JPH06312183A - Method and apparatus for producing electrolytic ion water - Google Patents

Method and apparatus for producing electrolytic ion water

Info

Publication number
JPH06312183A
JPH06312183A JP10259593A JP10259593A JPH06312183A JP H06312183 A JPH06312183 A JP H06312183A JP 10259593 A JP10259593 A JP 10259593A JP 10259593 A JP10259593 A JP 10259593A JP H06312183 A JPH06312183 A JP H06312183A
Authority
JP
Japan
Prior art keywords
water
anode
cathode
electrode
redox potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10259593A
Other languages
Japanese (ja)
Inventor
Susumu Hasegawa
進 長谷川
Kenji Katsura
健治 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP10259593A priority Critical patent/JPH06312183A/en
Publication of JPH06312183A publication Critical patent/JPH06312183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To stably and efficiently obtain water high in oxidation reduction potential and water low in oxidation reduction potential by alternately changing the direction of the charge applied to the electrodes in both electrode chambers partitioned by a diaphragm. CONSTITUTION:An electrolytic cell 101 is partitioned into electrode chambers 101A, 101B by a bipolar membrane 122 having an anion surface 122a and a cation surface 122b. Electrode plates 112, 114 alterable in polarity composed of SUS, platinum, nickel or carbon are arranged to the electrode chambers 101A, 101B. Stirring devices, overflow recovery routes 103A, 103B collecting formed ion water and new water supply routes 104A, 104B supplying new water are formed in the electrode chambers 101A, 101B. After a hydrogen ion is sufficiently accumulated on an anode or a cathode, the direction of charge is pref. made reverse. By this constitution, water high in oxidation reduction potential and water low in oxidation reduction potential can be efficiently separated and collected from the electrode chambers 101A, 101B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水を電解槽中で電解す
ることにより、両電極側の電解槽よりそれぞれ、酸化還
元電位の高い水及び酸化還元電位の低い水を得るための
電解イオン水の製造方法及びそのための装置に関するも
のであり、当該方法で製造した酸化還元電位の高い水及
び酸化還元電位の低い水は、飲料用、洗浄、消毒などの
工業用、医療用など広範な分野で使用できるものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to electrolytic ions for obtaining water having a high redox potential and water having a low redox potential, respectively, by electrolyzing water in an electrolytic cell to obtain water from the electrolytic cells on both electrodes side. The present invention relates to a method for producing water and an apparatus therefor, and water produced by the method has a high redox potential and water having a low redox potential can be used in a wide range of fields such as beverages, industrial fields such as cleaning and disinfection, and medical fields. It can be used in.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り、電解槽中で水に電圧を印加(すなわち電解)して、
陽極側に酸性イオン水、陰極側にアルカリ性イオン水を
発生させる技術が実用化されている。
2. Description of the Related Art Conventionally, a voltage is applied (that is, electrolysis) to water in an electrolytic cell,
A technique for generating acidic ionized water on the anode side and alkaline ionized water on the cathode side has been put into practical use.

【0003】この場合、図6に示したように、陽極側で
は、 2H2 O→O2 +4H+ +4e- ……(1) の酸化反応が進行して陽極電極表面において酸素ガスが
発生するとともに、水素イオンが蓄積され、酸化還元電
位(ORP)が上昇する。
In this case, as shown in FIG. 6, on the anode side, the oxidation reaction of 2H 2 O → O 2 + 4H + + 4e (1) proceeds to generate oxygen gas on the surface of the anode electrode. , Hydrogen ions are accumulated, and the redox potential (ORP) rises.

【0004】一方、陰極側では、 4H2 O+4e- →2H2 +4OH- ……(2) の還元反応が進行して陰極電極表面において水素ガスが
発生するとともに、水酸イオンが蓄積され、酸化還元電
位が低下する。
On the other hand, on the cathode side, a reduction reaction of 4H 2 O + 4e → 2H 2 + 4OH (2) progresses to generate hydrogen gas on the surface of the cathode electrode and also to accumulate hydroxide ions, resulting in redox. The potential drops.

【0005】この場合、結果的に、陽極側に高酸化還元
電位水、陰極側に低酸化還元電位水が生成されるが、電
解槽内に振動などにより液の乱れが発生する場合があ
り、かかる場合、生成した高酸化還元電位水と低酸化還
元電位水とが混合して回収効率が低下してしまうなどの
問題があった。
In this case, as a result, high oxidation-reduction potential water is generated on the anode side and low oxidation-reduction potential water is generated on the cathode side, but liquid turbulence may occur due to vibration in the electrolytic cell, In this case, there is a problem that the high oxidation-reduction potential water and the low oxidation-reduction potential water that are generated are mixed and the recovery efficiency is reduced.

【0006】この問題を解消するために、従来より、通
電性を確保しつつ、高酸化還元電位水と低酸化還元電位
水との混合を防ぐために、電解槽の陽極と陰極との間
に、通水性を有する隔膜を配設して電解する方法が提案
されている(例えば、特開平4−371291号及び実
公平4−51917号等参照)。
In order to solve this problem, conventionally, in order to prevent the mixing of the high oxidation-reduction potential water and the low oxidation-reduction potential water, while ensuring the electrical conductivity, between the anode and cathode of the electrolytic cell, A method of disposing a membrane having water permeability and electrolyzing it has been proposed (see, for example, JP-A-4-371291 and JP-B-4-51917).

【0007】しかしながら、図6に示したようにこれら
の通水性を有する隔膜では、その隔膜を介してイオンは
拡散するために、前述のように陽極で蓄積された水素イ
オンが、隔膜を介して陰極側の電解槽に浸入して陰極に
引きよせられて、 4H+ +4e- →2H2 ……(3) の酸化反応が進行して、その結果、水素イオンは陰極表
面において水素ガスとなる。
However, in the membrane having water permeability as shown in FIG. 6, since the ions diffuse through the membrane, the hydrogen ions accumulated at the anode as described above are permeable through the membrane. When it enters the electrolytic cell on the cathode side and is attracted to the cathode, the oxidation reaction of 4H + + 4e → 2H 2 (3) proceeds, and as a result, hydrogen ions become hydrogen gas on the cathode surface.

【0008】一方、前述のように陰極で蓄積された水酸
イオンは、隔膜を介して陽極側の電解槽に浸入して陽極
に引きよせられて、 4OH- →O2 +2H2 O+4e- ……(4) の還元反応が進行して、その結果水酸イオンは陽極表面
において酸素ガスとなる。
On the other hand, as described above, the hydroxide ions accumulated at the cathode enter the electrolytic cell on the anode side through the diaphragm and are attracted to the anode, and 4OH → O 2 + 2H 2 O + 4e The reduction reaction of (4) proceeds, and as a result, the hydroxide ions become oxygen gas on the surface of the anode.

【0009】従って、陽極側では(1)の酸化反応と
(4)の還元反応が同時に進行する一方、陰極側でも
(2)の還元反応と(3)の酸化反応が同時に進行する
こととなる。その結果、両極側それぞれの電解槽中にお
いては、全体としてその酸化還元電位の変化は緩慢とな
るので、隔膜で区画された両電極側の電解槽よりそれぞ
れ、酸化還元電位の高い水及び酸化還元電位の低い水を
得ることが困難となっていた。
Therefore, the oxidation reaction (1) and the reduction reaction (4) proceed simultaneously on the anode side, while the reduction reaction (2) and the oxidation reaction (3) proceed simultaneously on the cathode side. . As a result, the changes in the redox potential in the electrolytic cells on both sides are slower as a whole, so that water and redox potential, which have higher redox potential, are higher than those in the electrolytic cells on the electrode sides divided by the diaphragm. It was difficult to obtain water with a low electric potential.

【0010】本発明は、このような実情に鑑み、従来の
ように、陽極と陰極との間に配設した隔膜を介して、陽
極側で蓄積された水素イオン、陰極側で蓄積された水酸
イオンが、それぞれ隔膜を介して、反対側の電極に引き
寄せられて、両電極側の各電極槽中において、酸化反応
と還元反応が同時に進行して、その酸化還元電位の変化
は緩慢となることなく、安定かつ効率的に酸化還元電位
の高い水及び酸化還元電位の低い水を得るための電解イ
オン水の製造方法及びそのための装置を提供することを
目的とする。
In view of the above situation, the present invention, as in the prior art, has hydrogen ions accumulated on the anode side and water accumulated on the cathode side via a diaphragm disposed between the anode and the cathode. The acid ions are attracted to the electrodes on the opposite side through the respective diaphragms, and the oxidation reaction and the reduction reaction proceed simultaneously in each electrode tank on both electrode sides, and the change in the redox potential becomes slow. It is an object of the present invention to provide a method for producing electrolytic ionized water and a device therefor for stably and efficiently obtaining water having a high redox potential and water having a low redox potential.

【0011】[0011]

【課題を解決するための手段】本発明は、前述した従来
技術の課題ならびに目的を達成するために発明なされた
ものであって、電解槽中の陽極と陰極との間に隔膜を配
設して、水を電解槽中で電解することによって、陽極側
及び陰極側よりイオン水をそれぞれ採取する電解イオン
水の製造方法において、両極に印加する荷電の向きを交
互に変えることにより、隔膜で区画された両電極側の電
解槽よりそれぞれ、酸化還元電位の高い水及び酸化還元
電位の低い水を得ることを特徴とする電解イオン水の製
造方法と製造装置である。
The present invention has been made in order to achieve the above-mentioned objects and objects of the prior art, and a diaphragm is provided between an anode and a cathode in an electrolytic cell. In the method for producing electrolytic ionic water, in which ionic water is collected from the anode side and the cathode side by electrolyzing water in the electrolytic cell, the direction of charge applied to both electrodes is alternately changed to partition the membrane. A method and an apparatus for producing electrolyzed ionized water, characterized in that water having a high redox potential and water having a low redox potential are obtained from the electrolyzers on both sides of the electrode.

【0012】また、本発明は、前述した電解イオン水の
製造方法と製造装置において、前記隔膜が、アニオン交
換膜面とカチオン交換膜面とを有するバイポーラ膜であ
ることを特徴とする。
Further, the present invention is characterized in that, in the above-described method and apparatus for producing electrolytic ionized water, the diaphragm is a bipolar membrane having an anion exchange membrane surface and a cation exchange membrane surface.

【0013】さらに、本発明は、前記バイポーラ膜のカ
チオン交換膜面側の電極を陽極とし、アニオン交換膜面
側の電極を陰極とするように荷電した後、荷電の向きを
逆にすることを特徴とする。
Further, in the present invention, after the electrodes are charged so that the electrode on the side of the cation exchange membrane of the bipolar membrane serves as the anode and the electrode on the side of the anion exchange membrane serves as the cathode, the directions of charge are reversed. Characterize.

【0014】また、本発明は、前記バイポーラ膜のアニ
オン交換膜面側の電極を陽極とし、カチオン交換膜面側
の電極を陰極とするように荷電した後、荷電の向きを逆
にすることを特徴とする。
In the present invention, the electrode on the side of the anion-exchange membrane surface of the bipolar membrane is used as an anode, and the electrode on the side of the cation-exchange membrane surface is charged as a cathode, and then the charging directions are reversed. Characterize.

【0015】さらに、本発明は、前記バイポーラ膜で区
画された両電極側の電解槽よりそれぞれ、酸化還元電位
の高い水及び酸化還元電位の低い水を回収するととも
に、各電解槽にそれぞれ新水を補充しつつ電解を行うこ
とを特徴とする。
Further, according to the present invention, water having a high oxidation-reduction potential and water having a low oxidation-reduction potential are recovered from the electrolyzers on both sides of the electrodes divided by the bipolar membrane, and fresh water is supplied to each electrolyzer. It is characterized in that electrolysis is performed while replenishing.

【0016】[0016]

【作用】本発明者らは、従来の通水性を有する隔膜を配
設した方法では、図6に示したように、前記(1)
(2)の反応によって各電極近傍に蓄積された水素イオ
ン、水酸イオンはそれぞれ、反対側の電極に引き寄せら
れるが、(A)本発明のように、電解槽中において、陽
極と陰極との間に、アニオン面とカチオン面とを有する
バイポーラ膜から構成される隔膜を配設して電解を行う
ことにより、両イオンがバイポーラ膜によってブロック
されるために、反対側の電解槽に流入することがないこ
と、ならびに(B)この際に、陽極と陰極との荷電状態
を変更して、各電極槽において選択的に上記(3)
(4)の反応を進行させることにより、各電解槽それぞ
れにおいて、酸化還元電位の上昇又は下降を促進させる
ことができ、その結果、酸化還元電位の高い水及び酸化
還元電位の低い水を容易に採取することが可能であるこ
とを知見して本発明を完成させたものである。
In the conventional method of disposing the membrane having water permeability, the inventors of the present invention, as shown in FIG.
Hydrogen ions and hydroxide ions accumulated in the vicinity of each electrode by the reaction of (2) are attracted to the opposite electrode, respectively. (A) As in the present invention, in the electrolytic cell, the anode and the cathode are separated from each other. By disposing a diaphragm composed of a bipolar membrane having an anion surface and a cation surface between them to perform electrolysis, both ions are blocked by the bipolar membrane, so that they flow into the electrolytic cell on the opposite side. And (B) at this time, by changing the charge states of the anode and the cathode, the above (3) is selectively performed in each electrode tank.
By advancing the reaction of (4), the increase or decrease of the redox potential can be promoted in each electrolytic cell, and as a result, water having a high redox potential and water having a low redox potential can be easily obtained. The present invention has been completed on the finding that it can be collected.

【0017】すなわち、先ず、図7(a)に示したよう
に、陽極側において(1)の酸化反応が進行して水素イ
オンが蓄積される一方、陰極側において(2)の還元反
応が進行して水酸イオンが蓄積される。その後、荷電の
方向を逆にすると、図7(b)に示したように、陽極側
に蓄積していた水素イオンは、電極が陰極に変わること
によって、(3)の反応が急速に進行して水素ガスとな
り、その結果、この極側の電解槽中の酸化還元電位が低
下する。一方、逆に、陰極側に蓄積していた水酸イオン
は、電極が陽極に変わることによって、(4)の反応が
急速に進行して酸素ガスとなり、その結果、この極側の
電解槽中の酸化還元電位が上昇する。
That is, first, as shown in FIG. 7A, the oxidation reaction of (1) proceeds on the anode side to accumulate hydrogen ions, while the reduction reaction of (2) proceeds on the cathode side. Then, hydroxide ions are accumulated. After that, when the charging direction is reversed, as shown in FIG. 7B, the hydrogen ions accumulated on the anode side change the electrode to the cathode, and the reaction of (3) rapidly progresses. Becomes hydrogen gas, and as a result, the oxidation-reduction potential in the electrolytic cell on the electrode side decreases. On the other hand, on the contrary, the hydroxide ions accumulated on the cathode side are changed to the anode and the reaction of (4) rapidly progresses to oxygen gas, and as a result, in the electrolytic cell on the electrode side. Increases the redox potential of.

【0018】このように、両極における荷電の方向を交
互に変えることによって、酸化還元電位の高い水及び酸
化還元電位の低い水を容易に採取することが可能とな
る。
As described above, by alternately changing the charging directions at both electrodes, it is possible to easily collect water having a high redox potential and water having a low redox potential.

【0019】先ず、バイポーラ膜を用いて、図8(a)
に示したように、いわゆる「逆荷電」による電解、すな
わち、バイポーラ膜22のカチオン面22b側を陽極1
2側に、アニオン面22a側を陰極14側に配置して電
解を行い、その後、図8(b)に示したように、いわゆ
る「正荷電」による電解、すなわち、バイポーラ膜22
のアニオン面22a側を陽極12側に、カチオン面22
b側を陰極14側に配置して電解を行った場合について
以下に説明する。
First, using a bipolar film, as shown in FIG.
As shown in FIG. 5, electrolysis by so-called “reverse charging”, that is, the cation surface 22b side of the bipolar film 22 is the anode 1
2 side, the anion surface 22a side is arranged on the cathode 14 side to perform electrolysis, and then, as shown in FIG. 8B, so-called “positive charge” electrolysis, that is, the bipolar film 22.
The anion face 22a side of the cation face 22a
The case where the b side is arranged on the cathode 14 side and electrolysis is performed will be described below.

【0020】図8(a)に示したように、逆荷電の場合
には、陽極12側で発生した水素イオンが陰極14側に
引き寄せられる際に、電極間に配設されたバイポーラ膜
22のアニオン面22aでブロックされるために、水素
イオンが陰極側電解槽18に流入することなく、陽極側
電解槽16に水素イオンが蓄積される。一方、同様にし
て、陰極14側で発生した水酸イオンが陽極12側に引
き寄せられる際に、電極間に配設されたバイポーラ膜2
2のカチオン面22bでブロックされるために、水酸イ
オンが陽極電解槽16に流入することなく、陰極側電解
槽18に水酸イオンが蓄積される。
As shown in FIG. 8A, in the case of reverse charging, when the hydrogen ions generated on the anode 12 side are attracted to the cathode 14 side, the bipolar film 22 disposed between the electrodes is formed. Since the hydrogen ions are blocked by the anion surface 22a, the hydrogen ions do not flow into the cathode-side electrolytic cell 18, and the hydrogen ions are accumulated in the anode-side electrolytic cell 16. On the other hand, similarly, when the hydroxide ions generated on the cathode 14 side are attracted to the anode 12 side, the bipolar film 2 disposed between the electrodes is formed.
Since the second ion is blocked by the cation surface 22b, the hydroxide ion does not flow into the anode electrolytic cell 16 and accumulates in the cathode side electrolytic cell 18.

【0021】この場合、バイポーラ膜22自体に浸透し
た水分子が水素イオン、水酸イオンに電離した際に、水
素イオンはバイポーラ膜22のカチオン面22bを透過
して、陰極14に引き寄せられる際に、陰極14側に配
置されたバイポーラ膜22のアニオン面22aでブロッ
クされるために、前記(3)の反応が進行して陰極14
表面で水素ガスが発生することはない。また、同様にし
て、水酸イオンはバイポーラ膜22のアニオン面22a
を透過して、陽極12に引き寄せられる際に、陽極12
側に配置されたバイポーラ膜22のカチオン面22bで
ブロックされるために、前記(4)の反応が進行して陽
極12表面で酸素ガスが発生することはない。従って、
このようなバイポーラ膜22によるイオンのブロック作
用によって、陽極側電解槽16に水素イオンが、陰極側
電解槽18に水酸イオンがそれぞれ効率よく分離蓄積さ
れる。
In this case, when the water molecules penetrating the bipolar film 22 itself are ionized into hydrogen ions and hydroxide ions, the hydrogen ions pass through the cation surface 22b of the bipolar film 22 and are attracted to the cathode 14. Since the anion surface 22a of the bipolar film 22 disposed on the cathode 14 side is blocked, the reaction of the above (3) proceeds and the cathode 14
No hydrogen gas is generated on the surface. Further, in the same manner, the hydroxide ion is anion surface 22a of the bipolar film 22.
When passing through the anode 12 and attracted to the anode 12, the anode 12
Since the cation surface 22b of the bipolar film 22 disposed on the side is blocked, the reaction of (4) above does not proceed and oxygen gas is not generated on the surface of the anode 12. Therefore,
Due to the ion blocking action of the bipolar film 22, hydrogen ions are efficiently separated and accumulated in the anode side electrolytic cell 16 and hydroxide ions are efficiently accumulated in the cathode side electrolytic cell 18, respectively.

【0022】次に、両極においてそれぞれ、水素イオン
及び水酸イオンが蓄積された後、荷電の方向を逆にし
て、正荷電により電解を実施した場合、図8(b)に示
したような反応が進行する。すなわち、陽極側に蓄積し
ていた水素イオンは、電極が陰極に変わることによっ
て、(3)の反応が急速に進行して水素ガスとなると同
時に、バイポーラ膜22自体に浸透した水分子が水素イ
オン、水酸イオンに電離した際に、水素イオンはバイポ
ーラ膜22のカチオン面22bを透過して、陰極14に
引き寄せられて、前記(3)の還元反応が進行して陰極
14表面で水素ガスが発生する。従って、その結果、酸
化還元電位の低下がさらに加速されることとなる(図4
の「△」参照)。
Next, when hydrogen ions and hydroxide ions are accumulated in both electrodes and then the electrolysis is carried out by positive charging with the charging directions reversed, the reaction as shown in FIG. Progresses. That is, the hydrogen ions accumulated on the anode side are changed to the cathode by the electrode, and the reaction of (3) rapidly progresses to hydrogen gas, and at the same time, the water molecules permeated into the bipolar film 22 itself are hydrogen ions. When ionized into hydroxide ions, hydrogen ions permeate the cation surface 22b of the bipolar film 22 and are attracted to the cathode 14, and the reduction reaction of (3) above proceeds to generate hydrogen gas on the surface of the cathode 14. Occur. Therefore, as a result, the reduction in redox potential is further accelerated (FIG. 4).
Refer to "△").

【0023】逆に、陰極側に蓄積していた水酸イオン
は、電極が陽極に変わることによって、(4)の反応が
急速に進行して酸素ガスとなると同時に、バイポーラ膜
22自体に浸透した水分子が水素イオン、水酸イオンに
電離した際に、水酸イオンはバイポーラ膜22のアニオ
ン面22aを透過して、陽極12に引き寄せられて、前
記(4)の酸化反応が進行して陽極12表面で酸素ガス
が発生する。従って、その結果、酸化還元電位の上昇が
さらに加速されることとなる(図4の「◇」参照)。
On the contrary, the hydroxide ion accumulated on the cathode side penetrates into the bipolar film 22 at the same time as the reaction of (4) rapidly progresses to oxygen gas by changing the electrode to the anode. When the water molecules are ionized into hydrogen ions and hydroxide ions, the hydroxide ions pass through the anion surface 22a of the bipolar film 22 and are attracted to the anode 12, and the oxidation reaction of (4) above proceeds and the anode Oxygen gas is generated on the 12 surface. Therefore, as a result, the increase in the redox potential is further accelerated (see “⋄” in FIG. 4).

【0024】このように、先ず「逆荷電」による電解を
行った後に、「正荷電」による電解を行った場合には、
効率良く酸化還元電位の高い水と低い水とを分離・採取
することが可能である。
As described above, when electrolysis by "reverse charging" is first performed and then electrolysis by "positive charging" is performed,
It is possible to efficiently separate and collect water having a high redox potential and water having a low redox potential.

【0025】また、前述したような、先ず「逆荷電」に
よる電解を行った後に、「正荷電」による電解を行った
場合とは逆に、図9に示したように、先ず「正荷電」に
よる電解を行った後に、「逆荷電」による電解を行った
場合も同様に、酸化還元電位の高い水と低い水とを分離
・採取することが可能であり、以下にその作用について
説明する。
Further, contrary to the case where the electrolysis by "reverse charging" is first performed and then the electrolysis by "positive charging" is performed, as shown in FIG. 9, first, "positive charging" is performed. Similarly, when the electrolysis by "reverse charging" is performed after the electrolysis by (1), water having a high redox potential and water having a low redox potential can be separated and collected, and the action will be described below.

【0026】先ず、正荷電の場合には、図9(a)に示
したように、陽極32側で発生した水素イオンが陰極3
4側に引き寄せられる際に、電極間に配設されたバイポ
ーラ膜42のアニオン面42aでブロックされるため
に、水素イオンが陰極側電解槽38に流入することな
く、陽極側電解槽36に水素イオンが蓄積される。一
方、同様にして、陰極34側で発生した水酸イオンが陽
極32側に引き寄せられる際に、電極間に配設されたバ
イポーラ膜42のカチオン面42bでブロックされるた
めに、水酸イオンが陽極電解槽36に流入することな
く、陰極側電解槽38に水酸イオンが蓄積される。
First, in the case of positive charge, as shown in FIG. 9A, the hydrogen ions generated on the side of the anode 32 are converted into the cathode 3.
When being attracted to the 4 side, the hydrogen ions are blocked in the anion surface 42a of the bipolar film 42 arranged between the electrodes, so that hydrogen ions do not flow into the cathode side electrolytic cell 38, and the hydrogen ions flow into the anode side electrolytic cell 36. Ions are accumulated. On the other hand, in the same manner, when the hydroxide ions generated on the cathode 34 side are attracted to the anode 32 side, the hydroxide ions are blocked by the cation surface 42b of the bipolar film 42 arranged between the electrodes. Hydroxide ions are accumulated in the cathode-side electrolytic cell 38 without flowing into the anode electrolytic cell 36.

【0027】なお、この場合、前述の方法とは相違し
て、バイポーラ膜42自体に浸透した水分子が水素イオ
ン、水酸イオンに電離した際に、水素イオンはバイポー
ラ膜42のカチオン面42bを透過して、陰極34に引
き寄せられて、前記(3)の反応が進行して陰極34表
面で水素ガスが発生する。一方、同様にして、水酸イオ
ンはバイポーラ膜42のアニオン面42aを透過して、
陽極32に引き寄せられて、前記(4)の反応が進行し
て陽極32表面で酸素ガスが発生する。
In this case, unlike the above-mentioned method, when the water molecules penetrating into the bipolar film 42 itself are ionized into hydrogen ions and hydroxide ions, the hydrogen ions are allowed to pass through the cation surface 42b of the bipolar film 42. It permeates and is attracted to the cathode 34, the reaction (3) proceeds, and hydrogen gas is generated on the surface of the cathode 34. On the other hand, in the same manner, the hydroxide ions pass through the anion surface 42a of the bipolar film 42,
The reaction of (4) above is attracted to the anode 32 and oxygen gas is generated on the surface of the anode 32.

【0028】このように、両極においてそれぞれ、水素
イオン及び水酸イオンが蓄積された後、荷電の方向を逆
にして、逆荷電により電解を実施した場合、図9(b)
に示したような反応が進行する。
As described above, in the case where the hydrogen ions and the hydroxide ions are respectively accumulated in the both electrodes and then the direction of the charge is reversed and the electrolysis is performed by the reverse charge, FIG.
The reaction as shown in FIG.

【0029】すなわち、陽極側に蓄積していた水素イオ
ンは、電極が陰極に変わることによって、(3)の反応
が急速に進行して水素ガスとなるとともに、この電解槽
中では(2)の反応が進行して、酸化還元電位が低下す
る。なお、この場合、前述の方法とは相違して、バイポ
ーラ膜42自体に浸透した水分子が水素イオン、水酸イ
オンに電離した際に、水酸イオンはバイポーラ膜42の
カチオン面42bによりブロックされるので、陽極側に
引き寄せられることがないので、その結果、酸化還元電
位の低下がさらに加速されることとなる(図5の「△」
参照)。
That is, the hydrogen ions accumulated on the anode side are rapidly converted into hydrogen gas by the reaction of (3) by the electrode changing to the cathode, and in the electrolytic cell, the hydrogen ions of (2) The reaction proceeds and the redox potential decreases. In this case, unlike the above-mentioned method, when the water molecules penetrating into the bipolar film 42 itself are ionized into hydrogen ions and hydroxide ions, the hydroxide ions are blocked by the cation surface 42b of the bipolar film 42. Therefore, it is not attracted to the anode side, and as a result, the reduction of the redox potential is further accelerated (“Δ” in FIG. 5).
reference).

【0030】逆に、陰極側に蓄積していた水酸イオン
は、電極が陽極に変わることによって、(4)の反応が
急速に進行して酸素ガスとなるとともに、この電解槽中
では(1)の反応が進行して、酸化還元電位が上昇す
る。なお、この場合、前述の方法とは相違して、バイポ
ーラ膜42自体に浸透した水分子が水素イオン、水酸イ
オンに電離した際に、水素イオンはバイポーラ膜42の
アニオン面42aによりブロックされるので、陰極側に
引き寄せられることがないので、その結果、酸化還元電
位の上昇がさらに加速されることとなる(図5の「◇」
参照)。
On the contrary, the hydroxide ions accumulated on the cathode side are rapidly converted into oxygen gas by changing the electrode to the anode and the reaction of (4) rapidly progresses to become oxygen gas. 2) progresses and the redox potential rises. In this case, unlike the above-mentioned method, when the water molecules penetrating the bipolar film 42 itself are ionized into hydrogen ions and hydroxide ions, the hydrogen ions are blocked by the anion surface 42a of the bipolar film 42. Therefore, it is not attracted to the cathode side, and as a result, the increase of the redox potential is further accelerated (“◇” in FIG. 5).
reference).

【0031】このように、先ず「正荷電」による電解を
行った後に、「逆荷電」による電解を行った場合にも、
前述の方法と同様に効率良く酸化還元電位の高い水と低
い水とを分離・採取することが可能である。
As described above, even when the "positive charging" electrolysis is first performed and then the "reverse charging" electrolysis is performed,
As in the above-mentioned method, it is possible to efficiently separate and collect water having a high redox potential and water having a low redox potential.

【0032】[0032]

【実施例】以下、本発明の実施例を図面に基づいてより
詳細に説明する。
Embodiments of the present invention will now be described in more detail with reference to the drawings.

【0033】図1は、本発明の電解イオン水の製造方法
を実施するための製造装置の第1の実施例の概略を示し
ている。
FIG. 1 shows the outline of a first embodiment of a manufacturing apparatus for carrying out the method for manufacturing electrolytic ionized water according to the present invention.

【0034】図1において、100は全体で、電解イオ
ン水製造装置を示している。本装置100は、電解槽1
01を備えており、電解槽101は、バイポーラ膜12
2により2槽に仕切られている。すなわち、バイポーラ
膜122は、それぞれアニオン面122aとカチオン面
122bを有しており、これらの面によって、電解槽1
01が、電極室101Aと電極室101Bとに区画され
ている。
In FIG. 1, reference numeral 100 generally indicates an electrolytic ion water producing apparatus. The apparatus 100 includes an electrolytic cell 1
01, the electrolytic cell 101 has a bipolar membrane 12
It is divided into 2 tanks by 2. That is, the bipolar film 122 has an anion surface 122a and a cation surface 122b, respectively.
01 is divided into an electrode chamber 101A and an electrode chamber 101B.

【0035】また、電極室101Aと101Bにはそれ
ぞれ、電極板112と電極板114が配設されており、
これらの両電極板112、114は極性が変更可能な電
極板、例えば、SUS電極、白金電極、Ni電極、及び
炭素電極等から構成されている。
An electrode plate 112 and an electrode plate 114 are provided in the electrode chambers 101A and 101B, respectively.
Both of these electrode plates 112 and 114 are composed of electrode plates whose polarities can be changed, such as SUS electrodes, platinum electrodes, Ni electrodes, and carbon electrodes.

【0036】また、電極室101Aには撹拌装置102
Aが、電極室101Bには撹拌装置102Bそれぞれ配
設されており、これにより、電解槽101の電極室10
1A、101B内をそれぞれ均一にすることが可能とな
っている。さらに、電極室101A、101Bにはそれ
ぞれ、オーバーフロー回収経路103A、103Bが設
けられており、各電極室101A,101Bから分離さ
れた高酸化還元電位水又は低酸化還元電位水をそれぞれ
採取するようになっている。また、各電極室101A,
101Bには、新水供給経路104A,104Bを介し
て、一定レベルとなるように新水が補充されるようにな
っている。
In addition, the electrode chamber 101A has a stirring device 102.
A is provided in each of the stirring chambers 102B in the electrode chamber 101B.
It is possible to make the insides of 1A and 101B uniform. Further, the electrode chambers 101A and 101B are provided with overflow recovery paths 103A and 103B, respectively, so that the high oxidation-reduction potential water or the low oxidation-reduction potential water separated from the electrode chambers 101A and 101B are respectively collected. Has become. In addition, each electrode chamber 101A,
101B is adapted to be replenished with fresh water at a constant level via fresh water supply paths 104A and 104B.

【0037】この場合、各電極板112,114は、間
隔を大きくすると電気抵抗が大きくなるため、通常40
mm以下程度とし、印荷する電圧は、バイポーラ膜12
2の耐性を考慮して10V以下で、好ましくは通常5V
前後で運転するのが好適である。また、荷電の方向を逆
にする条件としては、陽極又は陰極に水素イオンが十分
に蓄積された後、すなわちpHが低位で安定したときに
行うのが好ましい。
In this case, since the electric resistance of each electrode plate 112, 114 increases as the distance between them increases, it is usually 40
The voltage to be applied is about 12 mm or less, and the applied voltage is the bipolar film 12.
2V or less, preferably 5V
Driving back and forth is preferred. As a condition for reversing the direction of charge, it is preferable to carry out after hydrogen ions are sufficiently accumulated in the anode or the cathode, that is, when the pH is stable at a low level.

【0038】また、バイポーラ膜としては、フッ素系樹
脂を利用したアニオン膜とカチオン膜を接合したものが
好ましく、例えば、アライドシグナル社製のバイポーラ
膜などが使用可能であるが、特にこれに限定されるべき
ものではなく、前述したようなイオンのブロック作用を
有するものであれば使用可能である。
As the bipolar film, a film obtained by joining an anion film and a cation film using a fluororesin is preferable. For example, a bipolar film manufactured by Allied Signal Co. can be used, but it is not particularly limited thereto. It should not be used, and any one having an ion blocking action as described above can be used.

【0039】このように構成して、上述した方法を用い
ることによって、電極室101A、101Bより、それ
ぞれ高酸化還元電位水又は低酸化還元電位水が効率良く
分離採取できるものであり、例えば、電圧、通水条件な
どの操作条件によっても異なるが、約−400〜−80
0mVの低OPR水を得ることが可能である。
With such a configuration, by using the above-described method, high oxidation-reduction potential water or low oxidation-reduction potential water can be efficiently separated and collected from the electrode chambers 101A and 101B. , About -400 to -80, depending on operating conditions such as water flow conditions.
It is possible to obtain 0 mV of low OPR water.

【0040】また、図2は、上述の第1実施例と同様な
電解イオン水の製造装置の第2の実施例の概略を示して
おり、同じ部材には同一の参照番号を付している。第1
実施例と相違するところは、第1の実施例では、電解槽
100が開放タイプであるが、本実施例では、密閉型の
電解槽100’とし、電解槽100’の上部に各イオン
水排出孔105A,105Bを設けて、各イオン水回収
経路103’A,103’Bを介して、別途設けられた
循環タンク106A,106Bに各イオン水を収容し
て、電解槽100’の下部の導入口107A,107B
に水を循環させるようにしたものである。
FIG. 2 shows an outline of a second embodiment of an electrolytic ion water producing apparatus similar to the above-mentioned first embodiment, and the same members are designated by the same reference numerals. . First
The difference from the embodiment is that in the first embodiment, the electrolytic cell 100 is an open type, but in this example, a closed type electrolytic cell 100 'is used, and each ionized water is discharged to the upper part of the electrolytic cell 100'. The holes 105A and 105B are provided, and the ion water is stored in the separately provided circulation tanks 106A and 106B through the ion water recovery paths 103′A and 103′B, and introduced into the lower portion of the electrolytic cell 100 ′. Mouth 107A, 107B
It is designed to circulate water.

【0041】さらに、図3は、本発明の電解イオン水の
製造装置の第3の実施例を示すものであり、同じ参照部
材には同じ参照番号を付しており、前述した第2の実施
例の装置を並列に2台接続し連続的に処理できるように
した構成である点が相違する。このような構成とするこ
とにより、連続的且つより酸化還元電位の高い水又は酸
化還元電位の低い水を得ることが可能となる。なお、こ
の実施例の場合、2台の装置を用いたが、2台以上の装
置を接続することも可能であることは勿論である。
Further, FIG. 3 shows a third embodiment of the electrolytic ion water producing apparatus of the present invention, in which the same reference members are designated by the same reference numerals, and the second embodiment described above is used. The difference is that two devices in the example are connected in parallel so that they can be processed continuously. With such a configuration, it is possible to continuously obtain water having a higher redox potential or water having a lower redox potential. In the case of this embodiment, two devices are used, but it is needless to say that two or more devices can be connected.

【0042】また、図2及び図3の装置は、循環タンク
を配置しているが、電極間隙、通水量などを適正に設定
することにより、一過式の装置とすることも可能であ
る。
The apparatus shown in FIGS. 2 and 3 is provided with a circulation tank, but it can be a transit type apparatus by appropriately setting the electrode gap, the amount of water flow and the like.

【0043】なお、前述した第1の実施例の装置を用い
て、各電極室101A,101Bの有効容積を2000
mlとして、5Vの電圧を印加した場合の各電極室のp
HならびにORP(酸化還元電位)の経時変化を図4及
び図5に示した。この場合、図4は、バイポーラ膜12
2のアニオン面122a側を陰極、カチオン面122b
側を陽極として荷電した後、電極の極性を入れ換えた場
合(すなわち、逆荷電→正荷電の場合)を示しており、
図5はその逆、すなわち、バイポーラ膜122のアニオ
ン面122a側を陽極、カチオン面122b側を陰極と
して荷電した後、電極の極性を入れ換えた場合(正荷電
→逆荷電の場合)を示している。
The effective volume of each of the electrode chambers 101A and 101B is set to 2000 by using the apparatus of the first embodiment described above.
p of each electrode chamber when a voltage of 5 V is applied as ml
Changes over time of H and ORP (oxidation-reduction potential) are shown in FIGS. 4 and 5. In this case, FIG.
2, the anion surface 122a side is the cathode, and the cation surface 122b
After charging with the side as an anode, the polarities of the electrodes are exchanged (that is, reverse charging → positive charging).
FIG. 5 shows the opposite, that is, the case where the anion surface 122a side of the bipolar film 122 is used as an anode and the cation surface 122b side is charged as a cathode, and then the polarities of the electrodes are exchanged (in the case of positive charge → reverse charge). .

【0044】図4及び図5より明かなように、電極の極
性を変化させることにより、ORPが急減に変化して、
酸化還元電位の高い水又は酸化還元電位の低い水を得る
ことが可能である。
As is clear from FIGS. 4 and 5, by changing the polarity of the electrodes, the ORP changes sharply,
It is possible to obtain water with a high redox potential or water with a low redox potential.

【0045】[0045]

【発明の効果】本発明に係る電解イオン水の製造方法な
らびにそのための装置によれば、陽極と陰極との荷電状
態を変更して、各電極槽において選択的に上記(3)
(4)の酸化・還元反応反応を進行させることにより、
各電解槽それぞれにおいて、酸化還元電位の上昇又は下
降を促進させることができ、その結果、酸化還元電位の
高い水及び酸化還元電位の低い水を容易に採取すること
が可能である。
According to the method for producing electrolytic ionized water and the apparatus therefor according to the present invention, the charge states of the anode and the cathode are changed, and the above (3) is selectively performed in each electrode tank.
By advancing the oxidation / reduction reaction of (4),
In each of the electrolytic cells, it is possible to promote the increase or decrease of the redox potential, and as a result, it is possible to easily collect water having a high redox potential and water having a low redox potential.

【0046】従って、本発明の方法ならびに装置で製造
した酸化還元電位の高い水及び酸化還元電位の低い水
は、飲料用、洗浄、消毒などの工業用、医療用など広範
な分野で使用できるものであり、その産業上に貢献する
ところ甚大である。
Therefore, the water having a high oxidation-reduction potential and the water having a low oxidation-reduction potential produced by the method and apparatus of the present invention can be used in a wide range of fields such as beverages, industrial fields such as cleaning and disinfection, and medical fields. And it is enormous to contribute to the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、本発明の電解イオン水の製造方法を
実施するための製造装置の第1の実施例の概略を示す図
である。
FIG. 1 is a diagram showing an outline of a first embodiment of a manufacturing apparatus for carrying out the method for manufacturing electrolytic ion water according to the present invention.

【図2】 図2は、本発明の第1実施例と同様な電解イ
オン水の製造装置の第2の実施例の概略を示す図であ
る。
FIG. 2 is a diagram showing an outline of a second embodiment of an electrolytic ionized water producing apparatus similar to the first embodiment of the present invention.

【図3】 図3は、本発明の電解イオン水の製造装置の
第3の実施例の概略を示す図である。
FIG. 3 is a diagram showing an outline of a third embodiment of the electrolytic ionized water producing apparatus of the present invention.

【図4】 図4は、バイポーラ膜のアニオン面側を陰
極、カチオン面側を陽極として荷電した後、電極の極性
を入れ換えた場合(逆荷電→正荷電)の各電極室のpH
ならびにORP(酸化還元電位)の経時変化を示す図で
ある。
FIG. 4 shows the pH of each electrode chamber when the polarities of the electrodes are changed (reverse charge → positive charge) after charging the anion surface side of the bipolar membrane as a cathode and the cation surface side as an anode.
FIG. 3 is a diagram showing changes in ORP (oxidation-reduction potential) with time.

【図5】 図5は、バイポーラ膜のアニオン面側を陽
極、カチオン面側を陰極として荷電した後、電極の極性
を入れ換えた場合(正荷電→逆荷電)の各電極室のpH
ならびにORP(酸化還元電位)の経時変化を示す図で
ある。
FIG. 5 shows the pH of each electrode chamber when the polarities of the electrodes are changed (positive charge → reverse charge) after charging the anion side of the bipolar film as an anode and the cation side as a cathode.
FIG. 3 is a diagram showing changes in ORP (oxidation-reduction potential) with time.

【図6】 図6は、従来の通水性を有する隔膜を介して
水の電気分解を行った状態を説明する図である。
FIG. 6 is a diagram illustrating a state in which water is electrolyzed through a conventional diaphragm having water permeability.

【図7】 図7は、荷電状態を逆転させて水の電気分解
を行った状態を説明する図である。
FIG. 7 is a diagram illustrating a state in which the charged state is reversed and electrolysis of water is performed.

【図8】 図8は、バイポーラ膜のアニオン面側を陰
極、カチオン面側を陽極として荷電した後、電極の極性
を入れ換えて水の電気分解を行った状態を説明する図で
ある。
FIG. 8 is a diagram illustrating a state in which the bipolar membrane is charged with the anion surface side as a cathode and the cation surface side as an anode, and then the polarities of the electrodes are switched to perform electrolysis of water.

【図9】 図9は、バイポーラ膜のアニオン面側を陽
極、カチオン面側を陰極として荷電した後、電極の極性
を入れ換えて水の電気分解を行った状態を説明する図で
ある。
FIG. 9 is a diagram illustrating a state in which the anion surface side of the bipolar film is used as an anode and the cation surface side is used as a cathode, and then the polarities of the electrodes are switched to perform electrolysis of water.

【符号の説明】[Explanation of symbols]

12…陽極 14…陰極 16…陽極側電解槽 18…陰極側電解槽 22…バイポーラ膜 22a…アニオン面 22b…カチオン面 32…陽極 34…陰極 36…陽極側電解槽 38…陰極側電解槽 42…バイポーラ膜 42a…アニオン面 42b…カチオン面 100…電解イオン水製造装置 101…電解槽 101A…電極室 101B…電極室 102A,102B…撹拌装置 103A,103B…オーバーフロー回収経路 104A,104B…新水供給経路 112…電極板 114…電極板 122…バイポーラ膜 122a…アニオン面 122b…カチオン面 100’…電解槽 103’A,103’B…イオン水回収経路 105A,105B…イオン水排出孔 106A,106B…循環タンク 107A,107B…導入口 108A,108B…オーバフロー回収経路 12 ... Anode 14 ... Cathode 16 ... Anode-side electrolysis tank 18 ... Cathode-side electrolysis tank 22 ... Bipolar membrane 22a ... Anion surface 22b ... Cation surface 32 ... Anode 34 ... Cathode 36 ... Anode-side electrolysis tank 38 ... Cathode-side electrolysis tank 42 ... Bipolar membrane 42a ... Anion surface 42b ... Cation surface 100 ... Electrolytic ionized water production apparatus 101 ... Electrolysis tank 101A ... Electrode chamber 101B ... Electrode chamber 102A, 102B ... Stirring apparatus 103A, 103B ... Overflow recovery path 104A, 104B ... Fresh water supply path 112 ... Electrode plate 114 ... Electrode plate 122 ... Bipolar membrane 122a ... Anion surface 122b ... Cation surface 100 '... Electrolyzer 103'A, 103'B ... Ion water recovery path 105A, 105B ... Ion water discharge hole 106A, 106B ... Circulation Tanks 107A, 107B ... Inlet ports 108A, 108 B: Overflow collection route

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電解槽中の陽極と陰極との間に隔膜を配
設して、水を電解槽中で電解することによって、陽極側
及び陰極側よりイオン水をそれぞれ採取する電解イオン
水の製造方法において、 両極に印加する荷電の向きを交互に変えることにより、
隔膜で区画された両電極側の電解槽よりそれぞれ、酸化
還元電位の高い水及び酸化還元電位の低い水を得ること
を特徴とする電解イオン水の製造方法。
1. An electrolytic ionic water for collecting ionic water from an anode side and a cathode side, respectively, by disposing a diaphragm between an anode and a cathode in the electrolytic cell and electrolyzing water in the electrolytic cell. In the manufacturing method, by alternately changing the direction of charge applied to both electrodes,
A method for producing electrolyzed ionic water, characterized in that water having a high redox potential and water having a low redox potential are respectively obtained from the electrolytic cells on both electrode sides partitioned by a diaphragm.
【請求項2】 前記隔膜が、アニオン交換膜面とカチオ
ン交換膜面とを有するバイポーラ膜であることを特徴と
する請求項1に記載の電解イオン水の製造方法。
2. The method for producing electrolytic ionized water according to claim 1, wherein the diaphragm is a bipolar membrane having an anion exchange membrane surface and a cation exchange membrane surface.
【請求項3】 前記バイポーラ膜のカチオン交換膜面側
の電極を陽極とし、アニオン交換膜面側の電極を陰極と
するように荷電した後、荷電の向きを逆にすることを特
徴とする請求項1又は2に記載の電解イオン水の製造方
法。
3. The bipolar membrane is charged such that the electrode on the side of the cation exchange membrane side of the bipolar membrane serves as the anode and the electrode on the side of the anion exchange membrane side serves as the cathode, and then the charging direction is reversed. Item 3. The method for producing electrolytic ionized water according to Item 1 or 2.
【請求項4】 前記バイポーラ膜のアニオン交換膜面側
の電極を陽極とし、カチオン交換膜面側の電極を陰極と
するように荷電した後、荷電の向きを逆にすることを特
徴とする請求項1又は2に記載の電解イオン水の製造方
法。
4. The bipolar membrane is charged so that the electrode on the side of the anion-exchange membrane surface serves as the anode and the electrode on the side of the cation-exchange membrane serves as the cathode, and then the charging directions are reversed. Item 3. The method for producing electrolytic ionized water according to Item 1 or 2.
【請求項5】 前記バイポーラ膜で区画された両電極側
の電解槽よりそれぞれ、酸化還元電位の高い水及び酸化
還元電位の低い水を回収するとともに、各電解槽にそれ
ぞれ新水を補充しつつ電解を行うことを特徴とする請求
項1から4のいずれかに記載の電解イオン水の製造方
法。
5. The water having a high redox potential and the water having a low redox potential are respectively collected from the electrolytic cells on both sides of the electrodes divided by the bipolar membrane, and each electrolytic cell is replenished with fresh water. Electrolysis is performed, The manufacturing method of the electrolysis ionized water in any one of Claim 1 to 4 characterized by the above-mentioned.
【請求項6】 水を電解槽中で電解することによって、
陽極側及び陰極側よりイオン水をそれぞれ採取するため
に、電解槽中の陽極と陰極との間に隔膜を配設した電解
イオン水の製造装置において、 隔膜で区画された両電極側の電解槽よりそれぞれ、酸化
還元電位の高い水及び酸化還元電位の低い水を得るため
に、両極に印加する荷電の向きを交互に変えることが可
能な電極としたことを特徴とする電解イオン水の製造装
置。
6. By electrolyzing water in an electrolytic cell,
In an electrolyzed ionized water production device in which a diaphragm is placed between the anode and cathode in the electrolytic cell to collect ionized water from the anode side and the cathode side respectively, an electrolytic cell on both electrode sides separated by the diaphragm Further, in order to obtain water having a high redox potential and water having a low redox potential, an electrode capable of alternately changing the directions of the charges applied to both electrodes is used to produce electrolytic ionized water. .
【請求項7】 前記バイポーラ膜で区画された両電極側
の電解槽にそれぞれ、酸化還元電位の高い水及び酸化還
元電位の低い水を回収する手段を設けるとともに、各電
解槽にそれぞれ新水を補充する手段を設けたことを特徴
とする請求項6に記載の電解イオン水の製造装置。
7. A means for recovering water having a high redox potential and water having a low redox potential is provided in each of the electrolytic cells on both electrode sides partitioned by the bipolar membrane, and fresh water is respectively supplied to each electrolytic cell. 7. The apparatus for producing electrolyzed ionized water according to claim 6, further comprising means for replenishing.
JP10259593A 1993-04-28 1993-04-28 Method and apparatus for producing electrolytic ion water Pending JPH06312183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10259593A JPH06312183A (en) 1993-04-28 1993-04-28 Method and apparatus for producing electrolytic ion water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10259593A JPH06312183A (en) 1993-04-28 1993-04-28 Method and apparatus for producing electrolytic ion water

Publications (1)

Publication Number Publication Date
JPH06312183A true JPH06312183A (en) 1994-11-08

Family

ID=14331597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10259593A Pending JPH06312183A (en) 1993-04-28 1993-04-28 Method and apparatus for producing electrolytic ion water

Country Status (1)

Country Link
JP (1) JPH06312183A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841305A2 (en) * 1996-11-07 1998-05-13 Honda Giken Kogyo Kabushiki Kaisha Process and apparatus for the production of electrolyzed water
EP1006082A1 (en) * 1998-12-01 2000-06-07 Tateki Yamaoka Device for producing ion water and partition wall for device for producing ion water
US8834445B2 (en) 2006-01-20 2014-09-16 Oculus Innovative Sciences, Inc. Methods of treating or preventing peritonitis with oxidative reductive potential water solution
US8840873B2 (en) 2005-03-23 2014-09-23 Oculus Innovative Sciences, Inc. Method of treating second and third degree burns using oxidative reductive potential water solution
US9168318B2 (en) 2003-12-30 2015-10-27 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
US9498548B2 (en) 2005-05-02 2016-11-22 Oculus Innovative Sciences, Inc. Method of using oxidative reductive potential water solution in dental applications
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841305A2 (en) * 1996-11-07 1998-05-13 Honda Giken Kogyo Kabushiki Kaisha Process and apparatus for the production of electrolyzed water
EP0841305A3 (en) * 1996-11-07 1998-10-21 Honda Giken Kogyo Kabushiki Kaisha Process and apparatus for the production of electrolyzed water
US5997717A (en) * 1996-11-07 1999-12-07 Honda Giken Kogyo Kabushiki Kaisha Electrolyzed functional water, and production process and production apparatus thereof
KR100443448B1 (en) * 1996-11-07 2004-09-24 혼다 기켄 고교 가부시키가이샤 Electrolyzed functional water, and production process and production apparatus thereof
EP1006082A1 (en) * 1998-12-01 2000-06-07 Tateki Yamaoka Device for producing ion water and partition wall for device for producing ion water
US9642876B2 (en) 2003-12-30 2017-05-09 Sonoma Pharmaceuticals, Inc. Method of preventing or treating sinusitis with oxidative reductive potential water solution
US9168318B2 (en) 2003-12-30 2015-10-27 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
US10016455B2 (en) 2003-12-30 2018-07-10 Sonoma Pharmaceuticals, Inc. Method of preventing or treating influenza with oxidative reductive potential water solution
US8840873B2 (en) 2005-03-23 2014-09-23 Oculus Innovative Sciences, Inc. Method of treating second and third degree burns using oxidative reductive potential water solution
US9498548B2 (en) 2005-05-02 2016-11-22 Oculus Innovative Sciences, Inc. Method of using oxidative reductive potential water solution in dental applications
US8834445B2 (en) 2006-01-20 2014-09-16 Oculus Innovative Sciences, Inc. Methods of treating or preventing peritonitis with oxidative reductive potential water solution
US9782434B2 (en) 2006-01-20 2017-10-10 Sonoma Pharmaceuticals, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same

Similar Documents

Publication Publication Date Title
Hou et al. Coupling desalination and energy storage with redox flow electrodes
US6251259B1 (en) Method and apparatus for producing electrolyzed water
US4256552A (en) Chlorine generator
US4334968A (en) Apparatus for generation of chlorine/chlorine dioxide mixtures
US4308117A (en) Generation of chlorine-chlorine dioxide mixtures
CN107849713B (en) The reduction method and electrolysis system of carbon dioxide are utilized for electrochemistry
JP2002336856A (en) Electrolytic water making apparatus and method of making electrolytic water
JPH0293088A (en) Method and device for water electrolysis
JP2015029921A (en) Method for electrolytic concentration of heavy water
CN101918107A (en) Low-voltage alkaline production from brines
US4196068A (en) Chlorine gas producing apparatus
JP5069292B2 (en) Equipment for electrochemical water treatment
BG60243B1 (en) METHOD FOR PURIFICATION OF ELECTROLYT FROM ZINC SULPHATE
US20160312370A1 (en) Electrochemical cell without an electrolyte-impermeable barrier
EP3708544A1 (en) Hybrid power generation apparatus and method capable of electricity production and deionization simultaneously
JPH06312183A (en) Method and apparatus for producing electrolytic ion water
JP5282201B2 (en) Electrolyzed water generator
Sleutels et al. Gas-permeable hydrophobic membranes enable transport of CO 2 and NH 3 to improve performance of bioelectrochemical systems
KR100533710B1 (en) making apparatus of electrolysis water
JPH11226576A (en) Method and apparatus for treating wastewater
US20210032763A1 (en) System for process intensification of water electrolysis
US3728235A (en) Electrolytic method for recovering metal from solution
WO2018079965A1 (en) Hybrid power generation system and energy-independent hydrogen-electricity hybrid charging station, which use reverse electrodialysis device capable of efficiently producing hydrogen-electricity
KR20050022496A (en) manufacturing apparatus of electrolyzed-reduced water
JPH03191854A (en) Apparatus and method for restricting ef- fect of insoluble oxygen content of eletrolytic solution to minimum in low range oxygen analyzer