JPH06318564A - Etching equipment - Google Patents

Etching equipment

Info

Publication number
JPH06318564A
JPH06318564A JP5104848A JP10484893A JPH06318564A JP H06318564 A JPH06318564 A JP H06318564A JP 5104848 A JP5104848 A JP 5104848A JP 10484893 A JP10484893 A JP 10484893A JP H06318564 A JPH06318564 A JP H06318564A
Authority
JP
Japan
Prior art keywords
substrate
gas
plate
pores
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5104848A
Other languages
Japanese (ja)
Inventor
Hiroshi Arimoto
宏 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5104848A priority Critical patent/JPH06318564A/en
Publication of JPH06318564A publication Critical patent/JPH06318564A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To let reactive gas molecules reach a substrate efficiently without decreasing the amount of the molecules to be supplied to the substrate even at a low gas pressure. CONSTITUTION:1) This equipment is provided with a gas lead-in section 2 which, including a plate having a plurality of small holes 4A, leads reactive gas onto a substrate 9. The small holes 4A are formed nearly vertical to the substrate and a distance between the substrate and the small holes 4A is the same as a mean free path defined by the pressure of the reactive gas or smaller. 2) A small hole 4A opening region is the same as the size of the substrate 9 or larger. 3) The diameter of the small holes 4A is all the same in the thickness direction of the plate 4 and is 1/5 the thickness of the plate 4 or smaller. 4) The small holes 4A are arranged at a pitch smaller than the diameter of a part of the substrate 9 which is within a diffusion angle of the gas jet out from the small holes 4A. 5) This equipment has a means 8 to heat the gas lead-in section 2. 6) This equipment has such a structure that a conductance of an exhaust system including the plate 4 may be so controlled that a gas pressure of the substrate 9 side may be one order or more lower than that of the gas lead-in section 2 side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエッチング装置に係り,
特に低ガス圧で行うドライエッチング装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an etching apparatus,
In particular, the present invention relates to a dry etching apparatus that operates at a low gas pressure.

【0002】近年,半導体装置の微細化に伴い,寸法精
度が良く且つアスペクト比 (深さ/口径または幅)の高
い孔または溝のエッチングプロセスが要求されている。
これに対応するエッチングプロセスとしては低ガス圧下
でのプラズマエッチングが用いられている。
In recent years, with the miniaturization of semiconductor devices, there has been a demand for an etching process for holes or trenches having good dimensional accuracy and a high aspect ratio (depth / aperture or width).
As an etching process corresponding to this, plasma etching under a low gas pressure is used.

【0003】このような低ガス圧下でのエッチングは,
陰極近傍に生じるイオンシースにおけるイオンとガス分
子との衝突が抑制されて微細でしかもアスペクト比の高
いエッチングが可能となり,半導体装置の高速化,高集
積化に不可欠のプロセスとなっている。
Etching under such a low gas pressure is
Collisions between ions and gas molecules in the ion sheath near the cathode are suppressed, enabling fine etching with a high aspect ratio, which is an essential process for increasing the speed and integration of semiconductor devices.

【0004】[0004]

【従来の技術】図3は従来例によるエッチング装置の説
明図である。この従来例は,特に低ガス圧ではなく通常
の1Torr程度のガス圧で行う装置で, 多数の細孔を有す
るプレートを通して基板上に反応ガスを導入する構造に
なっている。
2. Description of the Related Art FIG. 3 is an explanatory view of a conventional etching apparatus. This conventional example is an apparatus which is operated at a normal gas pressure of about 1 Torr rather than a low gas pressure, and has a structure in which a reaction gas is introduced onto a substrate through a plate having a large number of pores.

【0005】図において, 1はエッチングチャンバ, 2
はガス導入口, 3は排気口, 5はプラズマ発生用RF電
源, 9は被エッチング基板, 10はプラズマ,11は基板側
電極,12は対向電極, 12A は対向電極に開けられたガス
が通過する細孔である。なお,図中矢印は反応性ガス分
子の経路を示す。
In the figure, 1 is an etching chamber and 2 is
Is a gas inlet, 3 is an exhaust port, 5 is an RF power source for plasma generation, 9 is a substrate to be etched, 10 is plasma, 11 is a substrate side electrode, 12 is a counter electrode, and 12A is a gas opened in the counter electrode. It is a fine pore. The arrows in the figure indicate the paths of reactive gas molecules.

【0006】この例は平行平板型プラズマエッチング装
置で,反応ガスはチャンバ 1の上部より対向電極の細孔
12A を通ってプラズマ発生部に導入される。この場合,
反応性ガスをこの多数の細孔を通すことにより基板付近
でのガス圧を均一にしている。通常のエッチングではガ
ス圧は前記のように1Torr程度で, ガス分子の平均自由
行程は数μm程度となる。従って, 基板上では入射ガス
がランダムな運動をしている。
In this example, a parallel plate type plasma etching apparatus is used.
It is introduced into the plasma generator through 12A. in this case,
By passing the reactive gas through the large number of pores, the gas pressure near the substrate is made uniform. In ordinary etching, the gas pressure is about 1 Torr as described above, and the mean free path of gas molecules is about several μm. Therefore, the incident gas moves randomly on the substrate.

【0007】次に, 低ガス圧エッチングについて説明す
る。従来,低ガス圧でもプラズマを維持できるプラズマ
イオン源としては,ECR(電子サイクロトロン共鳴) プラ
ズマイオン源, ヘリカルイオン源 (折り返しワークコイ
ルを用いてプラズマ密度を上げるようにしたRF電力の印
加方式), TCP (変換結合プラズマイオン源 (渦巻き型の
ワークコイルを用いたRF電力の印加方式) 等が使用され
ているが, ガス圧が低いためどうしてもエッチング速度
が低下することは不可避であった。
Next, low gas pressure etching will be described. Conventionally, ECR (electron cyclotron resonance) plasma ion source, helical ion source (RF power application method using a folded work coil to increase plasma density), have been used as plasma ion sources that can maintain plasma even at low gas pressures. Although TCP (conversion coupled plasma ion source (application method of RF power using a spiral work coil) and the like are used, just etching rate is low gas pressure it was inevitable to decrease.

【0008】特に,アスペクト比の大きいパターンのエ
ッチングにおいては反応性ガスが加工する溝の底まで到
達し難くなり, エッチング速度にパターンアスペクト比
の依存性が現れる。また, これらのイオン源はプラズマ
密度の高いイオン源であるためにイオンと反応性ガスあ
るいはラジカルとの密度比が大きくなって被エッチング
基板に損傷を与えるという結果になっていた。
In particular, in the etching of a pattern having a large aspect ratio, it becomes difficult for the reactive gas to reach the bottom of the groove to be processed, and the etching rate depends on the pattern aspect ratio. Moreover, since these ion sources are ion sources having a high plasma density, the density ratio of the ions to the reactive gas or radicals is increased, resulting in damage to the substrate to be etched.

【0009】[0009]

【発明が解決しようとする課題】本発明は低ガス圧で
も, 被エッチング基板に供給される反応性ガス分子の量
を低下させずに効率よく基板に到達できるようにするこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to make it possible to reach a substrate efficiently even at a low gas pressure without reducing the amount of reactive gas molecules supplied to the substrate to be etched.

【0010】[0010]

【課題を解決するための手段】上記課題の解決は, 1)反応性ガスを被エッチング基板上に導入する複数の
細孔が開口されたプレートを含むガス導入部と,該被エ
ッチング基板上に該反応性ガスのプラズマを発生させる
手段と,該反応性ガスを排気する手段とを有し,該細孔
は該被エッチング基板に対して略垂直に対向し,該被エ
ッチング基板と該細孔との距離がエッチング時の該反応
ガスの圧力で決まる平均自由行程と同程度または以下で
あるエッチング装置,あるいは 2)前記細孔の開口領域が前記被エッチング基板と同じ
大きさあるいはそれ以上である前記1)記載のエッチン
グ装置,あるいは 3)前記細孔の口径は前記プレートの厚さ方向に均一で
且つ該プレートの厚さの1/5以下である前記1)乃至
2)記載のエッチング装置,あるいは 4)前記細孔は,該細孔から噴出した反応性ガスの発散
角度内に含まれる基板の領域の口径以内のピッチで配列
されている前記1)乃至3)記載のエッチング装置,あ
るいは 5)前記ガス導入部を加熱する手段を有する前記1)乃
至4)記載のエッチング装置,あるいは 6)前記被エッチング基板側のガス圧が前記ガス導入部
側のガス圧より1桁以上低くなるように,前記プレート
を含めて排気系のコンダクタンスが調節されている前記
1)乃至5)記載のエッチング装置により達成される。
Means for Solving the Problems To solve the above-mentioned problems, 1) a gas introducing portion including a plate having a plurality of openings for introducing a reactive gas onto a substrate to be etched, and a substrate on the substrate to be etched. A means for generating plasma of the reactive gas and a means for exhausting the reactive gas, the pores facing the substrate to be etched substantially vertically, and the substrate to be etched and the pores. An etching apparatus whose distance from the same is equal to or less than the mean free path determined by the pressure of the reaction gas at the time of etching, or 2) the opening area of the pores is equal to or larger than the substrate to be etched. 1) The etching apparatus according to 1), or 3) The etching apparatus according to 1) or 2), wherein the pores have a uniform diameter in the thickness direction of the plate and are ⅕ or less of the thickness of the plate. Or 4) the etching apparatus according to any one of 1) to 3), wherein the pores are arranged at a pitch within a diameter of a region of the substrate included within a divergence angle of the reactive gas ejected from the pores, or ) The etching apparatus according to any one of 1) to 4) having means for heating the gas introducing part, or 6) so that the gas pressure on the side of the substrate to be etched is lower than the gas pressure on the gas introducing part side by one digit or more. The etching apparatus according to any one of 1) to 5), in which the conductance of the exhaust system including the plate is adjusted.

【0011】[0011]

【作用】本発明では, 従来例と同様に多数の細孔を有す
るプレートから反応性ガスをプラズマ発生室に導入す
る。しかしながら, 本発明の各細孔は被エッチング基板
に垂直に対向し,細孔と基板との距離がエッチング時の
ガス圧で決まるガス分子の平均自由行程程度にし,導入
されたガス分子が殆ど無衝突で基板に到達するようにし
て,反応性ガスを基板に垂直に供給するようにしてい
る。
In the present invention, as in the conventional example, the reactive gas is introduced into the plasma generation chamber from the plate having a large number of pores. However, each of the pores of the present invention is vertically opposed to the substrate to be etched, and the distance between the pore and the substrate is set to about the mean free path of gas molecules determined by the gas pressure during etching. The reactive gas is supplied vertically to the substrate by reaching the substrate by collision.

【0012】反応性ガスの導入部を基板に対向させかつ
細孔が多数開けられた構造1)は従来例でも説明したよう
にすでに知られているが,これはガス圧を基板上で均一
にするために考案されたものであり,ガス分子は数回以
上の衝突を繰り返して基板に到達することを前提にして
いた。すなわち, ガス圧が比較的に高く, ガス導入部と
基板との距離はガス分子の平均自由行程よりも十分に大
きくなっている。このため孔の大きさ, 数, 密度はそれ
ほど重要な因子ではなかった。
A structure 1) in which a reactive gas introduction portion is opposed to a substrate and a large number of pores are opened is already known as described in the conventional example. This is because the gas pressure is made uniform on the substrate. It was devised to do so, and it was premised that the gas molecules repeatedly collide several times or more and reach the substrate. That is, the gas pressure is relatively high, and the distance between the gas inlet and the substrate is sufficiently larger than the mean free path of gas molecules. Therefore, the size, number, and density of pores were not so important factors.

【0013】1) 例えば, 特開昭60-46029号公報, 特開
昭61-174721 号公報,特開平 4-335528 号公報. 本発明では,細孔を有するプレートの開口領域(複数の
細孔の開けられた領域)の大きさが基板あるいはそれ以
上の大きさであり,また,プレートの細孔に導入される
ガス分子は細孔の中で散乱を繰り返し,垂直方向の速度
成分を多く持って細孔から噴出される。特に,細孔のア
スペクト比(プレート厚さ/孔径)が5以上であるとプ
レートから噴出したガス分子はプレートに対して垂直方
向に極めて高い指向性を有し,基板まで殆ど無衝突で到
達する。この細孔を高密度に均一に配置することによ
り,基板上に無衝突で供給される反応性ガスの量は, 基
板内で数%の均一性が得られる。
1) For example, JP-A-60-46029, JP-A-61-174721, and JP-A-4-335528. In the present invention, the opening area of a plate having pores (a plurality of pores The size of the open area) is the size of the substrate or larger, and the gas molecules introduced into the pores of the plate repeat scattering in the pores and have many vertical velocity components. Are ejected from the pores. In particular, when the aspect ratio of the pores (plate thickness / pore diameter) is 5 or more, the gas molecules ejected from the plate have extremely high directivity in the direction perpendicular to the plate and reach the substrate with almost no collision. . By uniformly arranging these pores at a high density, the amount of reactive gas supplied onto the substrate without collision can be uniform within a few percent.

【0014】さらに, 多数の細孔を有するプレートの細
孔の径および数と, プレートの厚さで排気のコンダクタ
ンスを調節して,プレートの前後(ガス導入部と基板
側)に差圧を設けることができる。この差圧により,基
板に垂直に入射する反応性ガスの量は飛躍的に増大し,
ガス圧が低くてもエッチング速度が低下せず,しかも基
板に垂直に入射する成分が多いため,アスペクト比の大
きいパターンでも反応性ガスが加工中の溝の底まで容易
に到達し,エッチング速度のパターンアスペクト比依存
性が抑制される。
Further, the conductance of exhaust gas is adjusted by adjusting the diameter and number of pores of a plate having a large number of pores and the thickness of the plate to provide a differential pressure before and after the plate (on the gas introduction part and the substrate side). be able to. Due to this pressure difference, the amount of reactive gas vertically incident on the substrate increases dramatically,
Even if the gas pressure is low, the etching rate does not decrease, and since many components are vertically incident on the substrate, the reactive gas easily reaches the bottom of the groove during processing even in a pattern with a large aspect ratio, and the etching rate The pattern aspect ratio dependency is suppressed.

【0015】また,本発明では,イオンと反応性ガス分
子あるいはラジカルとの密度比が小さくなるため,エ
ッチング速度を低下させないで反応性ガス分子あるいは
ラジカルは基板に垂直に到達し,しかも基板に与える
損傷は少なくなる。
Further, in the present invention, since the density ratio of the ions to the reactive gas molecules or radicals becomes small, the reactive gas molecules or radicals reach the substrate vertically without lowering the etching rate and are given to the substrate. Less damage.

【0016】ここで本発明において,イオンと反応性ガ
ス分子あるいはラジカルとの密度比が小さくなる理由は
以下のように考えられる。プラズマ中でのガス分子のイ
オン化は,加速された電子あるいはイオンとの衝突によ
って引き起こされる。本発明によるキャピラリ・プレー
トから導入されたガス分子のイオン化する確率は小さい
ため,そのまま基板に到達し反応種として働く。特にア
スペクト比の大きい加工パターンの場合は,溝の底に到
達できる反応種は〔反応性ガス分子(あるいはラジカ
ル)の密度〕×〔溝の底から見上げた取り込み立体角〕
で決まってしまうが,本発明によれば基板方向に指向し
た反応性ガス分子の割合が多いため,イオンと反応性ガ
ス分子(あるいはラジカル)との密度比が小さくなる。
In the present invention, the reason why the density ratio of ions to reactive gas molecules or radicals becomes small is considered as follows. Ionization of gas molecules in plasma is caused by accelerated collisions with electrons or ions. Since the gas molecules introduced from the capillary plate according to the present invention have a low probability of being ionized, they directly reach the substrate and act as a reaction species. Particularly in the case of a processed pattern with a large aspect ratio, the reactive species that can reach the bottom of the groove is [the density of reactive gas molecules (or radicals)] x [the solid angle of incorporation seen from the bottom of the groove].
However, according to the present invention, since the ratio of the reactive gas molecules directed toward the substrate is large, the density ratio between the ions and the reactive gas molecules (or radicals) becomes small.

【0017】[0017]

【実施例】図1(A),(B) は本発明の一実施例によるエッ
チング装置の説明図である。図1(A) は模式断面図, 図
1(B) はガス導入用プレートの平面図である。
1 (A) and 1 (B) are explanatory views of an etching apparatus according to an embodiment of the present invention. FIG. 1 (A) is a schematic sectional view, and FIG. 1 (B) is a plan view of a gas introduction plate.

【0018】図において, 1はエッチングチャンバ, 2
はガス導入口, 3は排気口, 4は本発明によるガス導入
用プレート, 4Aはプレートに開口された複数の細孔,
5, 6はプラズマ発生用RF電源, 7はRF誘導コイル, 8は
ガス導入部加熱用コイル, 9は被エッチング基板, 10は
プラズマである。なお,図中矢印は反応性ガス分子の経
路を示す。
In the figure, 1 is an etching chamber, 2
Is a gas inlet, 3 is an exhaust port, 4 is a gas introducing plate according to the present invention, 4A is a plurality of pores opened in the plate,
Reference numerals 5 and 6 are an RF power source for plasma generation, 7 is an RF induction coil, 8 is a coil for heating the gas introduction part, 9 is an etched substrate, and 10 is plasma. The arrows in the figure indicate the paths of reactive gas molecules.

【0019】プラズマ発生部は基板に対して対向する位
置にガス導入部を設置した構造で,プラズマ発生源とし
てTCP-RF誘導, ヘリカルイオン源によるヘリコンプラズ
マ等が利用できる。
The plasma generation unit has a structure in which a gas introduction unit is installed at a position facing the substrate, and TCP-RF induction as a plasma generation source, helicon plasma by a helical ion source, or the like can be used.

【0020】複数の細孔を有するプレート 4は, 口径 2
00mm, 孔径 100μm, 開口率 0.8%(孔数 31400, 孔の
ピッチ 1 mm), プレート厚 5 mm である。この場合の排
気のコンダクタンスは 0.38 l/s となる。ここで,全体
のガス流量を 125 sccm とし排気速度 3000 l/s のター
ボ分子ポンプで排気すれば,プレートのガス導入側を4.
25 Torr, 基板側を 5.3×10-4 Torr に保つことができ
る。
The plate 4 having a plurality of pores has a diameter of 2
00 mm, hole diameter 100 μm, aperture ratio 0.8% (hole number 31400, hole pitch 1 mm), plate thickness 5 mm. The exhaust conductance in this case is 0.38 l / s. If the total gas flow rate is 125 sccm and the gas is exhausted by a turbo molecular pump with an exhaust speed of 3000 l / s, the gas inlet side of the plate will be 4.
25 Torr, the substrate side can be kept at 5.3 × 10 -4 Torr.

【0021】細孔のアスペクト比はおよそ50であるの
で, 細孔から噴出されるガスの最大の噴出角はおよそ 3
°となる(図2参照)。プレートと基板間の距離を50 m
m とすれば無衝突で基板に到達するガス分子の範囲はお
よそ 4 mm 径になるため,基板上に到達するガス分子の
数は極めて均一である。しかも,前記のようにガスの指
向性が高いため,基板側の加工する溝のアスペクトが20
以下までは, 十分にガスが溝内に入ることができる。
Since the aspect ratio of the pores is about 50, the maximum ejection angle of the gas ejected from the pores is about 3
° (see Fig. 2). 50 m distance between plate and substrate
If m, the range of gas molecules that reach the substrate without collision is about 4 mm, so the number of gas molecules that reach the substrate is extremely uniform. Moreover, since the gas directivity is high as mentioned above, the aspect of the groove to be processed on the substrate side is 20
Up to the following, sufficient gas can enter the groove.

【0022】図2は細孔を出たガスの発散を説明する図
である。発散角度θは次式で表される。 θ= tan-1 (細孔の径/プレート厚)= 2.9° 無衝突で基板に到達できる範囲Sは半径 2.5 mm の円内
となる。従って, この場合は基板上に入射する反応ガス
分子の数を均一にするためには細孔のピッチを1 mm 以
下ににすればよい。
FIG. 2 is a diagram for explaining the divergence of gas exiting the pores. The divergence angle θ is expressed by the following equation. θ = tan -1 (pore diameter / plate thickness) = 2.9 ° The range S that can reach the substrate without collision is within a circle with a radius of 2.5 mm. Therefore, in this case, in order to make the number of reaction gas molecules incident on the substrate uniform, the pitch of the pores should be 1 mm or less.

【0023】さらに, 細孔のピッチを 400μmにすれば
開口率は 5.2%となり,排気系全体のコンダクタンスは
2.32 l/s となる。したがって, プレートのガス導入側
を0.675 Torrに設定でき,基板側との圧力差は 2桁以上
になる。プレートと基板との距離を50 mm とすれば,
5.3×10-4 Torr のガス圧は平均自由行程が数 cm であ
るので,細孔から噴出したガス分子は殆ど衝突しないで
基板に到達することができる。また細孔のピッチが 400
μmであるため,隣接する細孔への影響は0.45°から現
れるため基板面内の均一性はさらに良くなる。
Further, if the pitch of the pores is 400 μm, the aperture ratio will be 5.2%, and the conductance of the entire exhaust system will be
It will be 2.32 l / s. Therefore, the gas inlet side of the plate can be set to 0.675 Torr, and the pressure difference with the substrate side is more than two digits. If the distance between the plate and the substrate is 50 mm,
Since the gas pressure of 5.3 × 10 -4 Torr has a mean free path of several cm, gas molecules ejected from the pores can reach the substrate with almost no collision. In addition, the pore pitch is 400
Since it is μm, the influence on the adjacent pores appears from 0.45 °, so that the uniformity within the substrate surface is further improved.

【0024】次に, ガス導入部加熱用コイル 8を設け
て, プレートを含んでガス導入部を加熱できる構造にす
ると,噴出するガス分子の速度が大きくなり, 無衝突で
基板に到達できる距離を長くすることができる。また,
ガス導入部の加熱によりガスに回転エネルギーを与える
のでガス分子は基板との反応性が増し, エッチング速度
を高める効果を生じる。
Next, if the gas introducing part heating coil 8 is provided so that the gas introducing part can be heated by including the plate, the velocity of the ejected gas molecules is increased, and the distance that can reach the substrate without collision is increased. Can be long. Also,
Since the heating energy of the gas introduction part imparts rotational energy to the gas, the gas molecules have an increased reactivity with the substrate, which has the effect of increasing the etching rate.

【0025】また前記のように,プラズマ発生部のTCP-
RF誘導, ヘリコンプラズマ等は10-3Torr 以下の低ガス
圧でも十分に安定な放電を維持することができる。次に
エッチング条件の一例を示す。
Further, as described above, the TCP-
RF induction, helicon plasma, etc. can maintain a sufficiently stable discharge even at a low gas pressure of 10 -3 Torr or less. Next, an example of etching conditions is shown.

【0026】被エッチング物: シリコン(Si) エッチングガス: 塩素(Cl2) , 50 sccm ガス圧: 5.3×10-4 Torr ガス導入プレート:細孔の口径 200mm, 孔径 100μm, 細孔のピッチ 400μm プレート厚 5 mm RF電源 5のRF電力: 100 W RF電源 6のRF電力: 1 KW ガス導入部温度: 1000℃ 次に, 実施例の効果を示す具体例を従来例と対比して説
明する。
Object to be etched: Silicon (Si) Etching gas: Chlorine (Cl 2 ), 50 sccm Gas pressure: 5.3 × 10 −4 Torr Gas introduction plate: Pore diameter 200 mm, Pore diameter 100 μm, Pore pitch 400 μm plate Thickness 5 mm RF power supply of RF power supply 5: 100 W RF power supply of RF power supply 6: 1 KW Gas introduction part temperature: 1000 ° C. Next, a concrete example showing the effect of the embodiment will be described in comparison with a conventional example.

【0027】パターンスペース幅が 1μm以上のときの
エッチング速度は実施例も従来例も変わらないが, 1μ
m以下のサブミクロン領域では, エッチング速度は従来
例では顕著に低下するが実施例では殆ど低下は見られな
かった。
The etching rate when the pattern space width is 1 μm or more is the same in both the embodiment and the conventional example, but it is 1 μm.
In the submicron region of m or less, the etching rate remarkably decreases in the conventional example, but hardly decreases in the example.

【0028】[0028]

【発明の効果】本発明によれば,低ガス圧のプラズマエ
ッチングにおいて, 被エッチング基板に供給される反応
性ガス分子の量を低下させずに効率よく基板に到達させ
ることができる。この結果高アスペクト比の微細パター
ンのエッチングが可能となり,半導体装置の微細化に寄
与することができた。
According to the present invention, in low-gas pressure plasma etching, it is possible to efficiently reach the substrate to be etched without reducing the amount of reactive gas molecules supplied to the substrate. As a result, it became possible to etch fine patterns with a high aspect ratio, which contributed to the miniaturization of semiconductor devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例によるエッチング装置の説
明図
FIG. 1 is an explanatory diagram of an etching apparatus according to an embodiment of the present invention.

【図2】 細孔を出たガスの発散を説明する図FIG. 2 is a diagram for explaining the divergence of gas that has exited the pores.

【図3】 従来例によるエッチング装置の説明図FIG. 3 is an explanatory view of a conventional etching apparatus.

【符号の説明】[Explanation of symbols]

1 エッチングチャンバ 2 ガス導入口 3 排気口 4 本発明によるガス導入用プレート 4A プレートに開口された複数の細孔 5, 6 はプラズマ発生用RF電源 7 RF誘導コイル 8 ガス導入部加熱用コイル 9 被エッチング基板 10 プラズマ 11 基板側電極 1 Etching chamber 2 Gas introduction port 3 Exhaust port 4 Gas introduction plate according to the present invention 4A A plurality of pores 5 and 6 opened in the plate are RF power source for plasma generation 7 RF induction coil 8 Gas induction part heating coil 9 Cover Etching substrate 10 Plasma 11 Substrate side electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 反応性ガスを被エッチング基板上に導入
する複数の細孔が開口されたプレートを含むガス導入部
と,該被エッチング基板上に該反応性ガスのプラズマを
発生させる手段と,該反応性ガスを排気する手段とを有
し,該細孔は該被エッチング基板に対して略垂直に対向
し,該被エッチング基板と該細孔との距離がエッチング
時の該反応ガスの圧力で決まる平均自由行程と同程度ま
たは以下であることを特徴とするエッチング装置。
1. A gas introduction unit including a plate having a plurality of pores for introducing a reactive gas onto a substrate to be etched, and means for generating plasma of the reactive gas on the substrate to be etched, Means for exhausting the reactive gas, the pores face substantially perpendicularly to the substrate to be etched, and the distance between the substrate to be etched and the pores is the pressure of the reactive gas at the time of etching. An etching apparatus characterized in that the mean free path is equal to or less than the mean free path.
【請求項2】 前記細孔の開口領域が前記被エッチング
基板と同じ大きさあるいはそれ以上であることを特徴と
する請求項1記載のエッチング装置。
2. The etching apparatus according to claim 1, wherein the opening region of the pore has the same size as or larger than the substrate to be etched.
【請求項3】 前記細孔の口径は前記プレートの厚さ方
向に均一で且つ該プレートの厚さの1/5以下であるこ
とを特徴とする請求項1乃至2記載のエッチング装置。
3. The etching apparatus according to claim 1, wherein the diameter of the pores is uniform in the thickness direction of the plate and is ⅕ or less of the thickness of the plate.
【請求項4】 前記細孔は,該細孔から噴出した反応性
ガスの発散角度内に含まれる基板の領域の口径以内のピ
ッチで配列されていることを特徴とする請求項1乃至3
記載のエッチング装置。
4. The pores are arranged at a pitch within a diameter of a region of the substrate included in a divergence angle of the reactive gas ejected from the pores.
The etching apparatus described.
【請求項5】 前記ガス導入部を加熱する手段を有する
ことを特徴とする請求項1乃至4記載のエッチング装
置。
5. The etching apparatus according to claim 1, further comprising means for heating the gas introducing portion.
【請求項6】 前記被エッチング基板側のガス圧が前記
ガス導入部側のガス圧より1桁以上低くなるように,前
記プレートを含めて排気系のコンダクタンスが調節され
ていることを特徴とする請求項1乃至5記載のエッチン
グ装置。
6. The conductance of the exhaust system including the plate is adjusted so that the gas pressure on the side of the substrate to be etched is lower than the gas pressure on the side of the gas introducing portion by one digit or more. The etching apparatus according to claim 1.
JP5104848A 1993-05-06 1993-05-06 Etching equipment Withdrawn JPH06318564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5104848A JPH06318564A (en) 1993-05-06 1993-05-06 Etching equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5104848A JPH06318564A (en) 1993-05-06 1993-05-06 Etching equipment

Publications (1)

Publication Number Publication Date
JPH06318564A true JPH06318564A (en) 1994-11-15

Family

ID=14391737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5104848A Withdrawn JPH06318564A (en) 1993-05-06 1993-05-06 Etching equipment

Country Status (1)

Country Link
JP (1) JPH06318564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149956A (en) * 2003-11-17 2005-06-09 Ulvac Japan Ltd Method and apparatus for performing plasma processing with high uniformity over large area

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149956A (en) * 2003-11-17 2005-06-09 Ulvac Japan Ltd Method and apparatus for performing plasma processing with high uniformity over large area

Similar Documents

Publication Publication Date Title
US10004133B2 (en) Apparatus and techniques to treat substrates using directional plasma and reactive gas
US5242539A (en) Plasma treatment method and apparatus
US20170229287A1 (en) Oxide etch selectivity systems and methods
US6348158B1 (en) Plasma processing with energy supplied
JP4073204B2 (en) Etching method
TWI702651B (en) Apparatus, system and method of treating substrate
US20060071607A1 (en) Surface wave plasma processing system and method of using
JPH08107101A (en) Plasma processing device and plasma processing method
KR20070091673A (en) Methods and apparatus for sequentially alternating among plasma processes in order to optimize a substrate
CN101131927A (en) Method for plasma etching performance enhancement
US4340461A (en) Modified RIE chamber for uniform silicon etching
JPH06318564A (en) Etching equipment
JPH05102083A (en) Method and apparatus for dry etching
Pu Plasma Etch Equipment
JP3164188B2 (en) Plasma processing equipment
EP0512677A2 (en) Plasma treatment method and apparatus
JP2003031555A (en) Surface treatment apparatus
US9728416B2 (en) Plasma tuning rods in microwave resonator plasma sources
JP3327285B2 (en) Plasma processing method and semiconductor device manufacturing method
JP2010267670A (en) Plasma processing method
JPH04273436A (en) Plasma processing device
KR100263611B1 (en) Method for trench fabrication
JP2791298B2 (en) Microwave-excited plasma processing equipment
JPH05315292A (en) Semiconductor manufacturing device and manufacture of semiconductor device
JP2024013628A (en) Etching method and plasma processing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801