体発光装置
は、上記一方の対向面または上記溝の側面または上記凸
部の側面のうちの少なくとも1つに反射膜を設け、上記
一方の対向面に向かう光または上記溝の側面に向かう光
または上記凸部の側面に向かう光のうちの少なくとも1
つを、上記反射膜で反射して上記他方の対向面に向かわ
せるようにしている。したがって、上記一方の対向面ま
たは上記溝の側面または上記凸部の側面に臨界角以内の
入射角で入射した光が透過することを防止でき、上記光
を光出射面から外部に取り出すことができるようになる
ので、光出射効率が向上する
Further, in the semiconductor light emitting device according to claim 8, a reflective film is provided on at least one of the one opposing surface, the side surface of the groove, or the side surface of the convex portion, and the one opposing surface is provided. At least one of light directed to the side surface of the groove or light directed to the side surface of the convex portion.
One of them is reflected by the reflection film and directed toward the other facing surface. Therefore, it is possible to prevent the light incident on the one opposing surface, the side surface of the groove, or the side surface of the convex portion at an incident angle within the critical angle from passing therethrough, and to extract the light from the light emitting surface to the outside. As a result, the light emission efficiency is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の半導体発光装置の第1実施例の製
造工程を説明する図である。
FIG. 1 is a diagram illustrating a manufacturing process of a first embodiment of a semiconductor light emitting device of the present invention.

【図2】 上記第1実施例の断面図である。FIG. 2 is a sectional view of the first embodiment.

【図3】 この発明の第2実施例の製造工程を説明する
図である。
FIG. 3 is a drawing for explaining the manufacturing process of the second embodiment of the present invention.

【図4】 上記第2実施例の断面図である。FIG. 4 is a sectional view of the second embodiment.

【図5】 上記第2実施例の実装例を示す断面図であ
る。
FIG. 5 is a sectional view showing a mounting example of the second embodiment.

【図6】 従来例の断面図である。FIG. 6 is a cross-sectional view of a conventional example.

【図7】 上記従来例の実装例を示す断面図である。FIG. 7 is a cross-sectional view showing a mounting example of the conventional example.

【符号の説明】[Explanation of symbols]

1,31…N型基板、2,42…N型半導体部、3,4
3…P型半導体部、4,34…N電極、5,35…P電
極、9,39,43…溝、9a…傾斜面、10,44…
反射膜、11,45…反射防止膜、12,46…バンプ
電極、J,K…PN接合面、39a,43a,43b…
側面。
1, 31 ... N type substrate, 2, 42 ... N type semiconductor portion, 3, 4
3 ... P-type semiconductor part, 4, 34 ... N electrode, 5, 35 ... P electrode, 9, 39, 43 ... Groove, 9a ... Slope, 10, 44 ...
Reflection film, 11, 45 ... Antireflection film, 12, 46 ... Bump electrode, J, K ... PN junction surface, 39a, 43a, 43b ...
side.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型層と第2導電型層との接合面
近傍から光を発生させる半導体発光装置において、 上記接合面に対向する上記第1導電型層の対向面または
上記接合面に対向する上記第2導電型層の対向面の一方
から、上記接合面を貫通し、上記第2導電型層または第
1導電型層に達する溝と、 上記第1導電型層の対向面または第2導電型層の対向面
の一方に、上記溝を挟んで設けられた正電極および負電
極と、 上記正電極および負電極に設けられた突起電極とを備
え、 上記接合面近傍で発生し、上記第1導電型層の対向面ま
たは第2導電型層の対向面の他方を通過した光を外部に
取り出すようにしたことを特徴とする半導体発光装置。
1. A semiconductor light-emitting device that emits light from the vicinity of a joint surface between a first conductivity type layer and a second conductivity type layer, the opposing surface of the first conductivity type layer facing the joint surface, or the joint surface. A groove penetrating the joint surface from one of the facing surfaces of the second conductivity type layer facing the first contact layer to reach the second conductivity type layer or the first conductivity type layer, and the facing surface of the first conductivity type layer or One of the facing surfaces of the second conductivity type layer is provided with a positive electrode and a negative electrode provided with the groove sandwiched therebetween, and a protruding electrode provided on the positive electrode and the negative electrode. A semiconductor light emitting device, wherein light passing through the other surface of the first conductivity type layer or the other surface of the second conductivity type layer is extracted to the outside.
【請求項2】 請求項1に記載の半導体発光装置におい
て、上記溝が上記溝の底面に向かって先細になるよう
に、上記溝の側面を上記接合面に対して傾斜面にし、上
記接合面近傍で発生して上記接合面に略平行に進行する
光を、上記傾斜面で反射して、上記他方の対向面に向か
わせるようにしたことを特徴とする半導体発光装置。
2. The semiconductor light emitting device according to claim 1, wherein a side surface of the groove is inclined with respect to the joint surface so that the groove is tapered toward a bottom surface of the groove, and the joint surface is formed. A semiconductor light emitting device, characterized in that light generated in the vicinity and traveling substantially parallel to the bonding surface is reflected by the inclined surface and directed toward the other facing surface.
【請求項3】 請求項1または2に記載の半導体発光装
置において、発光した光を外部に取り出すための光出射
面に反射防止膜を形成したことを特徴とする半導体発光
装置。
3. The semiconductor light emitting device according to claim 1 or 2, wherein an antireflection film is formed on a light emitting surface for extracting emitted light to the outside.
【請求項4】 請求項1乃至3のいずれか1つに記載の
半導体発光装置において、上記一方の対向面または上記
溝の側面の少なくとも一方に、反射膜を設け、上記一方
の対向面に向かう光または上記溝の側面に向かう光の少
なくとも一方を、上記反射膜で反射して上記他方の対向
面に向かわせるようにしたことを特徴とする半導体発光
装置。
4. The semiconductor light emitting device according to claim 1, wherein a reflective film is provided on at least one of the one opposing surface or the side surface of the groove, and the reflecting film is provided toward the one opposing surface. A semiconductor light-emitting device, characterized in that at least one of light and light traveling toward the side surface of the groove is reflected by the reflective film and directed toward the other facing surface.
【請求項5】 第1導電型層と第2導電型層との接合面
近傍から光を発生させる半導体発光装置において、 上記接合面に対向する上記第1導電型層の対向面または
上記接合面に対向する上記第2導電型層の対向面の一方
から、上記接合面を貫通し、上記第2導電型層または第
1導電型層に達する溝と、 上記溝底面に形成され、上記溝の側面との間に所定の間
隔を隔てて上記接合面を横切る第2導電型または第1導
電型の凸部と、 上記第1導電型層の対向面または第2導電型層の対向面
の一方と、上記凸部の上面とに、上記溝の側面と凸部と
の間の空間を挟んで設けられた正電極および負電極と、 上記正電極および負電極に設けられた突起電極とを備
え、 上記接合面近傍で発生し、上記第1導電型層の対向面ま
たは第2導電型層の対向面の他方を通過した光を外部に
取り出すようにしたことを特徴とする半導体発光装置。
5. A semiconductor light-emitting device which emits light from the vicinity of a joint surface between a first conductivity type layer and a second conductivity type layer, the opposing surface of the first conductivity type layer facing the joint surface or the joint surface. A groove penetrating the joint surface from one of the facing surfaces of the second conductivity type layer facing the first contact layer to reach the second conductivity type layer or the first conductivity type layer, and the groove formed on the groove bottom surface. One of a convex portion of the second conductivity type or the first conductivity type that crosses the bonding surface with a predetermined distance between the side surface and one of the facing surface of the first conductivity type layer and the facing surface of the second conductivity type layer. And a positive electrode and a negative electrode provided on the upper surface of the convex portion with a space between the side surface of the groove and the convex portion interposed therebetween, and a protruding electrode provided on the positive electrode and the negative electrode. Generated in the vicinity of the bonding surface, other than the facing surface of the first conductivity type layer or the facing surface of the second conductivity type layer. The semiconductor light-emitting device, characterized in that they were taken out to the outside light passing through the.
【請求項6】 請求項5に記載の半導体発光装置におい
て、上記溝の側面と上記凸部との間の空間が上記溝の底
面に向かって先細になるように、上記溝の側面及び上記
凸部の側面が上記接合面に対して傾斜面に形成されてお
り、上記接合面近傍で発生して上記接合面に略平行に進
行する光を、上記傾斜面で反射して、上記他方の対向面
に向かわせるようにしたことを特徴とする半導体発光装
置。
6. The semiconductor light emitting device according to claim 5, wherein the space between the side surface of the groove and the convex portion is tapered toward the bottom surface of the groove, and the side surface of the groove and the convex portion. The side surface of the portion is formed as an inclined surface with respect to the joint surface, and light generated in the vicinity of the joint surface and traveling substantially parallel to the joint surface is reflected by the slant surface to oppose the other surface. A semiconductor light emitting device characterized in that it is made to face a surface.
【請求項7】 請求項5または6に記載の半導体発光装
置において、発光した光を外部に取り出すための光出射
面に反射防止膜を形成したことを特徴とする半導体発光
装置。
7. The semiconductor light emitting device according to claim 5 or 6, wherein an antireflection film is formed on a light emitting surface for extracting emitted light to the outside.
【請求項8】 請求項5乃至7のいずれか1つに記載の
半導体発光装置において、上記一方の対向面または上記
溝の側面または上記凸部の側面のうちの少なくとも1つ
に反射膜を設け、上記一方の対向面に向かう光または上
記溝の側面に向かう光または上記凸部の側面に向かう光
のうちの少なくとも1つを、上記反射膜で反射して上記
他方の対向面に向かわせるようにしたことを特徴とする
半導体発光装置。
8. The semiconductor light emitting device according to claim 5, wherein a reflective film is provided on at least one of the facing surface on one side, the side surface of the groove, or the side surface of the convex portion. , At least one of the light directed to the one facing surface, the light directed to the side surface of the groove, and the light directed to the side surface of the convex portion is reflected by the reflective film and directed to the other facing surface. A semiconductor light-emitting device characterized in that
JP22177293A 1993-03-12 1993-09-07 Semiconductor light emitting device Pending JPH06318731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22177293A JPH06318731A (en) 1993-03-12 1993-09-07 Semiconductor light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-51878 1993-03-12
JP5187893 1993-03-12
JP22177293A JPH06318731A (en) 1993-03-12 1993-09-07 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH06318731A true JPH06318731A (en) 1994-11-15

Family

ID=26392466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22177293A Pending JPH06318731A (en) 1993-03-12 1993-09-07 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH06318731A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720241A3 (en) * 1994-12-27 1998-10-21 AT&T Corp. Structure of and method for manufacturing an LED
JPH10294493A (en) * 1997-02-21 1998-11-04 Toshiba Corp Semiconductor light-emitting device
EP0921577A1 (en) * 1997-01-31 1999-06-09 Matsushita Electronics Corporation Light emitting element, semiconductor light emitting device, and method for manufacturing them
JPH11224960A (en) * 1997-11-19 1999-08-17 Unisplay Sa Led lamp and led chip
JPH11340514A (en) * 1998-05-22 1999-12-10 Nichia Chem Ind Ltd Flip-chip optical semiconductor element
JP2000106454A (en) * 1998-07-28 2000-04-11 Interuniv Micro Electronica Centrum Vzw Device for emitting radiation with high efficiency and fabrication thereof
WO2002013281A1 (en) * 2000-08-08 2002-02-14 Osram Opto Semiconductors Gmbh Semiconductor chip for optoelectronics and method for production thereof
US7148521B2 (en) 2004-02-13 2006-12-12 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method of manufacturing the same
JP2007019511A (en) * 2005-07-05 2007-01-25 Lg Electronics Inc Light emitting element and its manufacturing method
JP2007157850A (en) * 2005-12-01 2007-06-21 Stanley Electric Co Ltd Semiconductor light emitting element and manufacturing method thereof
JP2008066704A (en) * 2006-08-11 2008-03-21 Sharp Corp Nitride semiconductor light emitting element and manufacturing method thereof
CN100405622C (en) * 1997-01-31 2008-07-23 松下电器产业株式会社 Light-emitting element
JP2008244309A (en) * 2007-03-28 2008-10-09 Fujitsu Ltd Semiconductor light-emitting element and manufacturing method therefor
US7547921B2 (en) 2000-08-08 2009-06-16 Osram Opto Semiconductors Gmbh Semiconductor chip for optoelectronics
JP2009295999A (en) * 1998-07-28 2009-12-17 Imec Device for emitting radiation with high efficiency and method of fabricating such device
JP2010506383A (en) * 2006-09-30 2010-02-25 ソウル オプト デバイス カンパニー リミテッド Manufacturing method of light emitting diode chip
EP1897151A4 (en) * 2005-06-22 2010-03-10 Seoul Opto Device Co Ltd Light emitting device and method of manufacturing the same
JP2011216524A (en) * 2010-03-31 2011-10-27 Toyoda Gosei Co Ltd Group iii nitride semiconductor light emitting element
EP2267800A3 (en) * 2000-08-08 2012-04-04 OSRAM Opto Semiconductors GmbH Semiconductor chip for optoelectronics and method for producing same
CN103227119A (en) * 2012-12-26 2013-07-31 无锡沃浦光电传感科技有限公司 Planar earthing method for photoelectric array device
JP2013239699A (en) * 2012-04-18 2013-11-28 Nichia Chem Ind Ltd Semiconductor light emitting element
US8692268B2 (en) 1997-11-19 2014-04-08 Epistar Corporation LED lamps
JP2017216435A (en) * 2016-05-10 2017-12-07 ローム株式会社 Semiconductor light-emitting device
EP2315277A3 (en) * 1998-07-28 2018-01-10 Philips Lighting Holding B.V. Devices for emitting radiation with a high efficiency
JP2020181995A (en) * 2020-07-21 2020-11-05 日亜化学工業株式会社 Light-emitting device, method for manufacturing the same, and display device
JP2021517736A (en) * 2018-03-30 2021-07-26 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニーFacebook Technologies, Llc High efficiency micro LED
US11329204B2 (en) 2018-12-24 2022-05-10 Samsung Electronics Co., Ltd. Micro light emitting diode and manufacturing method of micro light emitting diode

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720241A3 (en) * 1994-12-27 1998-10-21 AT&T Corp. Structure of and method for manufacturing an LED
EP0921577A1 (en) * 1997-01-31 1999-06-09 Matsushita Electronics Corporation Light emitting element, semiconductor light emitting device, and method for manufacturing them
CN100405622C (en) * 1997-01-31 2008-07-23 松下电器产业株式会社 Light-emitting element
US6597019B2 (en) 1997-01-31 2003-07-22 Matsushita Electric Industrial Co., Ltd Semiconductor light-emitting device comprising an electrostatic protection element
US6642072B2 (en) 1997-01-31 2003-11-04 Matsushita Electric Industrial Co., Ltd. Light-emitting element, semiconductor light-emitting device, and manufacturing methods therefor
EP0921577A4 (en) * 1997-01-31 2007-10-31 Matsushita Electric Ind Co Ltd Light emitting element, semiconductor light emitting device, and method for manufacturing them
JPH10294493A (en) * 1997-02-21 1998-11-04 Toshiba Corp Semiconductor light-emitting device
JPH11224960A (en) * 1997-11-19 1999-08-17 Unisplay Sa Led lamp and led chip
JP2012195605A (en) * 1997-11-19 2012-10-11 Shogen Koden Kofun Yugenkoshi Led lamp and led chip
US8692268B2 (en) 1997-11-19 2014-04-08 Epistar Corporation LED lamps
JPH11340514A (en) * 1998-05-22 1999-12-10 Nichia Chem Ind Ltd Flip-chip optical semiconductor element
EP2315277A3 (en) * 1998-07-28 2018-01-10 Philips Lighting Holding B.V. Devices for emitting radiation with a high efficiency
JP2000106454A (en) * 1998-07-28 2000-04-11 Interuniv Micro Electronica Centrum Vzw Device for emitting radiation with high efficiency and fabrication thereof
JP2009295999A (en) * 1998-07-28 2009-12-17 Imec Device for emitting radiation with high efficiency and method of fabricating such device
JP2007189242A (en) * 2000-08-08 2007-07-26 Osram Opto Semiconductors Gmbh Opto-electronics semiconductor chip and its manufacturing method
WO2002013281A1 (en) * 2000-08-08 2002-02-14 Osram Opto Semiconductors Gmbh Semiconductor chip for optoelectronics and method for production thereof
EP2267800A3 (en) * 2000-08-08 2012-04-04 OSRAM Opto Semiconductors GmbH Semiconductor chip for optoelectronics and method for producing same
US7547921B2 (en) 2000-08-08 2009-06-16 Osram Opto Semiconductors Gmbh Semiconductor chip for optoelectronics
US7148521B2 (en) 2004-02-13 2006-12-12 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method of manufacturing the same
JP2014112713A (en) * 2005-06-22 2014-06-19 Seoul Viosys Co Ltd Light-emitting device and manufacturing method therefor
US10340309B2 (en) 2005-06-22 2019-07-02 Seoul Viosys Co., Ltd. Light emitting device
US9929208B2 (en) 2005-06-22 2018-03-27 Seoul Vlosys Co., Ltd. Light emitting device
JP2012084933A (en) * 2005-06-22 2012-04-26 Seoul Opto Devices Co Ltd Light emitting device and method of manufacturing the same
EP1897151A4 (en) * 2005-06-22 2010-03-10 Seoul Opto Device Co Ltd Light emitting device and method of manufacturing the same
US9627435B2 (en) 2005-06-22 2017-04-18 Seoul Viosys Co., Ltd. Light emitting device
US9209223B2 (en) 2005-06-22 2015-12-08 Seoul Viosys Co., Ltd. Light emitting device and method of manufacturing the same
EP2161752B1 (en) * 2005-06-22 2015-08-12 Seoul Viosys Co., Ltd Light-emitting device
JP2007019511A (en) * 2005-07-05 2007-01-25 Lg Electronics Inc Light emitting element and its manufacturing method
JP2007157850A (en) * 2005-12-01 2007-06-21 Stanley Electric Co Ltd Semiconductor light emitting element and manufacturing method thereof
TWI395351B (en) * 2006-08-11 2013-05-01 Sharp Kk Nitride semiconductor light emitting device and method of manufacturing the same
US9029884B2 (en) 2006-08-11 2015-05-12 Sharp Kabushiki Kaisha Nitride semiconductor light emitting device
JP2008066704A (en) * 2006-08-11 2008-03-21 Sharp Corp Nitride semiconductor light emitting element and manufacturing method thereof
US8481352B2 (en) 2006-09-30 2013-07-09 Seoul Opto Device Co., Ltd. Method of fabricating light emitting diode chip
JP2010506383A (en) * 2006-09-30 2010-02-25 ソウル オプト デバイス カンパニー リミテッド Manufacturing method of light emitting diode chip
JP2008244309A (en) * 2007-03-28 2008-10-09 Fujitsu Ltd Semiconductor light-emitting element and manufacturing method therefor
JP2011216524A (en) * 2010-03-31 2011-10-27 Toyoda Gosei Co Ltd Group iii nitride semiconductor light emitting element
US10381524B2 (en) 2012-04-18 2019-08-13 Nichia Corporation Semiconductor light emitting element including protective film and light shielding member
JP2013239699A (en) * 2012-04-18 2013-11-28 Nichia Chem Ind Ltd Semiconductor light emitting element
CN103227119A (en) * 2012-12-26 2013-07-31 无锡沃浦光电传感科技有限公司 Planar earthing method for photoelectric array device
JP2017216435A (en) * 2016-05-10 2017-12-07 ローム株式会社 Semiconductor light-emitting device
JP2021517736A (en) * 2018-03-30 2021-07-26 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニーFacebook Technologies, Llc High efficiency micro LED
US11329204B2 (en) 2018-12-24 2022-05-10 Samsung Electronics Co., Ltd. Micro light emitting diode and manufacturing method of micro light emitting diode
JP2020181995A (en) * 2020-07-21 2020-11-05 日亜化学工業株式会社 Light-emitting device, method for manufacturing the same, and display device

Similar Documents

Publication Publication Date Title
JPH06318731A (en) Semiconductor light emitting device
JP3326545B2 (en) Semiconductor light emitting device
KR101028965B1 (en) Light emitting diode including barrier layers and manufacturing methods therefor
JP4123830B2 (en) LED chip
US6812502B1 (en) Flip-chip light-emitting device
JP3312049B2 (en) Semiconductor light emitting device
US6015719A (en) Transparent substrate light emitting diodes with directed light output
US7667224B2 (en) Semiconductor light emitting device and semiconductor light emitting apparatus
US7368756B2 (en) Trench cut light emitting diodes and methods of fabricating same
KR101424312B1 (en) Semiconductor chip and method for producing a semiconductor chip
JP3540605B2 (en) Light emitting element
TWI505493B (en) Optoelectronic semiconductor chip and method of producing optoelectronic semiconductor chips
US8847267B2 (en) Light emitting diode with metal piles and multi-passivation layers and its manufacturing method
JP3896704B2 (en) GaN compound semiconductor light emitting device
JP2005327979A (en) Semiconductor light-emitting element and device
US7078319B2 (en) Laser separated die with tapered sidewalls for improved light extraction
KR20130054416A (en) Optoelectronic semiconductor chip
JPH11251644A (en) Semiconductor light emitting device
JPH0997922A (en) Light-emitting element
US7126163B2 (en) Light-emitting diode and its manufacturing method
JPH06177429A (en) Blue color led device
JPH1126811A (en) Semiconductor light emitting device
US6809345B2 (en) Semiconductor light emitting element and semiconductor light emitting device
JP2000091638A (en) Gallium nitride compound semiconductor light emitting element
TW201637241A (en) Semiconductor light-emitting element, light emitting device, and method of manufacturing semiconductor light-emitting element