JP4068267B2 - Electrolyzed water generator - Google Patents

Electrolyzed water generator Download PDF

Info

Publication number
JP4068267B2
JP4068267B2 JP23871199A JP23871199A JP4068267B2 JP 4068267 B2 JP4068267 B2 JP 4068267B2 JP 23871199 A JP23871199 A JP 23871199A JP 23871199 A JP23871199 A JP 23871199A JP 4068267 B2 JP4068267 B2 JP 4068267B2
Authority
JP
Japan
Prior art keywords
water
raw water
electrolysis
electrolyzed
electrolyzed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23871199A
Other languages
Japanese (ja)
Other versions
JP2001062456A (en
Inventor
公一 宮下
敬二 永野
剛 武藤
豪 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP23871199A priority Critical patent/JP4068267B2/en
Publication of JP2001062456A publication Critical patent/JP2001062456A/en
Application granted granted Critical
Publication of JP4068267B2 publication Critical patent/JP4068267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、殺菌、消毒等に用いられる電解水を製造する電解水生成装置に関するものである。
【0002】
【従来の技術】
従来、イオン透過性の隔膜を介して陽極板と陰極板とを設けた電解室に、電解質として塩化ナトリウム(NaCl)、塩化カリウム(KCl)等の塩化物を含む原水を供給して電解することにより、殺菌、消毒等に用いられる電解水を製造する電解水生成装置が知られている。
【0003】
前記電解水生成装置によれば、前記電解室の陽極側に、前記塩化物を含む原水の電解生成物として、塩素(Cl2 )、次亜塩素酸(HClO)等の有効塩素を含む電解水が得られる。前記電解水は、前記有効塩素の作用により強い殺菌性を示すが、殺菌、消毒等に有効であるためには所定以上の濃度の有効塩素を含むことが望ましい。
【0004】
前記電解水生成装置では、前記電解水中の有効塩素の濃度は、前記原水に含まれる塩化物の濃度を一定とすれば、前記陽極板と陰極板との間に通電される電流の大きさに依存する。例えば、特開平7−195080号公報には、前記電解水生成装置に水道水等を供給して電解するときに、前記陽極板と陰極板との間に通電される電流を大きくすると、前記水道水に含まれる塩素イオンから生成する塩素の量が増加し、有効塩素濃度が高く、殺菌力の強い電解水が得られることが記載されている。従って、前記電解水生成装置では、一般に前記電解水中の有効塩素濃度を所定以上にするために、所定の電流を前記陽極板と陰極板との間に通電することが行われている。
【0005】
しかしながら、前記従来の電解水生成装置では、前記原水に含まれる塩化物の濃度と、前記陽極板と陰極板との間に通電される電流とを一定として所定濃度以上の有効塩素を含む電解水が得られるように設定しても、環境条件により、特に原水の水温の上昇により、有効塩素濃度が低減し、所定の濃度が得られないことがあるとの不都合がある。
【0006】
【発明が解決しようとする課題】
本発明は、かかる不都合を解消して、原水の水温の変動に関らず所定以上の濃度の有効塩素を含む電解水を得ることができる電解水生成装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、原水の水温、陽極板と陰極板との間に通電される電流の値、生成される電解水に含まれる有効塩素の濃度の3者の関係について検討し、前記電流が一定(定電流)の条件下では、有効塩素の濃度が原水の水温の上昇に従って直線的に減少する一方、原水の水温の低下に従って直線的に増加することを見出した。前記のように有効塩素の濃度が変動する理由としては、原水の水温の変化により通電した電荷に対するイオンや水分子における電気化学反応量の割合が変化し、プロトン(H+ )や塩素等の生成量が変化すること、前記水温によって前記電解水に溶解する塩素等の溶解度が変化すること等が考えられる。
【0008】
前記知見に基づいて、本発明者らは、原水の水温が上昇したときには、陽極板と陰極板との間に通電される電流を大きくすることにより、生成量の変動に対する塩素溶解の低下分を補償できるものと考えて、更に検討を重ね、本発明に到達した。
【0009】
そこで、本発明の電解水生成装置は、電解質として所定濃度の塩化物を含む原水を供給する原水供給手段と、イオン透過性の隔膜を介して対向配置され該原水供給手段から供給される原水を収容する第1及び第2の電解室と、各電解室に設けられた第1及び第2の電極板と、両電極板に通電して該原水を電解して電解水を生成せしめるときに、生成する電解水に含まれる有効塩素が所定以上の濃度となる電流を両電極板に通電する通電制御装置とを備える電解水生成装置において、該原水供給手段に各電解室に供給される原水の水温を検出する水温検出手段を設け、該通電制御装置は該水温検出手段により検出される原水の水温の上昇に応じて、生成する電解水に含まれる有効塩素が所定以上の濃度となるように、両電極板に通電される電流を増加させ、該水温検出手段により検出される原水の水温の低下に応じて、生成する電解水に含まれる有効塩素が所定以上の濃度となる範囲内で、両電極板に通電される電流を減少させると共に、両電極板に通電する電流を、該水温検出手段により検出される水温の条件下における電解により生成する電解水に含まれる有効塩素が所定の濃度となる電流よりも、該両電解室における電解に伴うジュール熱による水温上昇に相当する分だけ高い値に設定することを特徴とする。
【0010】
本発明の電解水生成装置は、前記原水供給手段により各電解室に供給される原水の電解を行うときに、前記通電制御手段により、生成する電解水に含まれる有効塩素が所定以上の濃度となる電流を両電極板に通電するように設定されている。しかし、前記のように設定しても、原水の水温が変化すると、前述のように生成する電解水に含まれる有効塩素濃度が変動する。
【0011】
そこで、本発明の電解水生成装置では、前記原水供給手段により各電解室に供給される原水の水温を前記水温検出手段により検出し、前記通電制御手段が該水温検出手段により検出される水温の変化に応じて、両電極板に通電される電流を増減させる。
【0012】
前記通電制御手段の作動を具体的に述べると、まず、前記水温が上昇したときには、前記上昇に応じて生成する電解水に含まれる有効塩素が所定以上の濃度となるように、両電極板に通電される電流を増加させる。この結果、前記原水の電解により生成する塩素、次亜塩素酸等の有効塩素が増加し、原水の水温上昇による、前記電解水中の有効塩素量の低下分が補償され、所定以上の濃度の有効塩素を含む電解水を得ることができる。
【0013】
次に、前記水温が低下したときには、前述の現象とは逆に前記電解水中の塩素等が過剰になる。そこで、前記水温の低下に応じて、生成する電解水に含まれる有効塩素が所定以上の濃度となる範囲内で、両電極板に通電される電流を減少させることにより、前記原水の電解による塩素、次亜塩素酸等の有効塩素の生成が抑制され、所定量の安定した濃度の有効塩素を含むように調整された電解水を得ることができる。
本発明の電解水生成装置では、電解反応によって水温が上昇するので、前記両電極板に通電する電流を前記のように設定することにより、前記電解反応による水温の上昇分を補償して、前記所定濃度以上の有効塩素を含む電解水を確実に得ることができる。
【0014】
従って、本発明の電解水生成装置によれば、原水の水温の変動に関らず、常に、所定以上の安定した濃度の有効塩素を含む電解水を得ることができる。
【0015】
尚、前記通電制御装置による前記電流の増減は、前記電流の値を前記水温の関数として、変化した水温に1:1で対応する電流の値を算出することにより行ってもよく、前記水温の所定間隔毎、例えば5℃毎に電流の値を設定しておくようにして行ってもよい。
【0016】
前記原水を電解して電解水を生成せしめるときには、生起する化学反応により水温が上昇する。そこで、本発明の電解水生成装置は、前記原水供給手段により前記原水を各電解室に連続的に供給しつつ、各電解室で前記電解により生成した電解水を連続的に取出すように構成することが好ましい。前記のようにするときには、前記原水は前記各電解室に滞留することなく、各電解室内を移動しながら電解を受けることになるので、前記電解反応による水温上昇の影響を低減することができ、所定以上の安定した濃度の有効塩素を含む電解水を容易に得ることができる。
【0017】
またこのとき、前記水温検出手段は、各電解室に供給される前の原水の水温を検出することが好ましい。電解において発生するジュール熱は電流値によって異なるが、このように電解前の原水の温度を検出することによって、これらの影響を受けることなく連続的に供給される原水の水温の変動を早期に検出することができる。従って、水温の急激な変化に対しても、有効塩素濃度が所定値を下回らないように安定した制御が行える。
【0020】
【発明の実施の形態】
次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の電解水生成装置のシステム構成図であり、図2は図1示の装置で原水の水温により電流の設定値を変更することなく電解を行ったときの水温と生成する電解水中の有効塩素濃度との関係を示すグラフであり、図3は図1示の装置で生成する電解水中の有効塩素濃度が一定になるようにして電解を行ったときの原水の水温と電流の値との関係を示すグラフである。
【0021】
また、図4は図1示の装置の作動の一態様を示すフローチャートであり、図5は図1示の装置で、原水の水温により電流を増減して電解を行うときの水温と電流の値との関係の一態様を示すグラフであり、図6は他の態様を示すグラフである。
【0022】
図1示のように、本実施態様の電解水生成装置1は電解槽2を備え、電解槽2はイオン透過性の隔膜3を介して対向する電解室4,5にそれぞれ電極板6,7を備えると共に、電極板6,7は電源装置8に接続されている。各電解室4,5には、それぞれ所定濃度の食塩水(塩化ナトリウム水溶液)を原水として供給する原水供給導管9,10が接続され、原水供給導管9,10は、上流側で合して導管11となっており、導管11と共に原水供給手段を構成している。導管11は原水の供給量を一定に維持するために電磁弁12を介して図示しない水道管等の原水供給源に接続され、電磁弁12の下流側に導管11により供給される原水の水温を検出するサーミスタ等の水温センサ13を備えている。また、導管11には食塩水タンク14からメータリングポンプ15により所定量の食塩水が供給され、導管11内で混合された所定濃度の食塩水が原水供給導管9,10から各電解室4,5に供給される。
【0023】
また、各電解室4,5には前記食塩水の電解により生成する酸性またはアルカリ性の電解水を取出す電解水取出導管16,17が接続され、各電解水取出導管16,17には、酸性電解水取出導管18と、アルカリ性電解水取出導管19とが、それぞれ三方弁20,21を介して接続されている。
【0024】
22は制御装置であり、CPU、ROM、RAM等を備えるマイクロコンピュータからなる。制御装置22は、水温センサ13により検出される原水の水温に応じて電源装置8を制御し、電極板6,7に通電される電流を増減するとともに、各温度では前記電流が定電流となるようにする通電制御手段として作用する。また、制御装置22は電源装置8を制御して、電極板6,7の極性を定期的に切替え、該極性の切替に対応して、三方弁20,21の接続方向を制御すると共に、電磁弁12、メータリングポンプ15の作動を制御する。
【0025】
次に、電解水生成装置1で、水温センサ13により検出される原水の水温に関わり無く、制御装置22により電極板6,7に通電される電流を7.0Aに一定に維持して電解を行ったときの、原水の水温と、酸性電解水取出導管18から取出される電解水の有効塩素濃度との関係を図2に示す。図2から、電極板6,7に通電される電流が一定であるときには、前記電解水に含まれる有効塩素の濃度は、原水の水温の上昇に伴って、直線的に低下することが明らかである。
【0026】
次に、電解水生成装置1で、水温センサ13により検出される原水の水温が変化したときに、5℃、10℃、15℃、20℃、25℃、33℃の各温度で、前記電解水に含まれる有効塩素の濃度が60ppmとなるようにするために、電極板6,7に通電が必要である電流の値を測定した。結果を図3に示す。
【0027】
図3から、電解水生成装置1の酸性電解水取出導管18から取出される電解水の有効塩素濃度を一定に維持するためには、電極板6,7に通電される電流の値は、原水の水温の上昇に伴って、直線的に増加する必要があることが明らかである。
【0028】
そこで、電解水生成装置1では、水温センサ13により検出される原水の水温に関わらず、酸性電解水取出導管18から取出される電解水に含まれる有効塩素を常に所定以上の濃度とするために、前記水温が上昇したときには電極板6,7に通電される電流を増加させ、前記水温が低下したときには電極板6,7に通電される電流を減少させるようにした。次に、図4を参照して前記作動をさらに詳しく説明する。
【0029】
まず、電解水生成装置1が作動されると、制御装置22は図4のSTEP1でフラグf1 を初期化し、f1 =0とする。次に、制御装置22はSTEP2で電磁弁12を開くと共に、メータリングポンプ15を作動させる。この結果、導管11内を流通する原水に、メータリングポンプ15により食塩水タンク14から供給される食塩水が混合され、所定濃度の食塩水(塩化ナトリウム水溶液)が原水として原水供給導管9,10から電解室4,5に連続的に導入される。
【0030】
次に、制御装置22は、STEP3で水温センサ13により検出される原水の水温Tを検知し、次いでSTEP4でフラグf1 の値を判定する。そして、フラグf1 =0のときには、STEP5で次式(1)により、出力電流Ioutの初期値を水温Tの関数として算出する。
【0031】
out=aT+b ・・・(1)
ここで、式(1)中のa,bは、酸性電解水取出導管18から取出される電解水に含まれる有効塩素を所望の濃度とする定数であり、例えばaは図3示の直線の傾き、bは切片に相当する。
【0032】
次に、制御装置22は、STEP6で電源装置8をONにして、前記出力電流Ioutの初期値を電極板6,7に通電することにより、前記原水の電解を開始する。このとき、電解水生成装置1の陽極側電解室(例えば電解室4)では、主として水の電解によりプロトンが(H+ )が生成する。同時に原水中の塩素イオン(Cl- )の酸化により塩素(Cl2 )が生成し、さらに水と生成した塩素との反応により、次亜塩素酸(HClO)が生成する。また、陰極側電解室(例えば電解室5)では、主として水の電解により水酸イオン(OH- )が生成する。
【0033】
この結果、陽極側電解室4では、塩素、次亜塩素酸等の有効塩素を含む酸性電解水が得られ、陰極側電解室5ではアルカリ性電解水が得られる。電解水生成装置1では、電解室4,5がイオン透過性の隔膜3で仕切られているため、前記酸性電解水、アルカリ性電解水の両者が混合されることなく、前記有効塩素を含む酸性電解水は電解水取出導管16、三方弁20を介して酸性電解水取出導管18から、アルカリ性電解水は電解水取出導管17、三方弁21を介してアルカリ性電解水取出導管19から、それぞれ連続的に取出される。
【0034】
尚、電解室4,5がイオン透過性の隔膜3で仕切られていない場合には、前記酸性電解水、アルカリ性電解水の両者が電解槽2内で混合されるため、陽極側ではpHが上昇して前記次亜塩素酸が活性の無い塩素酸イオン(ClO- )となり、有効塩素濃度が低減することになってしまう。
【0035】
次に、制御装置22は、STEP7でフラグf1 の値をf1 =1として、STEP3に戻る。そして、STEP3で新たに水温センサ13により検出される原水の水温Tを検知する。制御装置22は、次に、STEP4でフラグf1 の値を判定するが、前記STEP7の操作により今度はf1 =1となっているので、STEP8に進み、新たな水温Tを前回の水温Tと比較して、温度が変化しているか否かを判定する。
【0036】
STEP8で温度が変化しているときには、制御装置22はSTEP9で前出の式(1)により、新たな出力電流Ioutの値を変化後の水温Tの関数として算出する。そして、STEP10で出力電流Ioutの値をSTEP9で算出した値に変更したのち、STEP3に復帰し、STEP4、STEP8〜10の操作を繰り返す。また、STEP8で温度の変化が認められないときには、制御装置22は出力電流Ioutの値を変更することなく直ちにSTEP3に復帰し、STEP4、STEP8〜10の操作を繰り返す。
【0037】
本実施形態では、式(1)のa,bを定めるために、電解水生成装置1で、水温センサ13により検出される原水の水温が10〜30℃である範囲の5点で、前記電解水に含まれる有効塩素の濃度が30ppmとなるために電極板6,7に通電される電流の値を測定した。そして、前記測定結果から、前記電解水に含まれる有効塩素の濃度が30ppmとなるための電流の値を水温Tの関数として求めた。結果を図5に破線で示す。
【0038】
次に、図5の破線で示される直線と同一の傾きを備え、該直線より切片の大きな直線を式(1)として設定した。この場合、前記切片の大きさは、電解室4,5における電解反応による水温Tの上昇を補償して、所定以上の濃度の有効塩素を含む電解水が得られるように設定される。該直線を図5に実線で示す。
【0039】
図5に実線で示される直線からa,bを定めた。この結果、本実施形態では、式(1)において、傾きa=1/8、切片b=5となった。
【0040】
次に、電解水生成装置1で、導管11の流量2リットル/分、塩化ナトリウムの添加量1.6g/リットルとし、前記傾きa、切片bを用いて制御装置22により、電極板6,7に通電される電流の値を制御して、電解水を生成させた。このとき、酸性電解水取出導管18から取出された酸性の電解水に含まれる有効塩素は、原水の水温Tが11℃のときに31ppm、9.7℃のときに31.7ppmであった。従って、本実施形態によれば、原水の水温に関わらず所定濃度(30ppm)以上の有効塩素を含む電解水を得ることができることが明らかである。
【0041】
本実施形態では、制御装置22は図5に実線で示される直線から求めた式(1)により、原水の水温Tに対して、電極板6,7に通電される電流が1:1の関係で算出されるようにして連続的に制御しているが、原水の水温Tの所定間隔毎、例えば5℃毎に電極板6,7に通電される電流の値を設定しておき、段階的に制御するようにしてもよい。
【0042】
次に、原水の水温Tに対する電極板6,7に通電される電流を段階的に制御する例を図6に示す。
【0043】
図6において、破線で示される直線は、図5に破線で示される直線と同一である。そして、前記電流の制御を段階的に行う場合には、それぞれの温度の範囲における電流の値が、その温度に対し図6示の破線の直線により求められる電流の値よりも大きくなるように設定される。
【0044】
前記電流の制御を段階的に行う場合には、マイクロプロセッサなどによる電子制御を必要とせず、リレー等により制御することができるとの利点がある。
【0045】
前記実施形態は、いずれも原水供給導管9,10から電解室4,5に連続的に導入される原水を電解し、生成する電解水を酸性電解水取出導管18、アルカリ性電解水取出導管19から連続的に取出すという方式(所謂流水式)である。しかし、原水供給導管9,10から電解室4,5に所要の原水を供給した後、三方弁20,21を閉じて、電解室4,5に収容された原水を所定時間電解し、しかる後に三方弁20,21を開いて生成した電解水を酸性電解水取出導管18、アルカリ性電解水取出導管19から取出すというように、回分式で行ってもよい。
【0046】
また、前記実施形態では、塩化物として塩化ナトリウムを用いているが、塩化カリウム等、他の塩化物を用いるようにしてもよい。
【図面の簡単な説明】
【図1】本発明に係る電解水生成装置のシステム構成図。
【図2】図1示の装置で原水の水温により電流の設定値を変更することなく電解を行ったときの水温と生成する電解水中の有効塩素濃度との関係を示すグラフ。
【図3】図1示の装置で生成する電解水中の有効塩素濃度が一定になるようにして電解を行ったときの原水の水温と電流の値との関係を示すグラフ。
【図4】図1示の装置の作動の一態様を示すフローチャート。
【図5】図1示の装置で、原水の水温により電流を増減して電解を行うときの水温と電流の値との関係の一態様を示すグラフ。
【図6】図1示の装置で、原水の水温により電流を増減して電解を行うときの水温と電流の値との関係の他の態様を示すグラフ。
【符号の説明】
1…電解水生成装置、 3…隔膜、 4,5…電解室、 6,7…電極板、 9,10,11…原水供給手段、 13…水温検出手段、 22…通電制御手段。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolyzed water generating apparatus for producing electrolyzed water used for sterilization, disinfection, and the like.
[0002]
[Prior art]
Conventionally, electrolysis is performed by supplying raw water containing chlorides such as sodium chloride (NaCl) and potassium chloride (KCl) as an electrolyte to an electrolytic chamber provided with an anode plate and a cathode plate through an ion-permeable diaphragm. Thus, there is known an electrolyzed water generating apparatus for producing electrolyzed water used for sterilization, disinfection, and the like.
[0003]
According to the electrolyzed water generating device, electrolyzed water containing effective chlorine such as chlorine (Cl 2 ) and hypochlorous acid (HClO) as an electrolyzed product of the raw water containing chloride on the anode side of the electrolysis chamber. Is obtained. The electrolyzed water exhibits strong bactericidal properties due to the action of the effective chlorine, but it is desirable to contain effective chlorine at a predetermined concentration or more in order to be effective for sterilization and disinfection.
[0004]
In the electrolyzed water generating apparatus, the concentration of effective chlorine in the electrolyzed water is set to a magnitude of a current passed between the anode plate and the cathode plate if the concentration of chloride contained in the raw water is constant. Dependent. For example, in Japanese Patent Application Laid-Open No. 7-195080, when tap water or the like is supplied to the electrolyzed water generating device for electrolysis, the current supplied between the anode plate and the cathode plate is increased. It is described that the amount of chlorine produced from chlorine ions contained in water is increased, electrolyzed water having a high effective chlorine concentration and strong sterilizing power can be obtained. Therefore, in the electrolyzed water generating apparatus, generally, a predetermined current is applied between the anode plate and the cathode plate in order to make the effective chlorine concentration in the electrolyzed water equal to or higher than a predetermined value.
[0005]
However, in the conventional electrolyzed water generating apparatus, the electrolyzed water containing effective chlorine at a predetermined concentration or higher with the concentration of chloride contained in the raw water and the current passed between the anode plate and the cathode plate being constant. However, even if it is set so that the effective chlorine concentration can be obtained, the effective chlorine concentration may be reduced due to environmental conditions, particularly due to an increase in the temperature of the raw water, and a predetermined concentration may not be obtained.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide an electrolyzed water generating apparatus capable of solving such inconvenience and obtaining electrolyzed water containing effective chlorine at a predetermined concentration or more regardless of fluctuations in the water temperature of raw water.
[0007]
[Means for Solving the Problems]
The present inventors examined the relationship between the temperature of raw water, the value of the current passed between the anode plate and the cathode plate, and the concentration of effective chlorine contained in the generated electrolyzed water. It was found that under constant (constant current) conditions, the concentration of available chlorine decreases linearly as the raw water temperature increases, while increasing linearly as the raw water temperature decreases. The reason why the concentration of effective chlorine fluctuates as described above is that the ratio of the amount of electrochemical reaction in ions and water molecules with respect to the electrified charge changes due to the change in the water temperature of the raw water, producing protons (H + ), chlorine, etc. It is conceivable that the amount changes, the solubility of chlorine or the like dissolved in the electrolyzed water changes according to the water temperature, and the like.
[0008]
Based on the above knowledge, when the water temperature of the raw water rises, the present inventors increase the current passed between the anode plate and the cathode plate, thereby reducing the decrease in chlorine dissolution with respect to the fluctuation of the production amount. Considering that it can be compensated, further studies were made and the present invention was reached.
[0009]
Therefore, the electrolyzed water generating apparatus of the present invention comprises a raw water supply means for supplying raw water containing a predetermined concentration of chloride as an electrolyte, and raw water supplied from the raw water supply means that are arranged opposite to each other via an ion-permeable diaphragm. When the first and second electrolysis chambers to be accommodated, the first and second electrode plates provided in each electrolysis chamber, and energizing both electrode plates to electrolyze the raw water to generate electrolyzed water, In an electrolyzed water generating apparatus comprising an energization control device for energizing both electrode plates with a current having a concentration of effective chlorine contained in the electrolyzed water to be generated at a predetermined level or more, the raw water supplied to each electrolysis chamber to the raw water supply means Water temperature detection means for detecting the water temperature is provided, and the energization control device is configured so that the effective chlorine contained in the generated electrolyzed water has a predetermined concentration or more according to the rise in the raw water temperature detected by the water temperature detection means. , the current through collector to electrode plates Increase and decrease the current passed through both electrode plates within a range where the effective chlorine contained in the generated electrolyzed water has a predetermined concentration or more according to the decrease in the temperature of the raw water detected by the water temperature detecting means. It is allowed Rutotomoni, the current supplied to both the electrode plates, than the current effective chlorine contained in the electrolytic water generated by electrolysis under conditions of water temperature detected by the water temperature detecting means becomes a predetermined concentration, the both electrolytic It is characterized by being set to a value that is higher by the amount corresponding to the water temperature rise due to Joule heat accompanying electrolysis in the chamber .
[0010]
In the electrolyzed water generating apparatus of the present invention, when electrolysis of raw water supplied to each electrolysis chamber by the raw water supply means, the effective chlorine contained in the electrolyzed water generated by the energization control means has a predetermined concentration or more. The current is set to pass through both electrode plates. However, even if it sets as mentioned above, if the water temperature of raw | natural water changes, the effective chlorine concentration contained in the electrolyzed water produced | generated as mentioned above will fluctuate.
[0011]
Therefore, in the electrolyzed water generating apparatus of the present invention, the water temperature detecting means detects the water temperature of the raw water supplied to each electrolysis chamber by the raw water supplying means, and the energization control means detects the water temperature detected by the water temperature detecting means. The current supplied to both electrode plates is increased or decreased according to the change.
[0012]
Specifically, the operation of the energization control means will be described. First, when the water temperature rises, both electrode plates are set so that the effective chlorine contained in the electrolyzed water produced in response to the rise has a predetermined concentration or more. Increase the energized current. As a result, effective chlorine such as chlorine and hypochlorous acid generated by electrolysis of the raw water increases, and a decrease in the amount of effective chlorine in the electrolytic water due to an increase in the temperature of the raw water is compensated. Electrolyzed water containing chlorine can be obtained.
[0013]
Next, when the water temperature falls, contrary to the above phenomenon, chlorine and the like in the electrolytic water become excessive. Therefore, in accordance with the decrease in the water temperature, within the range where the effective chlorine contained in the generated electrolyzed water has a concentration equal to or higher than a predetermined level, the current passed through both electrode plates is reduced to thereby reduce the chlorine by electrolysis of the raw water. The production of effective chlorine such as hypochlorous acid is suppressed, and electrolyzed water adjusted so as to contain a predetermined amount of stable concentration of effective chlorine can be obtained.
In the electrolyzed water generating apparatus of the present invention, the water temperature rises due to an electrolysis reaction, so that the current flowing through the electrode plates is set as described above to compensate for the increase in the water temperature due to the electrolysis reaction, Electrolyzed water containing effective chlorine at a predetermined concentration or higher can be obtained reliably.
[0014]
Therefore, according to the electrolyzed water generating apparatus of the present invention, it is possible to always obtain electrolyzed water containing effective chlorine having a stable concentration of a predetermined level or more regardless of fluctuations in the temperature of the raw water.
[0015]
The increase / decrease of the current by the energization control device may be performed by calculating a current value corresponding to the changed water temperature 1: 1 with the current value as a function of the water temperature. The current value may be set every predetermined interval, for example, every 5 ° C.
[0016]
When electrolyzing the raw water to produce electrolyzed water, the water temperature rises due to the chemical reaction that occurs. Then, the electrolyzed water generating apparatus of this invention is comprised so that the electrolyzed water produced | generated by the said electrolysis may be taken out continuously in each electrolysis chamber, supplying the said raw water continuously to each electrolysis chamber by the said raw water supply means. It is preferable. When doing as described above, the raw water does not stay in each electrolysis chamber, but undergoes electrolysis while moving in each electrolysis chamber, so the influence of water temperature rise due to the electrolytic reaction can be reduced, Electrolyzed water containing effective chlorine at a stable concentration above a predetermined level can be easily obtained.
[0017]
At this time, it is preferable that the water temperature detecting means detects the temperature of the raw water before being supplied to each electrolysis chamber. Joule heat generated in electrolysis varies depending on the current value. By detecting the temperature of raw water before electrolysis in this way, fluctuations in the temperature of raw water that is continuously supplied without being affected by these effects can be detected at an early stage. can do. Therefore, stable control can be performed so that the effective chlorine concentration does not fall below a predetermined value even when the water temperature changes rapidly.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a system configuration diagram of the electrolyzed water generating apparatus according to the present embodiment, and FIG. 2 generates the water temperature when electrolysis is performed by the apparatus shown in FIG. FIG. 3 is a graph showing the relationship between the effective chlorine concentration in the electrolyzed water, and FIG. 3 shows the water temperature and current of the raw water when electrolysis is performed so that the effective chlorine concentration in the electrolyzed water generated by the apparatus shown in FIG. It is a graph which shows the relationship with the value of.
[0021]
4 is a flow chart showing one mode of operation of the apparatus shown in FIG. 1, and FIG. 5 is a water temperature and current value when electrolysis is performed by increasing or decreasing the current depending on the raw water temperature in the apparatus shown in FIG. FIG. 6 is a graph showing another aspect.
[0022]
As shown in FIG. 1, the electrolyzed water generating apparatus 1 of this embodiment includes an electrolyzer 2, and the electrolyzer 2 is connected to electrode plates 6, 7, which are opposed to electrolyzers 4, 5 facing each other via an ion-permeable diaphragm 3. The electrode plates 6 and 7 are connected to the power supply device 8. The electrolysis chambers 4 and 5 are respectively connected to raw water supply conduits 9 and 10 for supplying a saline solution (sodium chloride aqueous solution) having a predetermined concentration as raw water, and the raw water supply conduits 9 and 10 are connected to each other upstream. 11, and the raw water supply means is configured together with the conduit 11. The conduit 11 is connected to a raw water supply source such as a water pipe (not shown) via a solenoid valve 12 in order to keep the supply amount of the raw water constant, and the temperature of the raw water supplied by the conduit 11 is reduced downstream of the solenoid valve 12. A water temperature sensor 13 such as a thermistor for detection is provided. Also, a predetermined amount of saline is supplied from the saline tank 14 to the conduit 11 by the metering pump 15, and the salt solution of a predetermined concentration mixed in the conduit 11 is supplied from the raw water supply conduits 9, 10 to the electrolysis chambers 4, 4. 5 is supplied.
[0023]
The electrolysis chambers 4 and 5 are connected to electrolyzed water extraction conduits 16 and 17 for taking out acidic or alkaline electrolyzed water generated by the electrolysis of the saline solution. A water extraction conduit 18 and an alkaline electrolyzed water extraction conduit 19 are connected via three-way valves 20 and 21, respectively.
[0024]
Reference numeral 22 denotes a control device, which includes a microcomputer having a CPU, a ROM, a RAM, and the like. The control device 22 controls the power supply device 8 according to the water temperature of the raw water detected by the water temperature sensor 13 to increase / decrease the current supplied to the electrode plates 6, 7, and the current becomes a constant current at each temperature. It acts as an energization control means. In addition, the control device 22 controls the power supply device 8 to periodically switch the polarities of the electrode plates 6 and 7, and to control the connection direction of the three-way valves 20 and 21 in response to the switching of the polarity, The operation of the valve 12 and the metering pump 15 is controlled.
[0025]
Next, in the electrolyzed water generating device 1, regardless of the water temperature of the raw water detected by the water temperature sensor 13, the current supplied to the electrode plates 6 and 7 by the control device 22 is kept constant at 7.0 A for electrolysis. FIG. 2 shows the relationship between the raw water temperature and the effective chlorine concentration of the electrolyzed water taken out from the acidic electrolyzed water take-out conduit 18 when it is conducted. From FIG. 2, it is clear that when the current passed through the electrode plates 6 and 7 is constant, the concentration of effective chlorine contained in the electrolyzed water decreases linearly as the temperature of the raw water increases. is there.
[0026]
Next, when the water temperature of the raw water detected by the water temperature sensor 13 is changed in the electrolyzed water generator 1, the electrolysis is performed at each temperature of 5 ° C, 10 ° C, 15 ° C, 20 ° C, 25 ° C, and 33 ° C. In order to make the concentration of effective chlorine contained in water 60 ppm, the value of the current required to energize the electrode plates 6 and 7 was measured. The results are shown in FIG.
[0027]
From FIG. 3, in order to keep the effective chlorine concentration of the electrolyzed water taken out from the acidic electrolyzed water take-out conduit 18 of the electrolyzed water generating apparatus 1 constant, the value of the current passed through the electrode plates 6 and 7 is the raw water It is clear that the water temperature needs to increase linearly as the water temperature rises.
[0028]
Therefore, in the electrolyzed water generating device 1, regardless of the raw water temperature detected by the water temperature sensor 13, the effective chlorine contained in the electrolyzed water taken out from the acidic electrolyzed water take-out conduit 18 is always set to a predetermined concentration or more. When the water temperature rises, the current passed through the electrode plates 6 and 7 is increased, and when the water temperature falls, the current passed through the electrode plates 6 and 7 is reduced. Next, the operation will be described in more detail with reference to FIG.
[0029]
First, when the electrolyzed water generating device 1 is operated, the control device 22 initializes the flag f 1 in STEP 1 of FIG. 4 and sets f 1 = 0. Next, the control device 22 opens the electromagnetic valve 12 and activates the metering pump 15 in STEP2. As a result, the salt water supplied from the salt water tank 14 by the metering pump 15 is mixed with the raw water flowing through the conduit 11, and the salt water (sodium chloride aqueous solution) having a predetermined concentration is used as the raw water. To the electrolysis chambers 4 and 5 continuously.
[0030]
Next, the control device 22 detects the water temperature T of the raw water detected by the water temperature sensor 13 in STEP 3, and then determines the value of the flag f 1 in STEP 4. When flag f 1 = 0, the initial value of the output current I out is calculated as a function of the water temperature T in STEP 5 by the following equation (1).
[0031]
I out = aT + b (1)
Here, a and b in the formula (1) are constants having a desired concentration of effective chlorine contained in the electrolyzed water taken out from the acidic electrolyzed water take-out conduit 18, for example, a is a straight line shown in FIG. The slope, b, corresponds to the intercept.
[0032]
Then, control device 22 turns ON the power supply 8 in STEP6, by energizing the initial value of the output current I out to the electrode plates 6 and 7, to start the electrolysis of the raw water. At this time, in the anode side electrolysis chamber (for example, electrolysis chamber 4) of the electrolyzed water generating apparatus 1, protons (H + ) are generated mainly by electrolysis of water. At the same time, chlorine (Cl 2 ) is generated by oxidation of chlorine ions (Cl ) in the raw water, and hypochlorous acid (HClO) is generated by the reaction between water and the generated chlorine. In the cathode side electrolysis chamber (for example, electrolysis chamber 5), hydroxide ions (OH ) are generated mainly by electrolysis of water.
[0033]
As a result, in the anode side electrolysis chamber 4, acidic electrolyzed water containing effective chlorine such as chlorine and hypochlorous acid is obtained, and in the cathode side electrolysis chamber 5, alkaline electrolyzed water is obtained. In the electrolyzed water generating apparatus 1, since the electrolysis chambers 4 and 5 are partitioned by the ion permeable diaphragm 3, the acidic electrolysis water containing the effective chlorine is mixed without mixing both the acidic electrolyzed water and the alkaline electrolyzed water. Water is continuously supplied from the electrolyzed water outlet conduit 16 and the acidic electrolyzed water outlet conduit 18 via the three-way valve 20, and alkaline electrolytic water is continuously supplied from the electrolytic water outlet conduit 17 and the three-way valve 21 from the alkaline electrolyzed water outlet conduit 19 respectively. Taken out.
[0034]
When the electrolysis chambers 4 and 5 are not partitioned by the ion permeable diaphragm 3, both the acidic electrolyzed water and the alkaline electrolyzed water are mixed in the electrolytic cell 2, so that the pH increases on the anode side. Thus, the hypochlorous acid becomes an inactive chlorate ion (ClO ), and the effective chlorine concentration is reduced.
[0035]
Next, the control device 22 sets the value of the flag f 1 to f 1 = 1 in STEP 7 and returns to STEP 3. Then, the water temperature T newly detected by the water temperature sensor 13 in STEP 3 is detected. Next, the control device 22 determines the value of the flag f 1 in STEP 4, but this time f 1 = 1 by the operation of STEP 7, so the process proceeds to STEP 8, and the new water temperature T is changed to the previous water temperature T. It is determined whether or not the temperature has changed.
[0036]
When the temperature is changing in STEP8, the control device 22 calculates the value of the new output current Iout as a function of the changed water temperature T in STEP9 according to the above equation (1). Then, after changing the value calculated by STEP9 the value of the output current I out in STEP 10, then return to STEP3, STEP4, repeated operation of STEP8~10. Further, when a change in temperature is not observed in STEP8, the controller 22 returns immediately STEP3 without changing the value of the output current I out, STEP4, repeated operation of STEP8~10.
[0037]
In this embodiment, in order to determine a and b of the formula (1), the electrolysis water generator 1 performs the electrolysis at five points in the range where the water temperature of the raw water detected by the water temperature sensor 13 is 10 to 30 ° C. Since the concentration of effective chlorine contained in water was 30 ppm, the value of the current passed through the electrode plates 6 and 7 was measured. And from the measurement result, the value of the current for the concentration of effective chlorine contained in the electrolyzed water to be 30 ppm was determined as a function of the water temperature T. The results are shown by broken lines in FIG.
[0038]
Next, a straight line having the same inclination as the straight line indicated by the broken line in FIG. 5 and having a larger intercept than the straight line was set as Equation (1). In this case, the size of the intercept is set so as to compensate for the increase in the water temperature T due to the electrolytic reaction in the electrolysis chambers 4 and 5, and to obtain electrolyzed water containing effective chlorine at a predetermined concentration or more. The straight line is shown by a solid line in FIG.
[0039]
A and b were determined from the straight line shown by the solid line in FIG. As a result, in the present embodiment, the slope a = 1/8 and the intercept b = 5 in the equation (1).
[0040]
Next, in the electrolyzed water generating apparatus 1, the flow rate of the conduit 11 is set to 2 liters / minute, the amount of sodium chloride added is 1.6 g / liter, and the control plates 22 are used to control the electrode plates 6 and 7 using the slope a and the intercept b. Electrolyzed water was generated by controlling the value of the current passed through. At this time, the effective chlorine contained in the acidic electrolyzed water taken out from the acidic electrolyzed water take-out conduit 18 was 31 ppm when the raw water water temperature T was 11 ° C. and 31.7 ppm when it was 9.7 ° C. Therefore, according to this embodiment, it is clear that electrolyzed water containing effective chlorine having a predetermined concentration (30 ppm) or more can be obtained regardless of the temperature of the raw water.
[0041]
In the present embodiment, the control device 22 has a 1: 1 relationship between the current supplied to the electrode plates 6 and 7 with respect to the water temperature T of the raw water according to the equation (1) obtained from the straight line shown in FIG. Is calculated continuously at a predetermined interval of the water temperature T of the raw water, for example, every 5 ° C., the value of the current supplied to the electrode plates 6 and 7 is set in a stepwise manner. You may make it control to.
[0042]
Next, FIG. 6 shows an example in which the current supplied to the electrode plates 6 and 7 with respect to the raw water temperature T is controlled stepwise.
[0043]
In FIG. 6, the straight line indicated by the broken line is the same as the straight line indicated by the broken line in FIG. When the current control is performed step by step, the current value in each temperature range is set to be larger than the current value obtained by the broken line in FIG. Is done.
[0044]
When the current is controlled stepwise, there is an advantage that it can be controlled by a relay or the like without requiring electronic control by a microprocessor or the like.
[0045]
In the above embodiments, the raw water continuously introduced from the raw water supply conduits 9 and 10 into the electrolysis chambers 4 and 5 is electrolyzed, and the generated electrolytic water is supplied from the acidic electrolytic water outlet conduit 18 and the alkaline electrolytic water outlet conduit 19. It is a method of taking out continuously (so-called flowing water method). However, after the required raw water is supplied from the raw water supply conduits 9 and 10 to the electrolysis chambers 4 and 5, the three-way valves 20 and 21 are closed, and the raw water accommodated in the electrolysis chambers 4 and 5 is electrolyzed for a predetermined time. The electrolyzed water generated by opening the three-way valves 20 and 21 may be taken out batchwise, such as taking out from the acidic electrolyzed water outlet conduit 18 and the alkaline electrolyzed water outlet conduit 19.
[0046]
Moreover, in the said embodiment, although sodium chloride is used as a chloride, you may make it use other chlorides, such as potassium chloride.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of an electrolyzed water generating apparatus according to the present invention.
2 is a graph showing the relationship between the water temperature and the effective chlorine concentration in the generated electrolyzed water when electrolysis is performed without changing the current setting value depending on the water temperature of the raw water in the apparatus shown in FIG.
FIG. 3 is a graph showing the relationship between the raw water temperature and the current value when electrolysis is performed such that the effective chlorine concentration in the electrolyzed water generated by the apparatus shown in FIG. 1 is constant.
FIG. 4 is a flowchart showing one mode of operation of the apparatus shown in FIG. 1;
FIG. 5 is a graph showing one aspect of the relationship between the water temperature and the current value when electrolysis is performed by increasing or decreasing the current depending on the raw water temperature in the apparatus shown in FIG. 1;
6 is a graph showing another aspect of the relationship between the water temperature and the current value when electrolysis is performed by increasing or decreasing the current depending on the water temperature of the raw water in the apparatus shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electrolyzed water production | generation apparatus, 3 ... Diaphragm, 4, 5 ... Electrolytic chamber, 6, 7 ... Electrode plate, 9, 10, 11 ... Raw water supply means, 13 ... Water temperature detection means, 22 ... Current supply control means.

Claims (2)

電解質として所定濃度の塩化物を含む原水を供給する原水供給手段と、イオン透過性の隔膜を介して対向配置され該原水供給手段から供給される原水を収容する第1及び第2の電解室と、各電解室に設けられた第1及び第2の電極板と、両電極板に通電して該原水を電解して電解水を生成せしめるときに、生成する電解水に含まれる有効塩素が所定以上の濃度となる電流を両電極板に通電する通電制御装置とを備える電解水生成装置において、
該原水供給手段に各電解室に供給される原水の水温を検出する水温検出手段を設け、該通電制御装置は該水温検出手段により検出される原水の水温の上昇に応じて、生成する電解水に含まれる有効塩素が所定以上の濃度となるように、両電極板に通電される電流を増加させ、該水温検出手段により検出される原水の水温の低下に応じて、生成する電解水に含まれる有効塩素が所定以上の濃度となる範囲内で、両電極板に通電される電流を減少させると共に、両電極板に通電する電流を、該水温検出手段により検出される水温の条件下における電解により生成する電解水に含まれる有効塩素が所定の濃度となる電流よりも、該両電解室における電解に伴うジュール熱による水温上昇に相当する分だけ高い値に設定することを特徴とする電解水生成装置。
Raw water supply means for supplying raw water containing a predetermined concentration of chloride as an electrolyte, and first and second electrolysis chambers disposed opposite to each other via an ion-permeable diaphragm and containing raw water supplied from the raw water supply means The first and second electrode plates provided in each electrolysis chamber and the effective chlorine contained in the generated electrolyzed water when the raw water is electrolyzed to generate electrolyzed water by energizing both electrode plates are predetermined. In an electrolyzed water generating device comprising an energization control device for energizing both electrode plates with a current having the above concentration,
The raw water supply means is provided with water temperature detection means for detecting the temperature of raw water supplied to each electrolysis chamber, and the energization control device generates electrolyzed water in response to an increase in the raw water temperature detected by the water temperature detection means. as effective chlorine contained is more than a predetermined concentration, increasing the current through collector to electrode plates, with a decrease of the water temperature of the raw water detected by the water temperature detection unit, the electrolytic water generated within the effective chlorine contained is more than a predetermined concentration, Rutotomoni reduce the current conducted to the electrode plates, the current supplied to the electrodes plate, under conditions of water temperature detected by the water temperature detecting means The effective chlorine contained in the electrolyzed water produced by the electrolysis in is set to a value higher than the current at a predetermined concentration by an amount corresponding to the rise in water temperature due to Joule heat accompanying electrolysis in both electrolysis chambers. Electrolyzed water Apparatus.
前記原水供給手段により前記原水を各電解室に連続的に供給しつつ、各電解室で前記電解により生成した電解水を連続的に取出すと共に、前記水温検出手段は各電解室に供給される前の原水の水温を検出することを特徴とする請求項1記載の電解水生成装置。  While the raw water is continuously supplied to each electrolysis chamber by the raw water supply means, the electrolyzed water generated by the electrolysis in each electrolysis chamber is continuously taken out, and the water temperature detection means is supplied before being supplied to each electrolysis chamber. The electrolyzed water generating apparatus according to claim 1, wherein the temperature of the raw water is detected.
JP23871199A 1999-08-25 1999-08-25 Electrolyzed water generator Expired - Fee Related JP4068267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23871199A JP4068267B2 (en) 1999-08-25 1999-08-25 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23871199A JP4068267B2 (en) 1999-08-25 1999-08-25 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JP2001062456A JP2001062456A (en) 2001-03-13
JP4068267B2 true JP4068267B2 (en) 2008-03-26

Family

ID=17034146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23871199A Expired - Fee Related JP4068267B2 (en) 1999-08-25 1999-08-25 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP4068267B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097339B2 (en) * 2005-09-01 2012-12-12 ホシザキ電機株式会社 Electrolyzed water generator
JP4653708B2 (en) * 2006-08-28 2011-03-16 本田技研工業株式会社 Electrolyzed water generating method and electrolyzed water generating apparatus used therefor
JP6621150B2 (en) * 2018-04-26 2019-12-18 興研株式会社 Electrolyzed water generator and endoscope cleaning device

Also Published As

Publication number Publication date
JP2001062456A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
KR19990072981A (en) Apparatus for producing electrolytic solution
GB2441427A (en) Method and apparatus for generating electrolysed water
GB2453050A (en) Method of producing electrolyzed water
US20110189302A1 (en) Electrochemical device
US20080017519A1 (en) Method and device for producing an alkali metal hypochlorite solution
JPH09253650A (en) Sterilized water making apparatus
JPH06246268A (en) Method and device for producing electrolyte
JPH05115876A (en) Controller for continuous electrolytic ionized-water producing device
JP4068267B2 (en) Electrolyzed water generator
KR100533706B1 (en) manufacturing apparatus of electrolyzed-reduced water
JP3234025B2 (en) Electrolyzed water generator
JPH06246269A (en) Device for producing electrolyte
JPH0889965A (en) Electrolytic water producer
KR100625083B1 (en) An ion exchange membrane electrolyzer for the ph-control with only one discharge of ph-controlled electrolyte solution
JPH06246267A (en) Device for producing electrolyte
JP7212978B1 (en) electrolytic device
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JPH06246266A (en) Device for producing electrolyte
JPH06312185A (en) Electrolytic water forming apparatus
JP2001062455A (en) Electrolytic water production device
JPH06246265A (en) Device for producing electrolyte
JP3297828B2 (en) Electrolyzed water generator and method for controlling chloride ion concentration in the electrolyzed water generator
JPH11319831A (en) Production of electrolytic function water and its apparatus
EP1226094A1 (en) Device for electrolysis
JP5097339B2 (en) Electrolyzed water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees