JPH06312185A - Electrolytic water forming apparatus - Google Patents

Electrolytic water forming apparatus

Info

Publication number
JPH06312185A
JPH06312185A JP10423593A JP10423593A JPH06312185A JP H06312185 A JPH06312185 A JP H06312185A JP 10423593 A JP10423593 A JP 10423593A JP 10423593 A JP10423593 A JP 10423593A JP H06312185 A JPH06312185 A JP H06312185A
Authority
JP
Japan
Prior art keywords
water
chamber
anode
cathode
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10423593A
Other languages
Japanese (ja)
Other versions
JP3390878B2 (en
Inventor
Shiyuuji Yamaguchi
秋二 山口
Daiji Misawa
代治 三沢
Masakazu Arisaka
政員 有坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON INTETSUKU KK
Original Assignee
NIPPON INTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON INTETSUKU KK filed Critical NIPPON INTETSUKU KK
Priority to JP10423593A priority Critical patent/JP3390878B2/en
Publication of JPH06312185A publication Critical patent/JPH06312185A/en
Application granted granted Critical
Publication of JP3390878B2 publication Critical patent/JP3390878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To provide an electrolytic water forming apparatus reducing the consumption of an electrode, capable of continuously forming a large quantity of acidic water having high sterilizing effect and capable of forming alkaline water at the same time. CONSTITUTION:An electrolytic cell 1 is divided into a cathode chamber 31 and an anode chamber 41 by a diaphragm 2 to form a cathode and an anode in the cathode and anode chambers 31, 41 respectively and the raw water supplied into the electrolytic cell 1 is electrolyzed by supplying a current across the cathode 3 and anode 4 to continuously form alkaline water in the cathode chamber 31 and acidic water in the anode chamber 41. The passage 5 supplying raw water to the electrolytic cell 1 is branched on the way thereof to allow raw water to flow through branch passages 51, 52 to supply the raw water not only to the cathode chamber 31 from the supply port 1a of the electrolytic cell 1 but also to the anode chamber 41 from the supply port 1b of the electrolytic cell 1. Saline soln. adding devices 61, 62 are independently installed to the branch passages 51, 52 and the saline solns. stored in tanks 71, 72 are supplied and added to the branch passages 51, 52 by required quantities by the control of valves 81, 82. The alkaline water of the cathode chamber 31 is discharged from a water discharge orifice 1c and the acidic water of the anode chamber 41 is discharged to a pipeline 10 from a water discharge orifice 1d.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水の電気分解によって
洗浄水,殺菌水等として有用な酸性水及び飲料水となる
アルカリ水を生成する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for producing acidic water useful as washing water, sterilizing water and the like and alkaline water serving as drinking water by electrolyzing water.

【0002】[0002]

【従来の技術】食品とか医療の分野において、電解水を
洗浄用水とか消毒,殺菌用の水として広く用いられてい
る。従来の電解水生成装置は、電解槽内を隔膜によって
陰極室と陽極室に分割し、各室内に電極を挿入し、室内
に供給した原水を電極間の通電によって電気分解するこ
とにより、陰極室にアルカリ水,陽極室に酸性水を電解
生成する。
2. Description of the Related Art In the fields of food and medicine, electrolyzed water is widely used as cleaning water and water for disinfection and sterilization. In the conventional electrolyzed water generator, the inside of the electrolytic cell is divided into a cathode chamber and an anode chamber by a diaphragm, electrodes are inserted into each chamber, and the raw water supplied to the chamber is electrolyzed by energization between the electrodes to form a cathode chamber. Alkaline water is electrolytically generated, and acidic water is electrolytically generated in the anode chamber.

【0003】[0003]

【発明が解決しようとする課題】このような電解水生成
装置によってPH値の低い水は陽極室から吐出する酸性
水によって得られるが、これを連続的に多量に作り出す
ことは容易でない。多量の水の電解には大電流通電が必
要であり、電解槽に大電流を流すためには印加電圧を上
昇させなければならないが、電圧の上昇によってガスの
発生が多くなり放電が発生して電極面を損傷する。この
ため従来において、電解槽に供給する原水中に食塩水を
添加混合して、低電圧大電流通電を行なうことも提案さ
れているが、この場合、特に陽極室の電極消耗が大きく
なる欠点がある。
Water having a low PH value is obtained by the acidic water discharged from the anode chamber by such an electrolyzed water producing apparatus, but it is not easy to continuously produce a large amount of this. To electrolyze a large amount of water, it is necessary to apply a large current, and in order to flow a large current into the electrolytic cell, the applied voltage must be increased. Damage the electrode surface. For this reason, it has been conventionally proposed to add and mix saline solution to the raw water to be supplied to the electrolytic cell to carry out low-voltage, large-current energization, but in this case, there is a drawback that electrode consumption in the anode chamber becomes particularly large. is there.

【0004】本発明は、この電極消耗を少なくして、殺
菌効果の高い酸性水を連続的に多量に生成でき、また同
時にアルカリ水の生成ができる電解水生成装置の提供を
目的とする。
It is an object of the present invention to provide an electrolyzed water producing apparatus capable of continuously producing a large amount of acidic water having a high bactericidal effect and simultaneously producing alkaline water by reducing this electrode consumption.

【0005】[0005]

【課題を解決するための手段】本発明は、電解槽内を隔
膜によって分割した陰極室と陽極室各々電極を挿入し、
前記陰極室と陽極室に分流路を通して供給する原水を前
記陰陽極電極間への通電によって電気分解すると共に電
気浸透作用により陰極室にアルカリ水,陽極室に酸性水
を生成する装置において、前記陰極室内もしくは陰極室
に供給する分流路の原水に電解質を供給添加する第1の
供給装置と、前記陽極室内もしくは陽極室に供給する分
流路の原水に電解質を供給添加する第2の供給装置を設
け、前記第1の供給装置によって供給添加する電解質濃
度を第2の供給装置によって供給添加する電解質濃度よ
り高く制御したことを特徴とする。
According to the present invention, an electrode is inserted in each of a cathode chamber and an anode chamber which are divided by a diaphragm in an electrolytic cell.
In an apparatus for electrolyzing the raw water supplied to the cathode chamber and the anode chamber through a branch flow path by energizing between the negative and positive electrodes and generating alkaline water in the cathode chamber and acidic water in the anode chamber by electroosmosis, the cathode A first supply device for supplying and adding an electrolyte to the raw water in the branch flow channel to be supplied to the room or the cathode chamber and a second supply device for supplying and adding an electrolyte to the raw water in the branch flow channel to be supplied to the anode chamber or the anode chamber are provided. The electrolyte concentration supplied and added by the first supply device is controlled to be higher than the electrolyte concentration supplied and added by the second supply device.

【0006】[0006]

【作 用】本発明は、電解槽内に水道水等の原水を供給
し、陰陽極電極間への通電によって電気分解し、電解槽
内陰極室にアルカリ水,陽極室に酸性水を連続的に生成
し吐出利用する。陰極室内もしくは陰極室に供給する分
流路の原水と、陽極室もしくは陽極室に供給する分流路
の原水とに各々独立して電解質を供給添加し、電気伝導
度を高め低電圧で大電流の電解作用を与える。前記陰極
室内もしくは陰極室に供給する分流路の原水に供給添加
する電解質濃度を陽極室内もしくは陽極室に供給する分
流路の原水に供給添加する電解質濃度より高めるように
添加する。
[Operation] In the present invention, raw water such as tap water is supplied into the electrolytic cell and electrolyzed by energizing between the negative and positive electrodes, and alkaline water is continuously supplied to the cathode chamber in the electrolytic cell and acidic water is continuously supplied to the anode chamber. Generated and used for discharge. Electrolyte is independently added to the raw water of the shunt channel to supply to the cathode chamber or the cathode chamber, and the raw water of the shunt channel to supply to the anode chamber or the anode chamber to increase the electrical conductivity and electrolyze a large current at a low voltage. Give action. The electrolyte concentration added to the raw water in the cathode chamber or the branch channel supplied to the cathode chamber is higher than the concentration of the electrolyte added to the raw water in the anode chamber or the branch channel supplied to the anode chamber.

【0007】[0007]

【実施例】以下図面の一実施例により本発明を説明す
る。図1において、電解槽1は密閉構造になり、室内を
隔膜2によって陰極室31と陽極室41に分割し、陰極
電極3及び陽極電極4を各々挿入し、図示しない電解電
源から電解電流の通電が行なわれる。電解槽1には陰極
室31に通じる原水供給口1a,陽極室41に通じる原
水供給口1bが設けられ、また反対側に電解によるアル
カリ水を吐出する吐水口1c,酸性水を吐出する吐水口
1dが形成してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment of the drawings. In FIG. 1, the electrolytic cell 1 has a closed structure, the interior of the chamber is divided by a diaphragm 2 into a cathode chamber 31 and an anode chamber 41, a cathode electrode 3 and an anode electrode 4 are inserted, and an electrolytic current is supplied from an electrolytic power source (not shown). Is performed. The electrolytic cell 1 is provided with a raw water supply port 1a that communicates with the cathode chamber 31 and a raw water supply port 1b that communicates with the anode chamber 41. On the other side, a spout 1c for discharging alkaline water by electrolysis and a spout for discharging acidic water are provided. 1d is formed.

【0008】電解槽1に供給される原水は供給管5から
供給され、途中で分岐して分流路51から陰極室供給口
1aに、他方は分流路52から陽極室供給口1bに原水
供給される。分岐流路51,52には各々食塩水を供給
する第1の添加装置61及び第2の添加装置62が設け
られ、各々貯蔵タンク71,72に貯蔵する食塩水を途
中のバルブ81,82制御によって所要量添加混合され
る。
Raw water to be supplied to the electrolytic cell 1 is supplied from a supply pipe 5 and branched in the middle to be supplied from the branch flow channel 51 to the cathode chamber supply port 1a and the other from the branch flow channel 52 to the anode chamber supply port 1b. It A first addition device 61 and a second addition device 62 for supplying saline solution are provided in the branch flow paths 51, 52, respectively, and control the valves 81, 82 on the way of saline solution stored in the storage tanks 71, 72, respectively. The required amount is added and mixed by.

【0009】原水の供給は水道の蛇口を開くことによ
り、或は給水ポンプの駆動により供給管5に供給され、
図示しない減圧弁で所定の水圧にし、また流量制御バル
ブにより所定流量に制御された状態で供給される。この
供給原水は途中分岐し分流路51及び52を流れるが、
その途中で食塩水の添加により電気伝導度の調整制御が
行なわれる。
The raw water is supplied to the supply pipe 5 by opening a water tap or by driving a water supply pump.
A pressure reducing valve (not shown) adjusts the water pressure to a predetermined value, and a flow rate control valve controls the flow rate to a predetermined flow rate. The raw water to be supplied branches on the way and flows through the branch channels 51 and 52,
In the middle of this, adjustment control of electric conductivity is performed by adding saline.

【0010】貯蔵タンク71,72に貯蔵される食塩水
は、両方とも例えば10%食塩水溶液を用い、これを各
々バルブ81,82制御によって添加量の制御を行な
う。ここで陰極室31に供給する分流路51の原水中に
は添加量を多くして電気伝導度を充分高めた状態で供給
し、これに対して陽極室41に供給する分流路52の原
水中には添加量を少なくして供給する。この供給添加量
の制御はバルブ81,82の調整によって添加装置6
1,62に供給する食塩水流量制御により行なう。
As the saline solution stored in the storage tanks 71 and 72, for example, 10% saline solution is used, and the addition amount is controlled by controlling valves 81 and 82, respectively. Here, the raw water in the branch flow channel 51 supplied to the cathode chamber 31 is supplied in a state in which the amount of addition is increased and the electric conductivity is sufficiently increased, while the raw water in the branch flow channel 52 supplied to the anode chamber 41 is supplied. Is supplied in a small amount. The control of the amount of supply added is controlled by adjusting the valves 81 and 82.
It is performed by controlling the flow rate of the saline solution supplied to Nos. 1 and 62.

【0011】このように分流路51を経て電解槽1の陰
極室31へ供給する原水中には第1の添加装置61によ
って比較的多目に食塩水を添加して充分に電気伝導度を
高めた状態で供給し、陰極室31における電解反応を促
進せしめることにより、陽極室41内に高能率で酸性水
の生成をすることができる。また分流路52を経て電解
槽1の陽極室41に供給する原水中には第2の添加装置
62によって少な目に食塩水の添加を行ない、陽極室4
1における電解作用によって陽極電極4が溶解消耗する
のを防止する。
As described above, the raw water supplied to the cathode chamber 31 of the electrolytic cell 1 through the shunt channel 51 is added with a relatively large amount of saline by the first addition device 61 to sufficiently increase the electric conductivity. It is possible to generate acidic water in the anode chamber 41 with high efficiency by supplying the water in a positive state and promoting the electrolytic reaction in the cathode chamber 31. Further, the raw water supplied to the anode chamber 41 of the electrolytic cell 1 through the branch channel 52 is slightly added with saline by the second addition device 62, and the anode chamber 4
This prevents the anode electrode 4 from being dissolved and consumed by the electrolytic action in 1.

【0012】図2は食塩水の食塩水濃度に対して陽極側
電極が電気分解によって溶出消耗する状態の説明グラフ
図で、実験によれば電極消耗の最大値は大凡食塩濃度が
0.02%〜0.5%程度であることが確められてお
り、食塩濃度がそれ以下では電極消耗が少なく、また反
対に食塩濃度が増加しても消耗が減少する傾向にある。
したがって、前記の分流路51から陰極室31へ供給す
る原水中には電極消耗がないから電気伝導度を高めるた
めに食塩濃度を高めて供給し、例えば、電気伝導度を5
00〜3000マイクロシーメンス/cm程度に高め
る。また、他の分流路52から陽極室41に供給する原
水には食塩濃度を0.02%〜0.5%程度よりも充分
少ない希薄濃度で添加供給することにより陽極電極4の
消耗を防止して電解することができ、連続的に多量の酸
性水を効率良く生成することができる。
FIG. 2 is an explanatory graph showing a state in which the electrode on the anode side is eluted and consumed by electrolysis with respect to the salt solution concentration of saline solution. According to experiments, the maximum value of electrode consumption is about 0.02% of the salt concentration. It is confirmed to be about 0.5%, and when the salt concentration is lower than that, the electrode consumption is small, and conversely, even if the salt concentration increases, the consumption tends to decrease.
Therefore, since there is no electrode consumption in the raw water supplied from the branch flow channel 51 to the cathode chamber 31, the salt concentration is increased in order to increase the electric conductivity, and the raw water is supplied with, for example, an electric conductivity of 5
Increase to about 00 to 3000 microsiemens / cm. Further, the raw water supplied to the anode chamber 41 from the other branch flow channel 52 is added and supplied at a dilute concentration sufficiently lower than about 0.02% to 0.5% to prevent consumption of the anode electrode 4. Can be electrolyzed, and a large amount of acidic water can be continuously and efficiently produced.

【0013】電解槽1内の陽極室41で生成する酸性水
は吐水口1dから吐出し、配管10を通して洗浄水,殺
菌水等として利用することができる。生成する酸性水の
PH値制御は流量制御によって流量当りの大きい電気量
の電解作用を受けることによって電気伝導度を高めPH
値の低い強酸性水を生成し吐水させることができる。ま
た陰極室31に生成するアルカリ水は吐水口1cから吐
出し、飲料水等として利用することができるが、殺菌用
に酸性水のみを利用する場合は吐水口1cから吐出する
陰極水は排水として流出される。
The acidic water generated in the anode chamber 41 in the electrolytic cell 1 is discharged from the water discharge port 1d and can be used as cleaning water, sterilizing water, etc. through the pipe 10. The pH value of the generated acidic water is controlled by the flow rate control to receive a large amount of electricity electrolysis per flow rate to increase the electrical conductivity and increase the PH value.
Strongly acidic water with a low value can be generated and discharged. Further, the alkaline water generated in the cathode chamber 31 can be discharged from the outlet 1c and used as drinking water, but when only acidic water is used for sterilization, the cathode water discharged from the outlet 1c is drained. To be leaked.

【0014】なお前記第1の添加装置61及び第2の添
加装置62から供給添加する食塩水は食塩水濃度を変え
て、タンク71に貯蔵する食塩水濃度を高くし、他のタ
ンク72の貯蔵食塩水の濃度を低くすれば、各バルブ8
1,82による供給量制御を等しくしても、前記と同様
に陰極室31に供給する原水の食塩濃度を所要の値に高
め、陽極室41に供給する原水の食塩濃度を所要の低い
値に制御することができる。また食塩水の添加は原水の
供給路でなく、各電解室31,41内において供給添加
するように構成することができる。
The saline solution supplied from the first adding device 61 and the second adding device 62 is added to the tank 71 by changing the saline solution concentration to increase the saline solution concentration stored in the tank 71 and store it in the other tank 72. If the concentration of saline solution is lowered, each valve 8
Even if the supply amount control by 1, 82 is made equal, the salt concentration of the raw water supplied to the cathode chamber 31 is increased to a required value and the salt concentration of the raw water supplied to the anode chamber 41 is set to a required low value in the same manner as described above. Can be controlled. Further, the salt water may be added in the electrolysis chambers 31 and 41 instead of the raw water supply passage.

【0015】図3は他の実施例で、酸性水の生成に専用
する場合の例で、陰極水を排水することなく循環させる
ことにより生成水の無駄を防止するようにしたものであ
る。図において、図1と同符号は同一部分を示す。電極
槽1内は隔膜2によって3相に分割し、中心部分を陰極
電極3を挿入した陰極室31とし、その外側の中間相に
陽極電極4を挿入した陽極室41,最外相に陰極電極3
を挿入して陰極室31としたものである。陰極室31の
水は吐水口1cから循環路9を通して陰極室31の供給
口1aに循環供給する。環路9に循環用ポンプ11が設
けられている。
FIG. 3 shows another embodiment, which is an example dedicated to the production of acidic water, in which the waste water is prevented from being wasted by circulating the cathode water without draining it. In the figure, the same symbols as in FIG. 1 indicate the same parts. The inside of the electrode tank 1 is divided into three phases by the diaphragm 2, and the central portion is a cathode chamber 31 in which the cathode electrode 3 is inserted, the anode chamber 41 in which the anode electrode 4 is inserted in the intermediate phase outside thereof, and the cathode electrode 3 in the outermost phase.
Into the cathode chamber 31. The water in the cathode chamber 31 is circulated and supplied from the water discharge port 1c to the supply port 1a of the cathode chamber 31 through the circulation path 9. A circulation pump 11 is provided in the circuit line 9.

【0016】陰極室31の水は外部に排出されることな
く、環路9をポンプ11によって循環して使用され、電
解によって消耗する食塩分がタンク71に貯蔵する食塩
水によって補給され、一定の電気伝導度を保って電解反
応を起こさせることができる。なお図示しないが、循環
利用中の原水の消耗は、分岐管路から循環路9の一部に
三方弁等を介して補給するこができる。
The water in the cathode chamber 31 is circulated and used by the pump 11 in the circulation path 9 without being discharged to the outside, and the salt content that is consumed by electrolysis is replenished by the saline solution stored in the tank 71, and the water is kept constant. It is possible to cause an electrolytic reaction while maintaining electrical conductivity. Although not shown, consumption of raw water during circulation can be replenished from the branch pipe to a part of the circulation passage 9 through a three-way valve or the like.

【0017】なお食塩水の添加,原水の流量制御等には
原水の供給側,電解槽1からの電解水の吐出側の管路に
電気伝導度を測定するECセンサ,酸化還元電位を測定
するORPセンサ,PH計,イオン濃度計,ガス濃度
計,流量計等を設け、これらの各センサの検出信号をC
PU等によっていずれかの信号を選択し、或いは各信号
を別々に演算処理して各部制御信号を出力するとか、各
センサの信号の和,差,積等により演算処理して信号を
出力して制御することができる。
For addition of salt water, control of the flow rate of raw water, etc., an EC sensor for measuring electrical conductivity is measured in a conduit on the raw water supply side, the electrolytic water discharge side from the electrolytic cell 1, and the redox potential is measured. An ORP sensor, a PH meter, an ion concentration meter, a gas concentration meter, a flow meter, etc. are provided, and the detection signal of each of these sensors is C
Select one of the signals by PU, etc., or calculate each signal separately and output the control signal of each part, or calculate the sum, difference, product, etc. of the signals of each sensor and output the signal. Can be controlled.

【0018】電極3,4間に通電する電解電源(図示せ
ず)は所定の設定電圧を印加するようにし、原水の流量
制御によって電解電気量の制御をすることにより、電気
量の増加によって強い電解作用を与えれば、吐水口1d
から吐出する酸性水の電気伝導度を高めPH値を低下さ
せた強い殺菌効果水を得ることができる。また電源の設
定電圧を高めることなく食塩水の添加により電気量を増
加することができ、電解電圧の上昇がないからガスの発
生,放電の発生がなく、電極面を損傷劣化させることも
なく安全な電解をさせることができる。
An electrolysis power source (not shown) which is energized between the electrodes 3 and 4 is applied with a predetermined set voltage, and the amount of electrolysis is controlled by controlling the flow rate of the raw water. If electrolytic action is applied, spout 1d
It is possible to obtain a strong bactericidal effect water in which the electric conductivity of the acidic water discharged from is increased and the PH value is lowered. In addition, the amount of electricity can be increased by adding saline without increasing the set voltage of the power supply, and since there is no rise in the electrolysis voltage, there is no generation of gas or discharge, and there is no damage or deterioration of the electrode surface. Electrolysis can be performed.

【0019】原水に添加する電解質はNaCl以外にKCl,HC
l,HClO,HClO3,KClO3,NaClO3,LiCl,CaCl2,NH4Cl等の塩素
系電解質,その他を単独もしくは複合して利用すること
ができる。例えば陰極室31に供給する原水にはNaCl水
を添加し、陽極室41に供給する原水にはKCL 水を添加
することができる。KCl の電離度は大きく少量でも電解
反応を促進させることができ、陽極室41には、より殺
菌性の強い酸性水の生成ができる。
Electrolytes added to raw water are KCl, HC in addition to NaCl.
l, HClO, HClO 3, KClO 3, NaClO 3, L i Cl, CaCl 2, NH 4 Cl or the like chlorine electrolyte, others can be used independently or in combination to. For example, NaCl water can be added to the raw water supplied to the cathode chamber 31, and KCL water can be added to the raw water supplied to the anode chamber 41. The degree of ionization of KCl is large and the electrolytic reaction can be promoted even in a small amount, so that acidic water with stronger sterilization can be generated in the anode chamber 41.

【0020】また以上は酸性水の生成について説明した
が、アルカリ水の利用の場合も食塩水等電解質の添加制
御によりPH値制御が容易にでき、多量のアルカリ水を
低電気量で連続的に生成することができる。この場合も
陰極室31及び陽極室41に供給する分流路の原水に対
して各々独立した電解質添加装置を設けて陽極側原水の
電解質濃度を低く制御することにより陽極電極の消耗を
少なくして安定したアルカリ水の生成をすることができ
る。
Although the production of acidic water has been described above, the pH value can be easily controlled by controlling the addition of electrolyte such as saline even when using alkaline water, and a large amount of alkaline water can be continuously supplied with a low electricity amount. Can be generated. In this case as well, independent electrolyte addition devices are provided for the raw water in the branch flow passages supplied to the cathode chamber 31 and the anode chamber 41 to control the electrolyte concentration of the anode-side raw water to a low level, thereby reducing the consumption of the anode electrode and stabilizing it. It is possible to generate alkaline water.

【0021】[0021]

【発明の効果】以上のように本発明によれば、水の電解
が電解質の添加混合により容易で、電気量ワット数を低
下させて多量の電解水を安価に連続的に得られる。そし
て電解質の供給添加を、陰極室内もしくは陰極室に供給
する分流路の原水に電解質を供給添加する第1の添加装
置と、陽極室内もしくは陽極室に供給する分流路の原水
に電解質を供給添加する第2の添加装置とを別々に設
け、各々の原水中に電解質を独立に添加するようにした
から、陰極側及び陽極側の添加量及びそれによる濃度を
任意に変えることができ、陰極側の電解質濃度を多くす
ることにより電解反応を従進して洗浄用,殺菌効果の高
い酸性水の生成が容易にでき、PH値の高いアルカリ水
の生成ができる。また陽極側の添加濃度を少なくするこ
とにより電極消耗を少なくして連続して長時間の電解水
生成を続けることができる。
As described above, according to the present invention, the electrolysis of water is easy by adding and mixing the electrolyte, and the wattage of electricity is reduced to obtain a large amount of electrolyzed water continuously at low cost. Then, a first addition device for supplying and adding the electrolyte to the raw water in the cathode chamber or the branch flow channel to be supplied to the cathode chamber, and an electrolyte to the feed water to the anode chamber or the raw water in the branch channel to be supplied to the anode chamber are added. Since the second adding device is separately provided and the electrolyte is independently added to each raw water, the addition amount on the cathode side and the anode side and the concentration thereof can be arbitrarily changed. Increasing the electrolyte concentration facilitates the electrolytic reaction to easily produce acidic water for cleaning and having a high sterilizing effect, and alkaline water having a high PH value can be produced. Further, by decreasing the concentration of addition on the anode side, it is possible to reduce the consumption of the electrode and to continuously generate electrolyzed water for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明を説明するためのグラフ図。FIG. 2 is a graph diagram for explaining the present invention.

【図3】本発明の他の実施例構成図。FIG. 3 is a block diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電解槽 2 隔膜 3,4 電極 31 陰極室 41 陽極室 5 原水供給管 51,52 分流路 61,62 第1,第2の添加装置 71,72 貯蔵タンク 81,82 制御バルブ 1 Electrolyzer 2 Diaphragm 3,4 Electrode 31 Cathode chamber 41 Anode chamber 5 Raw water supply pipe 51,52 Divided flow channel 61,62 First and second addition device 71,72 Storage tank 81,82 Control valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解槽内を隔膜によって分割した陰極室
と陽極室に各々電極を挿入し、前記陰極室と陽極室に分
流路を通して供給する原水を前記陰陽極電極間への通電
によって電気分解すると共に電気浸透作用により陰極室
にアルカリ水,陽極室に酸性水を生成する装置におい
て、前記陰極室内もしくは陰極室に供給する分流路の原
水に電解質を供給添加する第1の供給装置と、前記陽極
室内もしくは陽極室に供給する分流路の原水に電解質を
供給添加する第2の供給装置を設け、前記第1の供給装
置によって供給添加する電解質添加濃度を第2の供給装
置によって供給添加する電解質濃度より高く制御したこ
とを特徴とする電解水の生成装置。
1. An electrode is inserted into each of a cathode chamber and an anode chamber, which are formed by dividing the inside of an electrolytic cell with a diaphragm, and raw water supplied to the cathode chamber and the anode chamber through a branch channel is electrolyzed by energizing between the negative and positive electrodes. In the device for generating alkaline water in the cathode chamber and acidic water in the anode chamber by the electroosmotic action, a first supply device for supplying and adding an electrolyte to the raw water in the cathode chamber or the shunt channel for supplying to the cathode chamber, and A second supply device for supplying and adding an electrolyte to the raw water of the anodic chamber or the split flow path for supplying to the anode chamber is provided, and the electrolyte addition concentration supplied and added by the first supply device is supplied and added by the second supply device. A device for producing electrolyzed water, which is controlled to have a concentration higher than the concentration.
JP10423593A 1993-04-30 1993-04-30 Electrolyzed water generator Expired - Fee Related JP3390878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10423593A JP3390878B2 (en) 1993-04-30 1993-04-30 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10423593A JP3390878B2 (en) 1993-04-30 1993-04-30 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JPH06312185A true JPH06312185A (en) 1994-11-08
JP3390878B2 JP3390878B2 (en) 2003-03-31

Family

ID=14375305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10423593A Expired - Fee Related JP3390878B2 (en) 1993-04-30 1993-04-30 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP3390878B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910768A (en) * 1995-06-26 1997-01-14 Aiken Kogyo Kk Sterilized water having high electron activity and production thereof
US6007686A (en) * 1994-08-26 1999-12-28 Medical Discoveries, Inc. System for elctrolyzing fluids for use as antimicrobial agents
US6117285A (en) * 1994-08-26 2000-09-12 Medical Discoveries, Inc. System for carrying out sterilization of equipment
JP2008266741A (en) * 2007-04-23 2008-11-06 Mitsui Chemicals Inc Gas-generating apparatus and gas-generating method
JP2016043290A (en) * 2014-08-20 2016-04-04 株式会社アルバック Electrodialyzer and electrodialysis method for cleaned waste water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729570B1 (en) 2006-07-20 2007-06-19 웅진코웨이주식회사 Electrolyzer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007686A (en) * 1994-08-26 1999-12-28 Medical Discoveries, Inc. System for elctrolyzing fluids for use as antimicrobial agents
US6117285A (en) * 1994-08-26 2000-09-12 Medical Discoveries, Inc. System for carrying out sterilization of equipment
JPH0910768A (en) * 1995-06-26 1997-01-14 Aiken Kogyo Kk Sterilized water having high electron activity and production thereof
JP2008266741A (en) * 2007-04-23 2008-11-06 Mitsui Chemicals Inc Gas-generating apparatus and gas-generating method
JP2016043290A (en) * 2014-08-20 2016-04-04 株式会社アルバック Electrodialyzer and electrodialysis method for cleaned waste water

Also Published As

Publication number Publication date
JP3390878B2 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
KR0133975B1 (en) Method amd device for producing electrlytic water
KR19990072981A (en) Apparatus for producing electrolytic solution
WO2006042082A2 (en) Apparatus and method for producing electrolyzed water
KR100462639B1 (en) Water treatment apparatus
JP3201860B2 (en) Method and apparatus for producing electrolyzed water
JPH06312185A (en) Electrolytic water forming apparatus
JP3234025B2 (en) Electrolyzed water generator
JPH06246269A (en) Device for producing electrolyte
JPH07299457A (en) Electrolyzed water producing device
JP3275108B2 (en) Electrolyzed water generator
JP3292930B2 (en) Electrolyzed water generator
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JPH06312184A (en) Electrolytic water forming apparatus
JP7212978B1 (en) electrolytic device
JPH1190447A (en) Apparatus for circulating bath water
JPH09108673A (en) Method of electrolyzing salt water
JPH06246265A (en) Device for producing electrolyte
JP4068267B2 (en) Electrolyzed water generator
JPH06312186A (en) Electrolytic water forming apparatus
JP3398173B2 (en) Electrolysis method of saline solution
JP3835019B2 (en) Electrolytic control method for chlorine production
JP3412669B2 (en) Electrolyzed water generator
JP3653129B2 (en) Electrolyzed water generator
JP3474433B2 (en) Electrolyzed water generator
JP3637114B2 (en) Electrolyzed water generator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees