JPH06315233A - Battery charge control method - Google Patents

Battery charge control method

Info

Publication number
JPH06315233A
JPH06315233A JP5102407A JP10240793A JPH06315233A JP H06315233 A JPH06315233 A JP H06315233A JP 5102407 A JP5102407 A JP 5102407A JP 10240793 A JP10240793 A JP 10240793A JP H06315233 A JPH06315233 A JP H06315233A
Authority
JP
Japan
Prior art keywords
battery
charging
temperature
voltage
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5102407A
Other languages
Japanese (ja)
Inventor
Yoshiro Takeda
義郎 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5102407A priority Critical patent/JPH06315233A/en
Priority to US08/202,506 priority patent/US5627451A/en
Publication of JPH06315233A publication Critical patent/JPH06315233A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a battery charge control method in which the service life of a battery can be prolonged while preventing overcharge and erroneous detection can be eliminated during the charging operation. CONSTITUTION:Voltage V and temperature T are measured for a secondary battery 1, e.g. a Ni-Cd battery or Ni-Hg battery, and then a battery voltage variation(DELTAV/DELTAt) per unit time and a battery temperature variation (DELTAT/DELTAt) are determined. Upon elapse of a predetermined time ts after start of charging operation, the DELTAV/DELTAt, DELTAT/DELTAt or the DELTAV/DELTAt, T are compared with the set values DELTAVx1, DELTATx, Tx, and the charging operation of battery is stopped when the set values are reached. The charging operation is also terminated when the battery voltage V reaches a maximum voltage Vp stored in a memory means 3, when the set value Tx is reached, or when the battery voltage drop -DELTAV reaches a set value -DELTAVX.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】情報処理装置のダウンサイジング
により携帯型装置の需要が高まっており、携帯型装置で
は電池駆動が必要である。このため、サイクル使用可能
である二次電池を搭載する装置が増加し、短時間で電池
を充電する方法が要求されるようになってきている。
BACKGROUND OF THE INVENTION Demand for portable devices has increased due to downsizing of information processing devices, and portable devices require battery operation. Therefore, the number of devices equipped with a rechargeable battery that can be cycled is increasing, and a method of charging the battery in a short time is required.

【0002】本発明は上記した二次電池の定電流充電に
おいて、充電完了を検知して充電を終了する電池の充電
制御方法に関する。
The present invention relates to a battery charge control method for detecting the completion of charging and ending charging in constant current charging of a secondary battery as described above.

【0003】[0003]

【従来の技術】図8は本発明の前提となるニッカド電
池、ニッケル水素電池等の二次電池の充電装置を示す図
であり、同図において、11はACアダプタ、12は二
次電池、12aは電池の温度を監視するサーミスタ等の
温度センサ、13は例えば、ノート型パソコン、ノート
型ワープロなどの二次電池を搭載した装置、13aは直
流電圧を変換するDC/DCコンバータ、13bは例え
ばノート・パソコン、ノート・ワープロにおけるプロセ
ッサ等の負荷、D1ないしD3はダイオード、SW1は
スイッチである。
2. Description of the Related Art FIG. 8 is a diagram showing a charging device for a secondary battery such as a nickel-cadmium battery or a nickel-hydrogen battery, which is a premise of the present invention. In FIG. 8, 11 is an AC adapter, 12 is a secondary battery, and 12a. Is a temperature sensor such as a thermistor that monitors the temperature of the battery, 13 is a device equipped with a secondary battery such as a notebook computer or a notebook word processor, 13a is a DC / DC converter that converts a DC voltage, and 13b is a notebook, for example. A load such as a processor in a personal computer or a notebook word processor, D1 to D3 are diodes, and SW1 is a switch.

【0004】同図において、ACアダプタ11および電
池12からダイオードD2,D3を介して供給される直
流電圧はDC/DCコンバータ13aで変換され負荷1
3bに供給される。また、電池12はダイオードD1お
よび充電時オンとなるスイッチSW1を介してACアダ
プタ11の出力により充電される。一方、プロセッサ等
から構成される負荷13bは、電池12の電圧および温
度センサ12aにより検出される電池温度を監視し、電
池12の充電が完了するとスイッチSW1をオフにして
充電を終了する。
In the figure, the DC voltage supplied from the AC adapter 11 and the battery 12 through the diodes D2 and D3 is converted by the DC / DC converter 13a and the load 1 is supplied.
3b. Further, the battery 12 is charged by the output of the AC adapter 11 via the diode D1 and the switch SW1 that is turned on during charging. On the other hand, the load 13b composed of a processor or the like monitors the voltage of the battery 12 and the battery temperature detected by the temperature sensor 12a, and when the charging of the battery 12 is completed, the switch SW1 is turned off to end the charging.

【0005】上記のような充電装置において、前記した
ように二次電池を短時間で充電する(例えば、1時間程
度で公称容量値まで充電する場合)に際して、その充電
の完了を検出する方法としては、従来から、電池の電
圧降下(−ΔV)を検出する方法、単位時間当たりの
電池温度変化量(ΔT/Δt)を検出する方法、単位
時間当たりの電池電圧変化量(ΔV/Δt)を検出する
方法等が知られている。
As a method of detecting the completion of the charging when the secondary battery is charged in a short time (for example, when it is charged to the nominal capacity value in about 1 hour) as described above in the charging device as described above. Is a method for detecting a battery voltage drop (-ΔV), a method for detecting a battery temperature change amount per unit time (ΔT / Δt), and a battery voltage change amount per unit time (ΔV / Δt). A method of detecting is known.

【0006】図9は前記したの方法により充電完了を
検出する場合のニッカド電池、ニッケル水素電池等の二
次電池の充電特性および充電完了検出のフローチャート
を示す図であり、同図(a)は充電特性を示し、横軸は
充電時間、縦軸は電池電圧Vと電池温度Tを示してお
り、また、(b)は本方法により充電完了を検出するフ
ローチャートを示している。
FIG. 9 is a diagram showing a charging characteristic of a secondary battery such as a nickel-cadmium battery or a nickel-hydrogen battery and a flow chart of detection of charging completion when the completion of charging is detected by the above method. The charging characteristics are shown, the horizontal axis shows the charging time, the vertical axis shows the battery voltage V and the battery temperature T, and (b) shows a flowchart for detecting the completion of charging by this method.

【0007】同図(a)に示すように、二次電池の電圧
は充電の初期一時的に上昇し、その後、充電の進行とと
もにゆっくり上昇し、充電完了の前に再び上昇したのち
電圧は降下する。また、二次電池の温度は充電中ぼぼ一
定であり、充電完了前に急激に上昇したのち低下する。
上記の方法は、図9(a)に示すように電池の充電が
完了した際、電池電圧が降下する現象が発生するのを検
出し、電池充電完了を検出する。
As shown in FIG. 3A, the voltage of the secondary battery rises temporarily at the beginning of charging, then slowly rises as the charging progresses, rises again before the completion of charging, and then drops. To do. In addition, the temperature of the secondary battery is almost constant during charging, and increases rapidly before the completion of charging and then decreases.
The above method detects the occurrence of a phenomenon in which the battery voltage drops when the battery is completely charged, as shown in FIG. 9A, and detects the completion of battery charging.

【0008】すなわち、図9(b)のフローチャートに
示すように、電池電圧の降下量(−ΔVx )を測定し
(ステップS1)、電池電圧の降下量(−ΔV)が予め
定めた設定値(−ΔVx )より大きくなると(ステップ
S2)充電完了として、前記した図8のスイッチSW1
をオフとする。図10は前記したの方法により充電完
了検出する場合の充電特性および充電完了検出のフロー
チャートを示す図であり、同図(a)は、図9と同様、
横軸は充電時間、縦軸は電池電圧Vと電池温度Tを示し
ており、同図は充電途中で周囲温度が変化して誤検出し
た場合を示し、また、(b)は本方法により充電完了を
検出するフローチャートを示している。
That is, as shown in the flowchart of FIG. 9 (b), the battery voltage drop amount (-ΔVx) is measured (step S1), and the battery voltage drop amount (-ΔV) is set to a preset value ( -ΔVx) (step S2), the charging is completed and the switch SW1 of FIG.
To turn off. FIG. 10 is a diagram showing a charge characteristic and a flow chart of charge completion detection when the charge completion is detected by the method described above, and FIG. 10A is the same as FIG.
The horizontal axis shows the charging time, and the vertical axis shows the battery voltage V and the battery temperature T. The figure shows the case where the ambient temperature changed during the charging, resulting in an erroneous detection, and (b) shows the charging by this method. The flowchart which detects completion is shown.

【0009】上記の方法は、電池の充電が完了した
際、電池温度が急激の上昇する現象を検出して、電池充
電完了を検出する。すなわち、図10(b)のフローチ
ャートに示すように、単位時間当たりの電池温度上昇率
(ΔT/Δt)を測定し(ステップS1)、電池温度上
昇率(ΔT/Δt)が予め定めた温度上昇率(ΔTx )
より大きくなると(ステップS2)充電完了として、前
記した図8のスイッチSW1をオフとする。
The above method detects the completion of battery charging by detecting the phenomenon that the battery temperature rises rapidly when the battery is completely charged. That is, as shown in the flowchart of FIG. 10B, the battery temperature rise rate (ΔT / Δt) per unit time is measured (step S1), and the battery temperature rise rate (ΔT / Δt) is set to a predetermined temperature rise. Rate (ΔTx)
When it becomes larger (step S2), the charging is completed, and the switch SW1 in FIG. 8 is turned off.

【0010】この方法においては、電池温度上昇率(Δ
T/Δt)を検出して充電完了を検出しているため、図
10(a)に示すように充電途中で周囲温度の変化があ
ると電池温度が一時的に上昇し、充電完了と誤検出する
恐れがある。図11は前記したの方法により充電完了
検出する場合の充電特性および充電完了検出のフローチ
ャートを示す図であり、同図(a)は、図9と同様、充
電特性を示し、横軸は充電時間、縦軸は電池電圧Vと電
池温度Tを示しており、また、(b)はフローチャート
を示している。
In this method, the battery temperature rise rate (Δ
Since T / Δt) is detected to detect the completion of charging, if the ambient temperature changes during charging as shown in FIG. There is a risk of FIG. 11 is a diagram showing a charging characteristic and a flowchart of charging completion detection in the case where the charging completion is detected by the method described above. FIG. 11A shows the charging characteristics as in FIG. 9, and the horizontal axis represents the charging time. The vertical axis shows the battery voltage V and the battery temperature T, and (b) shows the flowchart.

【0011】二次電池の単位時間あたりの電圧上昇は、
前記したように充電開始時および電池の充電完了時に大
きくなり、電池の充電開始時の電圧上昇率をΔVx2と
し、電池の充電完了時の電圧上昇率をΔVx1とすると、
ΔVx1<ΔVx2となる。上記の方法は、上記したΔV
x1<ΔVx2の関係に着目し、図11(a)に示すように
単位時間当たりの電圧上昇率(ΔV/Δt)が上記ΔV
x1とΔVx2の範囲内になった場合に電池充電完了を検出
する。
The voltage rise of the secondary battery per unit time is
As described above, the voltage increases at the start of charging and at the completion of charging of the battery. If the voltage increase rate at the start of charging the battery is ΔVx2 and the voltage increase rate at the completion of charging of the battery is ΔVx1, then
ΔVx1 <ΔVx2. The above method is the same as the above ΔV.
Paying attention to the relationship of x1 <ΔVx2, as shown in FIG. 11A, the voltage increase rate per unit time (ΔV / Δt) is the above ΔV.
When it is within the range of x1 and ΔVx2, the battery charge completion is detected.

【0012】すなわち、図11(b)のフローチャート
に示すように、単位時間当たりの電池電圧上昇率(ΔV
/Δt)を測定し(ステップS1)、電池電圧上昇率
(ΔV/Δt)が充電完了時の電圧上昇率(ΔVx1)よ
り大きく、かつ、充電開始時の電圧上昇率(ΔVx2)よ
り小さくなると(ステップS2)充電完了として、前記
した図8のスイッチSW1をオフとする。
That is, as shown in the flow chart of FIG. 11B, the battery voltage increase rate per unit time (ΔV
/ Δt) is measured (step S1) and when the battery voltage increase rate (ΔV / Δt) is larger than the voltage increase rate (ΔVx1) at the completion of charging and smaller than the voltage increase rate (ΔVx2) at the start of charging ( Step S2) Upon completion of charging, the switch SW1 shown in FIG. 8 is turned off.

【0013】[0013]

【発明が解決しようとする課題】ところで、上記した
の方法は、電池の電圧降下(−ΔV)を検出しているた
め、図9に示したように、−ΔVの値が大きいほど電池
の過充電の度合いが大きくなり、電池温度が上昇して電
池のサイクル寿命が低下する。また、の方法は、前記
したように充電途中で周囲温度の変化があると誤検出す
る恐れがあった。
By the way, since the above-mentioned method detects the voltage drop (-ΔV) of the battery, as shown in FIG. The degree of charge increases, the battery temperature rises, and the cycle life of the battery decreases. In addition, as described above, the method (1) may erroneously detect that the ambient temperature has changed during charging.

【0014】さらに、の方法は、充電開始時の電圧上
昇を電池の充電完了に基づく電圧上昇と誤検出する恐れ
があった。以上のように、従来の充電完了検出方法は電
池のサイクル寿命が低下したり、あるいは、誤検出をす
るといった問題点があった。本発明は上記した従来技術
の問題点を改善するためになされたものであって、過充
電を避けることにより電池の長寿命化を図ることができ
るとともに、充電途中の誤検出を解消することができる
電池の充電制御方法を提供することを目的とする。
Further, the above method may erroneously detect the voltage increase at the start of charging as the voltage increase due to the completion of charging of the battery. As described above, the conventional method of detecting the completion of charging has a problem that the cycle life of the battery is shortened or erroneous detection is performed. The present invention has been made in order to improve the above-mentioned problems of the prior art. It is possible to prolong the life of the battery by avoiding overcharging, and to eliminate erroneous detection during charging. An object of the present invention is to provide a battery charge control method capable of controlling the battery.

【0015】[0015]

【課題を解決するための手段】図1は本発明の原理ブロ
ック図であり、同図において、1は充電される二次電
池、Vは二次電池の電圧、2は二次電池の温度Tを測定
する温度センサ、3は充電時における電池電圧の最大値
を記憶した記憶手段、ΔV/Δtは単位時間当たりの電
池電圧変化量、ΔT/Δtは単位時間当たりの電池温度
変化量、ΔVx1、ΔTx 、Tx 、−ΔVxは予め定めら
れた設定値である。
FIG. 1 is a block diagram of the principle of the present invention, in which 1 is a secondary battery to be charged, V is the voltage of the secondary battery, and 2 is the temperature T of the secondary battery. A temperature sensor 3 for measuring the maximum value of the battery voltage during charging, ΔV / Δt is the battery voltage change amount per unit time, ΔT / Δt is the battery temperature change amount per unit time, ΔVx1, ΔTx, Tx, and −ΔVx are preset setting values.

【0016】本発明の請求項1の発明は図1(a)に示
すように、二次電池1を短時間で定電流充電する電池の
充電制御方法において、充電開始から所定時間ts 経過
後、単位時間当たりの電池電圧変化量ΔV/Δtの測定
を開始し、上記単位時間当たりの電池電圧変化量ΔV/
Δtが所定の設定値ΔVx1に達したとき、電池の充電を
終了するようにしたものである。
As shown in FIG. 1 (a), the invention of claim 1 of the present invention is a battery charge control method for charging a secondary battery 1 with a constant current in a short time, and after a predetermined time ts has elapsed from the start of charging, The measurement of the battery voltage change amount ΔV / Δt per unit time is started, and the battery voltage change amount ΔV /
The charging of the battery is terminated when Δt reaches a predetermined set value ΔVx1.

【0017】本発明の請求項2の発明は図1(b)に示
すように、二次電池1を短時間で定電流充電する電池の
充電制御方法において、単位時間当たりの電池電圧変化
量ΔV/Δtと単位時間当たりの電池温度変化量ΔT/
Δtを測定し、単位時間当たりの電池電圧変化量ΔV/
Δtと単位時間当たりの電池温度変化量ΔT/Δtが共
に所定の設定値ΔVx1、ΔTx に達したとき電池の充電
を終了するようにしたものである。
According to a second aspect of the present invention, as shown in FIG. 1 (b), in a battery charge control method for charging a secondary battery 1 with a constant current in a short time, a battery voltage change amount ΔV per unit time is increased. / Δt and battery temperature change amount ΔT / per unit time
Δt is measured and the battery voltage change amount per unit time ΔV /
The charging of the battery is terminated when both Δt and the battery temperature change amount ΔT / Δt per unit time reach predetermined set values ΔVx1 and ΔTx.

【0018】本発明の請求項3の発明は図1(c)に示
すように、二次電池1を短時間で定電流充電する電池の
充電制御方法において、単位時間当たりの電池電圧変化
量ΔV/Δtと電池温度Tを測定し、単位時間当たりの
電池電圧変化量ΔV/Δtと電池温度Tが共に所定の設
定値ΔVx1、Tx に達したとき電池の充電を終了するよ
うにしたものである。
According to a third aspect of the present invention, as shown in FIG. 1 (c), in a battery charge control method for charging a secondary battery 1 with a constant current in a short time, a battery voltage change amount ΔV per unit time is increased. / Δt and the battery temperature T are measured, and when the battery voltage change amount ΔV / Δt per unit time and the battery temperature T both reach the predetermined set values ΔVx1 and Tx, the battery charging is terminated. .

【0019】本発明の請求項4の発明は図1(d)に示
すように、二次電池1を短時間で定電流充電する電池の
充電制御方法において、予め、充電時における電池電圧
の最大値Vp を記憶手段3に記憶しておき、充電時にお
ける電池電圧Vが上記記憶手段3に記憶された電池電圧
の最大値Vp に達したとき、電池の充電を終了するよう
にしたものである。
According to a fourth aspect of the present invention, as shown in FIG. 1 (d), in the battery charge control method for charging the secondary battery 1 with a constant current in a short time, the maximum battery voltage during charging is previously set. The value Vp is stored in the storage means 3, and when the battery voltage V at the time of charging reaches the maximum value Vp of the battery voltage stored in the storage means 3, the charging of the battery is terminated. .

【0020】本発明の請求項5の発明は図1(e)に示
すように、二次電池1を短時間で定電流充電する電池の
充電制御方法において、電池電圧の降下量−ΔVと電池
温度Tを測定し、電池電圧の降下量−ΔVと電池温度T
のいずれか一方が所定の設定値−ΔVx 、Tx に達した
とき電池の充電を終了するようにしたものである。
According to a fifth aspect of the present invention, as shown in FIG. 1 (e), in the battery charge control method for charging the secondary battery 1 with a constant current in a short time, the battery voltage drop amount -ΔV and the battery The temperature T is measured, and the battery voltage drop amount -ΔV and the battery temperature T
The charging of the battery is terminated when either one of them reaches a predetermined set value −ΔVx, Tx.

【0021】[0021]

【作用】本発明の請求項1の発明においては、単位時間
当たりの電池電圧変化量ΔV/Δtが設定値ΔVx1に達
したとき、電池の充電を終了する充電制御方法におい
て、充電開始から所定時間、単位時間当たりの電池電圧
変化量ΔV/Δtを測定しないようにしたので、充電開
始時における電池の電圧変化を充電の完了と誤検出する
ことなく、100%充電の直前で充電を終了することが
でき、電池の長寿命化を図ることができる。
According to the first aspect of the present invention, when the battery voltage change amount ΔV / Δt per unit time reaches the set value ΔVx1, the charging control method ends the charging of the battery in a predetermined time from the start of charging. Since the amount of battery voltage change ΔV / Δt per unit time is not measured, the battery voltage change at the start of charging should not be erroneously detected as the completion of charging, and charging should be terminated immediately before 100% charging. Therefore, the battery life can be extended.

【0022】本発明の請求項2の発明においては、単位
時間当たりの電池電圧変化量ΔV/Δtと単位時間当た
りの電池温度変化量ΔT/Δtを測定し、単位時間当た
りの電池電圧変化量ΔV/Δtと単位時間当たりの電池
温度変化量ΔT/Δtが共に所定の設定値ΔVx1、ΔT
x に達したとき電池の充電を終了するようにしたので、
請求項1の発明と同様の効果を得ることができるととも
に、周囲温度が変わっても、充電完了と誤検出すること
がない。
According to the second aspect of the present invention, the battery voltage change amount ΔV / Δt per unit time and the battery temperature change amount ΔT / Δt per unit time are measured, and the battery voltage change amount ΔV per unit time is measured. / Δt and the battery temperature change amount ΔT / Δt per unit time are both predetermined set values ΔVx1, ΔT
When I reached x, I decided to stop charging the battery, so
The same effect as the invention of claim 1 can be obtained, and even if the ambient temperature changes, it is not erroneously detected that the charging is completed.

【0023】本発明の請求項3の発明においては、単位
時間当たりの電池電圧変化量ΔV/Δtと電池温度Tを
測定し、単位時間当たりの電池電圧変化量ΔV/Δtと
電池温度Tが共に所定の設定値ΔVx1、Tx に達したと
き電池の充電を終了するようにしたので、請求項2の発
明と同様の効果を得ることができる。本発明の請求項4
の発明においては、充電時における電池電圧Vが記憶手
段3に記憶された電池電圧の最大値Vp に達したとき、
電池の充電を終了するようにしたので、請求項1ないし
請求項4の発明と同様、100%充電の直前で充電を終
了することができ、電池の長寿命化を図ることができ
る。
According to the third aspect of the present invention, the battery voltage change amount ΔV / Δt per unit time and the battery temperature T are measured, and the battery voltage change amount ΔV / Δt per unit time and the battery temperature T are both Since the charging of the battery is terminated when the predetermined set value ΔVx1, Tx is reached, the same effect as the invention of claim 2 can be obtained. Claim 4 of the present invention
In the invention, when the battery voltage V during charging reaches the maximum value Vp of the battery voltage stored in the storage means 3,
Since the charging of the battery is terminated, the charging can be terminated immediately before 100% charging, and the life of the battery can be extended, as in the inventions of claims 1 to 4.

【0024】本発明の請求項5の発明においては、電池
電圧の降下量−ΔVと電池温度Tを測定し、電池電圧の
降下量−ΔVと電池温度Tのいずれか一方が所定の設定
値−ΔVx 、Tx に達したとき電池の充電を終了するよ
うにしたので、電池の温度上昇により100%充電の直
前で充電を終了することができ、また、何らかの原因に
より温度上昇による電池充電完了を検出できなかった場
合でも、電池電圧降下により充電を終了することがで
き、過充電による電池のサイクル寿命の低下を防ぐこと
が可能となる。
According to the fifth aspect of the present invention, the battery voltage drop amount -ΔV and the battery temperature T are measured, and one of the battery voltage drop amount -ΔV and the battery temperature T is a predetermined set value- Since the charging of the battery is terminated when ΔVx and Tx are reached, the charging can be terminated just before 100% charging due to the temperature rise of the battery, and the completion of battery charging due to the temperature rise is detected for some reason. Even if it is not possible, the charging can be terminated due to the battery voltage drop, and it is possible to prevent the cycle life of the battery from being shortened due to overcharging.

【0025】[0025]

【実施例】図2は本発明の第1の実施例を示す図であ
り、同図(a)は本実施例における充電特性を示し、図
9と同様、横軸は充電時間、縦軸は電池電圧Vと電池温
度Tを示しており、また、(b)は本実施例のフローチ
ャートを示している。本実施例においては、前記した充
電開始時における誤検出を防止するため、充電直後はΔ
V/Δtを検出しないようにしたものである。
EXAMPLE FIG. 2 is a diagram showing a first example of the present invention. FIG. 2 (a) shows the charging characteristics in this example. As in FIG. 9, the horizontal axis represents the charging time and the vertical axis represents the charging characteristic. The battery voltage V and the battery temperature T are shown, and (b) shows the flowchart of this embodiment. In this embodiment, in order to prevent erroneous detection at the start of charging described above, Δ
This is so that V / Δt is not detected.

【0026】すなわち、図2(b)のフローチャートに
示すように、充電時間tが所定時間ts (例えば、充電
開始から数分間)より大きいか否かを判別し(ステップ
S1)、充電開始からの時間tが所定時間ts より大き
くなると、ΔV/Δtを測定し(ステップS2)、電池
電圧上昇率(ΔV/Δt)が所定の電圧上昇率(ΔVx
1)に達すると(ステップS3)充電完了として、前記
した図8のスイッチSW1をオフとする。
That is, as shown in the flow chart of FIG. 2 (b), it is judged whether or not the charging time t is longer than a predetermined time ts (for example, several minutes from the start of charging) (step S1), and from the start of charging. When the time t becomes longer than the predetermined time ts, ΔV / Δt is measured (step S2), and the battery voltage increase rate (ΔV / Δt) is changed to the predetermined voltage increase rate (ΔVx
When it reaches 1) (step S3), the charging is completed and the switch SW1 in FIG. 8 is turned off.

【0027】図3は本発明の第2の実施例を示す図であ
り、同図(a)は本実施例における充電特性を示し、図
9と同様、横軸は充電時間、縦軸は電池電圧Vと電池温
度Tを示しており、また、(b)は本実施例のフローチ
ャートを示している。なお、同図(a)の温度Tのカー
ブにおいて、充電途中における温度上昇は周囲温度の変
化に基づく電池温度上昇を示している。
FIG. 3 is a diagram showing a second embodiment of the present invention. FIG. 3 (a) shows the charging characteristics in this embodiment. As in FIG. 9, the horizontal axis represents the charging time and the vertical axis represents the battery. The voltage V and the battery temperature T are shown, and (b) shows the flowchart of this embodiment. In the curve of temperature T in FIG. 9A, the temperature rise during charging indicates the battery temperature rise due to the change in ambient temperature.

【0028】本実施例は電池電圧上昇率(ΔV/Δt)
に加えて電池温度上昇率(ΔT/Δt)を測定して充電
完了を検出することにより100パーセント充電に達す
る直前で充電を終了するようにしたものである。すなわ
ち、図3(b)のフローチャートに示すように、電池温
度上昇率(ΔT/Δt)と電池電圧上昇率(ΔV/Δ
t)を測定し(ステップS1)、電池温度上昇率(ΔT
/Δt)が所定値ΔTx に達すると(ステップS2)、
ΔV/Δtが所定の電圧上昇率(ΔVx1)より大きか否
かを判別し(ステップS3)、電池電圧上昇率(ΔV/
Δt)が電圧上昇率(ΔVx1)に達すると、充電完了と
して、前記した図8のスイッチSW1をオフとする。
In this embodiment, the battery voltage increase rate (ΔV / Δt)
In addition to this, the battery temperature rise rate (ΔT / Δt) is measured to detect the completion of charging, so that the charging is terminated immediately before 100% charging is reached. That is, as shown in the flowchart of FIG. 3B, the battery temperature increase rate (ΔT / Δt) and the battery voltage increase rate (ΔV / Δt).
t) is measured (step S1), and the battery temperature rise rate (ΔT
/ Δt) reaches a predetermined value ΔTx (step S2),
It is determined whether or not ΔV / Δt is larger than a predetermined voltage increase rate (ΔVx1) (step S3), and the battery voltage increase rate (ΔV /
When Δt) reaches the voltage increase rate (ΔVx1), the charging is completed and the switch SW1 shown in FIG. 8 is turned off.

【0029】図4は本発明の第3の実施例を示す図であ
り、同図(a)は本実施例における充電特性を示し、図
9と同様、横軸は充電時間、縦軸は電池電圧Vと電池温
度Tを示しており、また、(b)は本実施例のフローチ
ャートを示している。なお、同図(a)の温度Tのカー
ブにおいて、充電途中における温度上昇は、図3の場合
と同様、周囲温度の変化に基づく電池温度上昇を示して
いる。
FIG. 4 is a diagram showing a third embodiment of the present invention. FIG. 4 (a) shows the charging characteristics in this embodiment. As in FIG. 9, the horizontal axis represents the charging time and the vertical axis represents the battery. The voltage V and the battery temperature T are shown, and (b) shows the flowchart of this embodiment. In the curve of the temperature T in FIG. 9A, the temperature rise during charging indicates the battery temperature rise due to the change in ambient temperature, as in the case of FIG.

【0030】本実施例は電池電圧上昇率(ΔV/Δt)
に加えて電池温度(T)を測定して充電完了を検出する
ことにより100パーセント充電に達する直前で充電を
終了するようにしたものである。すなわち、図4(b)
のフローチャートに示すように、電池温度(T)と電池
電圧上昇率(ΔV/Δt)を測定し(ステップS1)、
電池温度(T)が所定値Tx に達すると(ステップS
2)、ΔV/Δtが所定の電圧上昇率(ΔVx1)より大
きか否かを判別し(ステップS3)、電池電圧上昇率
(ΔV/Δt)が電圧上昇率(ΔVx1)に達すると、充
電完了として、前記した図8のスイッチSW1をオフと
する。
In this embodiment, the battery voltage increase rate (ΔV / Δt)
In addition, the battery temperature (T) is measured to detect the completion of charging, so that the charging is terminated immediately before 100% charging is reached. That is, FIG. 4 (b)
The battery temperature (T) and the battery voltage increase rate (ΔV / Δt) are measured (step S1),
When the battery temperature (T) reaches a predetermined value Tx (step S
2), it is determined whether or not ΔV / Δt is larger than a predetermined voltage increase rate (ΔVx1) (step S3), and when the battery voltage increase rate (ΔV / Δt) reaches the voltage increase rate (ΔVx1), charging is completed. As a result, the switch SW1 shown in FIG. 8 is turned off.

【0031】図5は本発明の第4の実施例を示す図であ
り、同図(a)は本実施例における充電特性を示し、図
9と同様、横軸は充電時間、縦軸は電池電圧Vと電池温
度Tを示している。また、(b)は本実施例のフローチ
ャートを示し、(c)は周囲温度と電池の充電時におけ
る最大電圧Vp との関係を示すテーブルである。一般に
電池の充電時における最大電圧Vp と電池の周囲温度は
所定の対応関係があり、電池の種類、電池の製造メーカ
等が定まると、それに応じて周囲温度に対する最大電圧
Vp が定まる。
FIG. 5 is a diagram showing a fourth embodiment of the present invention. FIG. 5 (a) shows the charging characteristics in this embodiment. As in FIG. 9, the horizontal axis represents the charging time and the vertical axis represents the battery. The voltage V and the battery temperature T are shown. Further, (b) shows a flow chart of the present embodiment, and (c) is a table showing the relationship between the ambient temperature and the maximum voltage Vp at the time of charging the battery. Generally, the maximum voltage Vp at the time of charging the battery and the ambient temperature of the battery have a predetermined correspondence relationship. When the type of battery, the manufacturer of the battery, etc. are determined, the maximum voltage Vp with respect to the ambient temperature is determined accordingly.

【0032】本実施例は図5(c)に示す電池の充電時
における最大電圧Vp と周囲温度の関係を示すテーブル
を、電池の種類、製造メーカ毎に予め不揮発性記憶素子
に記憶しておき、電池の充電時、充電する電池の種類等
を特定して、上記不揮発性記憶素子から周囲温度に対す
る電池の最大電圧Vp を読みだし、電池の電圧と比較す
ることにより充電完了を検出するようにしたものであ
る。
In this embodiment, a table showing the relationship between the maximum voltage Vp at the time of charging the battery and the ambient temperature shown in FIG. 5C is stored in advance in the nonvolatile memory element for each battery type and manufacturer. At the time of charging the battery, the type of the battery to be charged is specified, the maximum voltage Vp of the battery with respect to the ambient temperature is read from the nonvolatile memory element, and the completion of charging is detected by comparing with the voltage of the battery. It was done.

【0033】すなわち、図5(b)のフローチャートに
示すように、周囲温度を測定し(ステップS1)、不揮
発性記憶素子から周囲温度に対応した電池の最大電圧V
p を呼び出し(ステップS2)、ついで、電池電圧Vを
測定して(ステップS3)、電池電圧Vが電池の最大電
圧Vp に達すると(ステップS4)、充電完了として、
前記した図8のスイッチSW1をオフとする。
That is, as shown in the flow chart of FIG. 5B, the ambient temperature is measured (step S1), and the maximum voltage V of the battery corresponding to the ambient temperature is measured from the nonvolatile memory element.
p is called (step S2), then the battery voltage V is measured (step S3), and when the battery voltage V reaches the maximum battery voltage Vp (step S4), charging is completed,
The switch SW1 shown in FIG. 8 is turned off.

【0034】図6は本発明の第5の実施例を示す図であ
り、同図(a)は本実施例における充電特性を示し、図
9と同様、横軸は充電時間、縦軸は電池電圧Vと電池温
度Tを示しており、また、(b)は本実施例のフローチ
ャートを示している。本実施例は充電完了時における電
池電圧降下(−ΔV)と電池温度(T)を測定して、電
池温度が適温以上の場合に充電を終了するものであり、
図6(a)は電池温度が所定温度Tx に達したとき、充
電終了を検出した場合を示している。
FIG. 6 is a diagram showing a fifth embodiment of the present invention. FIG. 6 (a) shows the charging characteristics in this embodiment. Similar to FIG. 9, the horizontal axis represents the charging time and the vertical axis represents the battery. The voltage V and the battery temperature T are shown, and (b) shows the flowchart of this embodiment. In this embodiment, the battery voltage drop (−ΔV) and the battery temperature (T) at the time of completion of charging are measured, and the charging is terminated when the battery temperature is equal to or higher than an appropriate temperature.
FIG. 6A shows the case where the end of charging is detected when the battery temperature reaches the predetermined temperature Tx.

【0035】本実施例においては、図6(b)のフロー
チャートに示すように、電池温度(T)と電池電圧降下
(−ΔV)を測定し(ステップS1)、電池電圧降下
(−ΔV)が所定の電圧降下(−ΔVx )に達すると充
電を終了する。また、電池電圧降下(−ΔV)が所定の
電圧降下(−ΔVx )より大きくない場合には、電池温
度(T)と所定温度(Tx )を比較する(ステップS
2,S3)。そして、電池温度(T)が所定温度(Tx
)より小さい場合にはステップS1に戻り、また、電
池温度(T)が所定温度(Tx )に達すると充電完了と
して、前記した図8のスイッチSW1をオフとする。
In this embodiment, as shown in the flow chart of FIG. 6B, the battery temperature (T) and the battery voltage drop (-ΔV) are measured (step S1), and the battery voltage drop (-ΔV) is determined. Charging is terminated when a predetermined voltage drop (-ΔVx) is reached. If the battery voltage drop (-ΔV) is not larger than the predetermined voltage drop (-ΔVx), the battery temperature (T) and the predetermined temperature (Tx) are compared (step S).
2, S3). Then, the battery temperature (T) is the predetermined temperature (Tx
If the battery temperature (T) reaches a predetermined temperature (Tx), charging is completed and the switch SW1 in FIG. 8 is turned off.

【0036】本実施例においては、上記のように電池電
圧降下に加えて電池温度上昇を検出して電池の充電終了
としているので、電池の温度上昇により充電を終了する
ことができ、過充電になることを防ぐことができる。ま
た、何らかの原因により温度上昇による電池充電完了を
検出できなかった場合でも、電池電圧降下により充電を
終了することができる。
In the present embodiment, as described above, the battery temperature rise is detected and the battery temperature rise is detected to terminate the charging of the battery. Therefore, the charging can be terminated due to the temperature rise of the battery, resulting in overcharging. Can be prevented. Further, even if the battery charge completion due to the temperature rise cannot be detected for some reason, the battery voltage drop can terminate the charge.

【0037】図7は第2の実施例の方法を、ニッケル水
素電池の充電制御に適用した場合の充電特性を示す図で
あり、同図は下記の条件で充電した場合の充電特性を示
している。 ニッケル水素電池 8セル直列 公称電圧 1.2V×8=9.6V 公称容量 1100mAh 周囲温度 25°C 充電電流 1C(1時間で公称容量値まで充電
できる電流、この場合は1100mA) ΔVx1=60mV/min ΔTx =1°C/min 上記例においては、充電途中で周囲温度の変化に伴い電
池温度が変化しているので、電池温度変化量ΔT/Δt
が検出されるが、この場合にはΔV/Δtには変化がな
いので、充電完了と誤検出することはなく充電が継続す
る。その後、ΔT/Δt、ΔV/Δtの両方が上記した
ΔVx1、ΔTx に達すると充電を終了する。
FIG. 7 is a diagram showing charge characteristics when the method of the second embodiment is applied to charge control of a nickel-hydrogen battery, and FIG. 7 shows charge characteristics when charged under the following conditions. There is. Nickel-metal hydride battery 8 cells in series Nominal voltage 1.2V × 8 = 9.6V Nominal capacity 1100mAh Ambient temperature 25 ° C Charging current 1C (Current that can be charged to the nominal capacity value in 1 hour, 1100mA in this case) ΔVx1 = 60mV / min ΔTx = 1 ° C / min In the above example, since the battery temperature changes along with the change of the ambient temperature during charging, the battery temperature change amount ΔT / Δt
However, in this case, since ΔV / Δt does not change, charging is continued without erroneous detection of completion of charging. After that, when both ΔT / Δt and ΔV / Δt reach the above-mentioned ΔVx1 and ΔTx, the charging is terminated.

【0038】[0038]

【発明の効果】以上説明したように、本発明において
は、充電開始からの経過時間、単位時間当たりの電池電
圧変化量、電池温度変化量、電池電圧、電池温度等の条
件を組み合わせて電池の充電完了を検出しているので、
電池の長寿命化を図ることができるととともに、充電完
了の誤検出を防ぐことができ、電池の急速充電器の性能
向上に寄与するところが大きい。
As described above, according to the present invention, the combination of conditions such as the elapsed time from the start of charging, the battery voltage change amount per unit time, the battery temperature change amount, the battery voltage, the battery temperature, etc. Since the completion of charging is detected,
In addition to being able to extend the life of the battery, it is possible to prevent erroneous detection of completion of charging, which greatly contributes to improving the performance of the quick charger for the battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理ブロック図である。FIG. 1 is a principle block diagram of the present invention.

【図2】本発明の第1の実施例を示す図である。FIG. 2 is a diagram showing a first embodiment of the present invention.

【図3】本発明の第2の実施例を示す図である。FIG. 3 is a diagram showing a second embodiment of the present invention.

【図4】本発明の第3の実施例を示す図である。FIG. 4 is a diagram showing a third embodiment of the present invention.

【図5】本発明の第4の実施例を示す図である。FIG. 5 is a diagram showing a fourth embodiment of the present invention.

【図6】本発明の第5の実施例を示す図である。FIG. 6 is a diagram showing a fifth embodiment of the present invention.

【図7】本発明をニッケル水素電池に適用した場合の充
電特性を示す図である。
FIG. 7 is a diagram showing charging characteristics when the present invention is applied to a nickel hydrogen battery.

【図8】本発明の前提となる二次電池の充電装置を示す
図である。
FIG. 8 is a diagram showing a secondary battery charging device that is a premise of the present invention.

【図9】従来例を示す図である。FIG. 9 is a diagram showing a conventional example.

【図10】従来例を示す図である。FIG. 10 is a diagram showing a conventional example.

【図11】従来例を示す図である。FIG. 11 is a diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1,12 二次電池 2,12a 温度センサ 3 記憶手段 11 ACアダプタ 13 二次電池を搭載した装置 13a DC/DCコンバータ 13b 負荷 DESCRIPTION OF SYMBOLS 1,12 Secondary battery 2,12a Temperature sensor 3 Storage means 11 AC adapter 13 Device equipped with secondary battery 13a DC / DC converter 13b Load

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 二次電池(1) を短時間で定電流充電する
電池の充電制御方法において、 充電開始から所定時間ts 経過後、単位時間当たりの電
池電圧変化量( ΔV/Δt)の測定を開始し、上記単位
時間当たりの電池電圧変化量( ΔV/Δt)が所定の設
定値(ΔVx1)に達したとき、電池の充電を終了するこ
とを特徴とする電池の充電制御方法。
1. A battery charge control method for charging a secondary battery (1) with a constant current in a short time, in which a battery voltage change amount (ΔV / Δt) is measured per unit time after a predetermined time ts has elapsed from the start of charging. Is started, and when the battery voltage change amount (ΔV / Δt) per unit time reaches a predetermined set value (ΔVx1), the battery charging is terminated.
【請求項2】 二次電池(1) を短時間で定電流充電する
電池の充電制御方法において、 単位時間当たりの電池電圧変化量( ΔV/Δt)と単位
時間当たりの電池温度変化量( ΔT/Δt)を測定し、
単位時間当たりの電池電圧変化量( ΔV/Δt)と単位
時間当たりの電池温度変化量( ΔT/Δt)が共に所定
の設定値(ΔVx1、ΔTx )に達したとき電池の充電を
終了することを特徴とする電池の充電制御方法。
2. A battery charge control method for charging a secondary battery (1) with a constant current for a short time, comprising: a battery voltage change amount (ΔV / Δt) per unit time and a battery temperature change amount (ΔT) per unit time. / Δt) is measured,
When the amount of battery voltage change per unit time (ΔV / Δt) and the amount of battery temperature change per unit time (ΔT / Δt) both reach the preset values (ΔVx1, ΔTx), the battery charging is terminated. A characteristic battery charge control method.
【請求項3】 二次電池(1) を短時間で定電流充電する
電池の充電制御方法において、 単位時間当たりの電池電圧変化量( ΔV/Δt)と電池
温度(T)を測定し、単位時間当たりの電池電圧変化量
( ΔV/Δt)と電池温度(T)が共に所定の設定値
(ΔVx1、Tx )に達したとき電池の充電を終了するこ
とを特徴とする電池の充電制御方法。
3. A battery charge control method for charging a secondary battery (1) with a constant current in a short time, wherein a battery voltage change amount (ΔV / Δt) per unit time and a battery temperature (T) are measured, and a unit Battery voltage change per hour
A battery charge control method characterized in that charging of the battery is terminated when both (ΔV / Δt) and the battery temperature (T) reach a predetermined set value (ΔVx1, Tx).
【請求項4】 二次電池(1) を短時間で定電流充電する
電池の充電制御方法において、 予め、充電時における電池電圧の最大値(Vp )を記憶
手段(3) に記憶しておき、 充電時における電池電圧(V)が上記記憶手段(3) に記
憶された電池電圧の最大値(Vp )に達したとき、電池
の充電を終了することを特徴とする電池の充電制御方
法。
4. A battery charge control method for charging a secondary battery (1) with a constant current in a short time, wherein a maximum value (Vp) of a battery voltage during charging is stored in a storage means (3) in advance. A charging control method for a battery, characterized in that the charging of the battery is terminated when the battery voltage (V) during charging reaches the maximum value (Vp) of the battery voltage stored in the storage means (3).
【請求項5】 二次電池(1) を短時間で定電流充電する
電池の充電制御方法において、 電池電圧の降下量(−ΔV)と電池温度(T)を測定
し、電池電圧の降下量(−ΔV)と電池温度(T)のい
ずれか一方が所定の設定値(−ΔVx 、Tx )に達した
とき電池の充電を終了することを特徴とする電池の充電
制御方法。
5. A battery charge control method for charging a secondary battery (1) with a constant current in a short time, in which a battery voltage drop amount (-ΔV) and a battery temperature (T) are measured to determine a battery voltage drop amount. A battery charge control method, wherein charging of the battery is terminated when either one of (-ΔV) and battery temperature (T) reaches a predetermined set value (-ΔVx, Tx).
JP5102407A 1993-04-28 1993-04-28 Battery charge control method Pending JPH06315233A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5102407A JPH06315233A (en) 1993-04-28 1993-04-28 Battery charge control method
US08/202,506 US5627451A (en) 1993-04-28 1994-02-28 Control method and control apparatus for secondary battery charging in constant current charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5102407A JPH06315233A (en) 1993-04-28 1993-04-28 Battery charge control method

Publications (1)

Publication Number Publication Date
JPH06315233A true JPH06315233A (en) 1994-11-08

Family

ID=14326591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5102407A Pending JPH06315233A (en) 1993-04-28 1993-04-28 Battery charge control method

Country Status (2)

Country Link
US (1) US5627451A (en)
JP (1) JPH06315233A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172487B1 (en) 1998-06-17 2001-01-09 Black & Decker Inc. Method and apparatus for charging batteries
EP1174977A2 (en) 2000-07-21 2002-01-23 Honda Giken Kogyo Kabushiki Kaisha Method and device for charging secondary battery
JP2014131386A (en) * 2012-12-28 2014-07-10 Nissan Motor Co Ltd Secondary battery system and secondary battery control device
WO2019142915A1 (en) * 2018-01-18 2019-07-25 マクセルホールディングス株式会社 Alkaline secondary cell, charging method of said alkaline secondary cell, and charging device of alkaline secondary cell
JP2019133767A (en) * 2018-01-29 2019-08-08 マクセルホールディングス株式会社 Charging method and charger for silver oxide secondary cell

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU698555B2 (en) * 1995-11-13 1998-10-29 Marukan Kabushiki Kaisha Vending machine for charging a secondary battery of mobile phone
US5744933A (en) * 1995-11-13 1998-04-28 Kn Technos Co., Ltd. Vending machine for charging a secondary battery of a mobile phone
US5900718A (en) * 1996-08-16 1999-05-04 Total Battery Management, Battery charger and method of charging batteries
US5818204A (en) * 1996-12-20 1998-10-06 Ericsson Inc. Battery charging methods and apparatuses
US6008628A (en) * 1997-08-20 1999-12-28 Black & Decker Inc. Method for charging batteries
JP3378189B2 (en) 1998-02-28 2003-02-17 株式会社マキタ Charging device and charging method
CA2276821C (en) * 1998-07-09 2007-11-27 Daniele C. Brotto Method for charging batteries
JP4340020B2 (en) 2001-04-10 2009-10-07 パナソニック株式会社 Charge control method for secondary battery for automatic guided vehicle
US6677730B2 (en) 2001-12-21 2004-01-13 Energenx, Inc. Device and method for pulse charging a battery and for driving other devices with a pulse
US20060113956A1 (en) * 2003-05-07 2006-06-01 Bublitz Scott D Battery charger and assembly
CN101099280B (en) * 2005-01-06 2012-07-04 日本电气株式会社 Mobile telephone terminal charging control device and charging control method
JP2006280060A (en) * 2005-03-28 2006-10-12 Matsushita Electric Works Ltd Charger
JP2007157417A (en) * 2005-12-02 2007-06-21 Furukawa Battery Co Ltd:The Charge control method of nickel cadmium storage battery
EP2272148B1 (en) * 2008-03-31 2022-03-02 Nec Energy Solutions, Inc. Apparatus and method for detecting divergence in the state-of-charge or state-of-discharge of a series string of batteries cells or capacitors cells
US9601692B1 (en) 2010-07-13 2017-03-21 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US8946046B1 (en) 2012-05-02 2015-02-03 Crossbar, Inc. Guided path for forming a conductive filament in RRAM
US9570678B1 (en) 2010-06-08 2017-02-14 Crossbar, Inc. Resistive RAM with preferental filament formation region and methods
US8274812B2 (en) * 2010-06-14 2012-09-25 Crossbar, Inc. Write and erase scheme for resistive memory device
US9437297B2 (en) 2010-06-14 2016-09-06 Crossbar, Inc. Write and erase scheme for resistive memory device
US8884261B2 (en) 2010-08-23 2014-11-11 Crossbar, Inc. Device switching using layered device structure
US8569172B1 (en) 2012-08-14 2013-10-29 Crossbar, Inc. Noble metal/non-noble metal electrode for RRAM applications
USRE46335E1 (en) 2010-11-04 2017-03-07 Crossbar, Inc. Switching device having a non-linear element
US8502185B2 (en) 2011-05-31 2013-08-06 Crossbar, Inc. Switching device having a non-linear element
US9620206B2 (en) 2011-05-31 2017-04-11 Crossbar, Inc. Memory array architecture with two-terminal memory cells
US8619459B1 (en) 2011-06-23 2013-12-31 Crossbar, Inc. High operating speed resistive random access memory
US9627443B2 (en) 2011-06-30 2017-04-18 Crossbar, Inc. Three-dimensional oblique two-terminal memory with enhanced electric field
US9058865B1 (en) 2011-06-30 2015-06-16 Crossbar, Inc. Multi-level cell operation in silver/amorphous silicon RRAM
US8659929B2 (en) 2011-06-30 2014-02-25 Crossbar, Inc. Amorphous silicon RRAM with non-linear device and operation
US9166163B2 (en) 2011-06-30 2015-10-20 Crossbar, Inc. Sub-oxide interface layer for two-terminal memory
US9564587B1 (en) 2011-06-30 2017-02-07 Crossbar, Inc. Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects
US8946669B1 (en) 2012-04-05 2015-02-03 Crossbar, Inc. Resistive memory device and fabrication methods
US8971088B1 (en) 2012-03-22 2015-03-03 Crossbar, Inc. Multi-level cell operation using zinc oxide switching material in non-volatile memory device
US9685608B2 (en) 2012-04-13 2017-06-20 Crossbar, Inc. Reduced diffusion in metal electrode for two-terminal memory
US8658476B1 (en) 2012-04-20 2014-02-25 Crossbar, Inc. Low temperature P+ polycrystalline silicon material for non-volatile memory device
US10096653B2 (en) 2012-08-14 2018-10-09 Crossbar, Inc. Monolithically integrated resistive memory using integrated-circuit foundry compatible processes
US9583701B1 (en) 2012-08-14 2017-02-28 Crossbar, Inc. Methods for fabricating resistive memory device switching material using ion implantation
US9576616B2 (en) 2012-10-10 2017-02-21 Crossbar, Inc. Non-volatile memory with overwrite capability and low write amplification
US9153624B2 (en) 2013-03-14 2015-10-06 Crossbar, Inc. Scaling of filament based RRAM
US10290801B2 (en) 2014-02-07 2019-05-14 Crossbar, Inc. Scalable silicon based resistive memory device
US9735357B2 (en) 2015-02-03 2017-08-15 Crossbar, Inc. Resistive memory cell with intrinsic current control
US10840442B2 (en) 2015-05-22 2020-11-17 Crossbar, Inc. Non-stoichiometric resistive switching memory device and fabrication methods

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112741A (en) * 1976-03-18 1977-09-21 Yuasa Battery Co Ltd Control system for charging
JPS5828181A (en) * 1981-08-13 1983-02-19 Furukawa Battery Co Ltd:The Charging system for sealed nickel-cadmium storage battery
JPS6039325A (en) * 1983-08-11 1985-03-01 三洋電機株式会社 Method of detecitng full charge of nickel-cadmium battery
JPH0197142A (en) * 1987-10-08 1989-04-14 Sony Corp Battery charging equipment
JPH01270742A (en) * 1988-04-21 1989-10-30 Toshiba Battery Co Ltd Charging circuit for storage battery
JPH04225A (en) * 1990-04-16 1992-01-06 Matsushita Electric Works Ltd Charging circuit
JPH04150733A (en) * 1990-10-15 1992-05-25 Toshiba Battery Co Ltd Charging circuit for secondary battery
JPH04150734A (en) * 1990-10-15 1992-05-25 Toshiba Battery Co Ltd Charging circuit for secondary battery
JPH04190639A (en) * 1990-11-21 1992-07-09 Furukawa Battery Co Ltd:The Method for charging secondary battery
JPH04217826A (en) * 1990-02-28 1992-08-07 Hitachi Maxell Ltd Charging method for secondary battery
JPH0515078A (en) * 1991-07-02 1993-01-22 Matsushita Electric Ind Co Ltd Charger
JPH0515077A (en) * 1990-11-27 1993-01-22 Furukawa Battery Co Ltd:The Charging circuit
JPH0515079A (en) * 1991-07-01 1993-01-22 Yoshimura Denki Kk Secondary battery with charging control function

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392101A (en) * 1978-05-31 1983-07-05 Black & Decker Inc. Method of charging batteries and apparatus therefor
US4388582A (en) * 1978-05-31 1983-06-14 Black & Decker Inc. Apparatus and method for charging batteries
JPS5822931B2 (en) * 1979-10-13 1983-05-12 松下電工株式会社 charger
US4639655A (en) * 1984-04-19 1987-01-27 Westhaver Lawrence A Method and apparatus for battery charging
JPH04190693A (en) * 1990-11-26 1992-07-09 Secoh Giken Inc Circuit for controlling energizing of inductance load
US5371453A (en) * 1993-01-28 1994-12-06 Motorola, Inc. Battery charger system with common charge and data exchange port

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112741A (en) * 1976-03-18 1977-09-21 Yuasa Battery Co Ltd Control system for charging
JPS5828181A (en) * 1981-08-13 1983-02-19 Furukawa Battery Co Ltd:The Charging system for sealed nickel-cadmium storage battery
JPS6039325A (en) * 1983-08-11 1985-03-01 三洋電機株式会社 Method of detecitng full charge of nickel-cadmium battery
JPH0197142A (en) * 1987-10-08 1989-04-14 Sony Corp Battery charging equipment
JPH01270742A (en) * 1988-04-21 1989-10-30 Toshiba Battery Co Ltd Charging circuit for storage battery
JPH04217826A (en) * 1990-02-28 1992-08-07 Hitachi Maxell Ltd Charging method for secondary battery
JPH04225A (en) * 1990-04-16 1992-01-06 Matsushita Electric Works Ltd Charging circuit
JPH04150733A (en) * 1990-10-15 1992-05-25 Toshiba Battery Co Ltd Charging circuit for secondary battery
JPH04150734A (en) * 1990-10-15 1992-05-25 Toshiba Battery Co Ltd Charging circuit for secondary battery
JPH04190639A (en) * 1990-11-21 1992-07-09 Furukawa Battery Co Ltd:The Method for charging secondary battery
JPH0515077A (en) * 1990-11-27 1993-01-22 Furukawa Battery Co Ltd:The Charging circuit
JPH0515079A (en) * 1991-07-01 1993-01-22 Yoshimura Denki Kk Secondary battery with charging control function
JPH0515078A (en) * 1991-07-02 1993-01-22 Matsushita Electric Ind Co Ltd Charger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172487B1 (en) 1998-06-17 2001-01-09 Black & Decker Inc. Method and apparatus for charging batteries
EP1174977A2 (en) 2000-07-21 2002-01-23 Honda Giken Kogyo Kabushiki Kaisha Method and device for charging secondary battery
JP2014131386A (en) * 2012-12-28 2014-07-10 Nissan Motor Co Ltd Secondary battery system and secondary battery control device
WO2019142915A1 (en) * 2018-01-18 2019-07-25 マクセルホールディングス株式会社 Alkaline secondary cell, charging method of said alkaline secondary cell, and charging device of alkaline secondary cell
JP2019133767A (en) * 2018-01-29 2019-08-08 マクセルホールディングス株式会社 Charging method and charger for silver oxide secondary cell

Also Published As

Publication number Publication date
US5627451A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
JPH06315233A (en) Battery charge control method
US5900717A (en) Rechargeable battery charging circuit
US5861730A (en) Battery charging apparatus
US5831412A (en) System for executing charge control of a secondary battery and detecting the capacitance thereof
US5606242A (en) Smart battery algorithm for reporting battery parameters to an external device
US7656130B2 (en) Battery charger
JP3258818B2 (en) Charge control method for sealed nickel storage battery and charger using this method
US7663346B2 (en) Battery charger for preventing both overshoot charging current and overcharged battery voltage during charging mode transition
EP1338074B1 (en) Temperature limitation in li battery charging
US20080174263A1 (en) Battery charger for different capacity cells
JP3772665B2 (en) Battery charger
JP3306188B2 (en) Rechargeable battery charging method
JP2003092842A (en) Method and apparatus for charging battery
JP2006166641A (en) Battery charger
US20050052159A1 (en) Method and apparatus for overcharge protection using analog overvoltage detection
JPH0956080A (en) Battery charger
JP3092394B2 (en) Secondary battery charging method and device
JPH08103032A (en) Charging for secondary battery
JPH07123604A (en) Charger for secondary battery
JPH10201111A (en) Charging control method and charging control device
JPH04331391A (en) Battery driven personal computer
JPH09331637A (en) Charger
JP2928439B2 (en) Secondary battery charge detection method and device
JP3219443B2 (en) Battery charger
JP3555989B2 (en) Rechargeable battery charging method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020507