WO2018079965A1 - Hybrid power generation system and energy-independent hydrogen-electricity hybrid charging station, which use reverse electrodialysis device capable of efficiently producing hydrogen-electricity - Google Patents

Hybrid power generation system and energy-independent hydrogen-electricity hybrid charging station, which use reverse electrodialysis device capable of efficiently producing hydrogen-electricity Download PDF

Info

Publication number
WO2018079965A1
WO2018079965A1 PCT/KR2017/005702 KR2017005702W WO2018079965A1 WO 2018079965 A1 WO2018079965 A1 WO 2018079965A1 KR 2017005702 W KR2017005702 W KR 2017005702W WO 2018079965 A1 WO2018079965 A1 WO 2018079965A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hydrogen
cathode
reverse electrodialysis
chamber
Prior art date
Application number
PCT/KR2017/005702
Other languages
French (fr)
Korean (ko)
Inventor
김찬수
한지형
황교식
김한기
정남조
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160141145A external-priority patent/KR101892692B1/en
Priority claimed from KR1020170059428A external-priority patent/KR102041554B1/en
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2018079965A1 publication Critical patent/WO2018079965A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hybrid power generation system, and more particularly, to a hybrid power generation system for producing electricity using a reverse electrodialysis apparatus and a fuel cell, and an energy-independent hydrogen-electric hybrid charging station.
  • the present invention was created by supporting the following two research projects.
  • the first research project is the core development technology development (2104.06.01 ⁇ 2017.05.03) for high efficiency RED stack with power generation efficiency of more than 15% for marine salt generation.
  • the second research project is funded by the Ministry of Trade, Industry & Energy, Republic of Korea, and the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KEPEP). ) It is a task.
  • Reverse electrodialysis is a technique for producing electricity by using salinity differences between seawater and fresh water. Energy is obtained by a process opposite to a general electrodialysis process in which electricity is generated to generate electrolyte concentration differences.
  • the reverse electrodialysis apparatus converts the chemical potential difference of the ion exchange membranes into the electrical potential difference using a redox couple material as the electrode solution.
  • Reverse electrodialysis devices are environmentally friendly and, unlike other renewable energy technologies, are not subject to climate and time constraints.
  • technology development is being made in the direction of suppressing the generation of gaseous substances which are by-products generated on the electrode side.
  • the electrode solution is prepared by using a minimum voltage necessary for causing a redox reaction, that is, a ferricyanide / ferrocyanide or a Fe 2 + / 3 +, which is a redox couple having a low overpotential. Most often used.
  • these redox species have a relatively high toxicity compared to brine or fresh water and cannot immediately discharge the electrode solution material from the reverse electrodialysis apparatus.
  • these redox species have low chemical stability, degrading the long-term performance of the reverse electrodialysis apparatus.
  • Perry When using a cyanide / ferrocyanide as reducing species oxidation, the oxidation reaction while up in the anode becomes lower the solution pH in the electrode interface broken and Perry cyanide / ferrocyanide free Perry ion (free ferric, Fe 3 +) or Faroe ion (free ferrous ion, Fe + 2) are made. This reaction product reacts with the unbreakable ferricyanide or ferrocyanide to produce a blue precipitate. This deposit sticks to the electrode surface to reduce the effective area of the electrode.
  • the concentration of redox species participating in the electrochemical reaction is reduced, and the power is reduced when the reverse electrodialysis apparatus is operated in the long term.
  • the solution pH of the electrode interface is increased by the water reduction reaction to form a ferric oxyhydroxide precipitate.
  • a fuel cell is a power generation device that generates electricity by using an electrochemical reaction of hydrogen and oxygen.
  • Known fuel cell stacks are supplied with hydrogen produced in a hydrogen generator, or with reformed gas (hydrogen rich gas) produced in a fuel processor comprising a reformer, a burner and a carbon monoxide reducer.
  • Hydrogen can be obtained by decomposing hydrocarbon fuels or by electrolyzing water.
  • the present disclosure seeks to provide a hybrid power generation system capable of producing electricity in both reverse electrodialysis equipment and fuel cells while producing hydrogen in real time and at low cost.
  • the present disclosure seeks to provide an energy independent hydrogen-electric composite charging station.
  • Hybrid power generation system is a cell stack consisting of a cation exchange membrane and an anion exchange membrane to alternately form a high concentration electrolyte solution flow path and a low concentration electrolyte solution flow path, and provides a membrane voltage for water decomposition reaction, disposed on one side of the cell stack
  • An anode chamber including a first water flow path and an anode
  • a cathode chamber including a second water flow path and a cathode disposed on the other side of the cell stack, wherein oxygen and electrons are formed by an oxidation reaction of water in the anode chamber.
  • hydrogen is generated by a reduction reaction of water in the cathode chamber, and the electron generated in the anode chamber is supplied to the cathode through a load to produce electric power, and the reverse electrodialysis apparatus.
  • the hydrogen from the oxygen and electrochemical reaction of oxygen and the hydrogen And a fuel cell to produce a group, and a reaction by-product water.
  • Hybrid power generation system is a cell stack consisting of a cation exchange membrane and an anion exchange membrane alternately formed between a high concentration electrolyte solution flow path and a low concentration electrolyte solution flow path, providing a membrane voltage required for water decomposition reaction, installed on both ends of the cell stack
  • a cathode chamber and an anode chamber each containing an aqueous solution, at least one linear cathode installed in the cathode chamber, and an anode installed in the anode chamber, wherein oxygen and electrons are generated by an oxidation reaction of water in the anode chamber;
  • a reverse electrodialysis apparatus that generates hydrogen by a reduction reaction of water in the cathode chamber, and generates power while the electrons generated in the anode chamber are supplied to the cathode through a load;
  • An energy self-supporting hydrogen-electric composite charging station uses a salt difference between a high concentration electrolyte solution and a low concentration electrolyte solution to generate hydrogen by water decomposition reaction, and at the same time, to generate electricity and reverse electricity. And a hydrogen charger supplied with hydrogen generated in the dialysis apparatus, and an electric charger supplied with electricity generated in the reverse electrodialysis apparatus.
  • the hybrid power generation system combines a reverse electrodialysis apparatus and a fuel cell to compensate for the low energy density of the reverse electrodialysis apparatus, and a storage facility that raises hydrogen production and safety issues of high energy consumption, which is a problem of a conventional fuel cell. Can solve the problem.
  • hydrogen required by the fuel cell can be supplied in real time, efficiency of the fuel cell can be improved.
  • the reverse electrodialysis apparatus can be used as a hydrogen source of a fuel cell since a sufficient amount of hydrogen can be produced. Therefore, it is possible to solve the problem of a storage facility that raises the hydrogen production and safety issues of high energy consumption, which is a problem of the conventional fuel cell. In addition, since hydrogen required by the fuel cell can be supplied in real time, efficiency of the fuel cell can be improved.
  • the reverse electrodialysis apparatus capable of producing hydrogen-electricity according to the present disclosure may implement an eco-friendly energy production apparatus because hydrogen-electricity is produced only by water redox reaction without using redox species having chemical toxicity.
  • the reverse electrodialysis apparatus can produce hydrogen at the same time as the electricity production, it is possible to implement an energy-independent hydrogen-electric complex charging station.
  • FIG. 1 is a block diagram of a hybrid power generation system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a fuel cell constituting a fuel cell stack of the hybrid power generation system shown in FIG. 1.
  • FIG. 3 is a block diagram of a hybrid power generation system according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an assembly of a reverse electrodialysis apparatus constituting a hybrid power generation system according to an embodiment of the present invention.
  • 5A and 5B are cross-sectional views and a top view of a reverse electrodialysis apparatus constituting a hybrid power generation system according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a method of operating a reverse electrodialysis apparatus constituting a hybrid power generation system according to another embodiment of the present invention.
  • Figure 7 is a graph showing the power according to the current of the conventional reverse electrodialysis apparatus and the reverse electrodialysis apparatus using a linear electrode.
  • FIG. 8 is a graph showing a relationship of energy generated according to a distance between an electrode tip and a cell stack.
  • FIG. 9 is a block diagram of an energy-independent hydrogen-electric composite charging station according to an embodiment of the present invention.
  • FIG. 1 is a configuration diagram of a hybrid power generation system 1 according to an embodiment of the present invention.
  • the hybrid power generation system 1 includes a reverse electrodialysis apparatus 100 and a fuel cell 50.
  • the hybrid power generation system 1 is a power generation system that generates energy in the fuel cell 50 by supplying hydrogen generated when generating energy in the reverse electrodialysis apparatus 100 to the fuel cell 50.
  • the reverse electrodialysis apparatus 100 includes a cell stack 10, an anode 42 positioned at one side of the cell stack 10 with the first water channel WCH1 interposed therebetween, and a second water channel WCH2.
  • the cathode 32 is positioned on the other side of the cell stack 10 in between.
  • the cell stack 10 includes a cation exchange membrane 11 and an anion exchange membrane 11 which alternately form a high concentration electrolyte solution HC such as a channel for supplying brine and a low concentration electrolyte solution LC such as a channel for supplying fresh water. 12). Two adjacent unit cells share a cation exchange membrane 11 or an anion exchange membrane 12.
  • the high concentration electrolyte solution may be a solution having a salt concentration of 35,000 mg / L or more
  • the low concentration electrolyte solution may be a solution having a salt concentration of 0 to 1,000 mg / L.
  • Seawater may be used as the high concentration electrolyte solution and fresh water may be used as the low concentration electrolyte solution.
  • the present invention is not limited thereto, and any combination of materials that allow exchange of cations and anions due to a difference in relative concentrations of ions may occur. Is also applicable. And if a variety of pretreatment facilities can be installed before entering the cell stack 10, industrial waste brine, seawater, artificial brine, etc. may be used as a high concentration electrolyte solution (saline).
  • the low concentration electrolyte solution fresh water
  • industrial cooling water sewage discharged water, river water, tap water, and the like
  • the salt water is used as the high concentration electrolyte solution HC
  • the fresh water is described as the low concentration electrolyte solution LC.
  • the flow directions of the high concentration electrolyte solution HC and the low concentration electrolyte solution LC are opposite to each other. However, the flow direction of the high concentration electrolyte solution HC and the low concentration electrolyte solution LC may be in the same direction.
  • the ions move from the high concentration electrolyte solution HC to the low concentration electrolyte solution LC.
  • the length of the flow path becomes longer, the larger amount of ions moves and the difference in concentration between the two solutions at the outlet side than at the inlet side. Will be reduced. Therefore, when the length of the flow path is long, it is advantageous to reverse the flow directions of the high concentration electrolyte solution HC and the low concentration electrolyte solution LC to each other so that the difference in concentration depending on the location is small, which may be advantageous in improving performance. That is, the potential is kept constant throughout the cathode 32 and the anode 42, which may be more advantageous for hydrogen generation.
  • the high concentration electrolyte solution HC may be a solution having a salt concentration of 35,000 mg / L or more
  • the low concentration electrolyte solution LC may be a solution having a salt concentration of 0 to 1,000 mg / L.
  • River water may be used as high concentration electrolyte solution (HC) and seawater (low concentration) electrolyte solution (LC), but is not limited thereto, and any combination of materials may allow the exchange of cations and anions due to the difference in relative ion concentrations. Is also applicable.
  • electrochemical potential is generated between the ion exchange membranes 11 and 12.
  • a reduction reaction occurs at the cathode 32 and an oxidation reaction occurs at the anode 42, whereby a flow of electrons is generated between the anode 42 and the cathode 32 to generate energy, that is, electricity.
  • the cell stack 10 may include a plurality of unit cells, for example, ten or more unit cells. Since the cell voltage increases as the number of unit cells increases, water may be used instead of a conventional redox couple as an electrode solution. That is, in the reverse electrodialysis apparatus 100 according to an embodiment of the present invention, the voltage of the cell stack 10 is about 1.23V or more, which is water electrolysis voltage, so that electrolysis of water at the anode 42 and the cathode 32 is performed. The reaction may occur.
  • each reaction of the pH of the cathode chamber 30 including the second water flow path (WCH2) in contact with the cathode 32 and the anode chamber 40 including the first water flow path (WCH1) in contact with the anode 42 It can be used by adjusting to an advantageous pH.
  • the solution of the second water channel WCH2 in which the reduction reaction occurs may be adjusted to an acidic solution
  • the solution of the first water channel WCH1 in which the oxidation reaction occurs may be adjusted to the basic solution.
  • the theoretical water decomposition voltage at this time may be about 0.4V. Therefore, if the voltage applied to the cell stack 10 is 0.4V or more, water electrolysis may occur.
  • the theoretical electrolysis voltage of water varies according to the pH of the cathode chamber 30 and the anode chamber 40. When a cell voltage having a voltage higher than this voltage is generated, water electrolysis reaction may occur to produce hydrogen gas. have.
  • the ratio of electrode resistance in the total resistance component of the reverse electrodialysis apparatus 100 is significantly reduced, so that pure water or fresh water is used as the electrode solution. Even when used, the amount of reduction in power and the amount of hydrogen produced by the electrode solution resistance is negligible. That is, when hydrogen is produced even with pure water, there are various advantages compared to the production of hydrogen by water electrolysis. In conventional water electrolysis, pure water cannot be used as an electrolyte because the effect of solution resistance is large, so pure water is not used as an electrolyte. On the other hand, in the reverse electrodialysis apparatus 100 of the present invention, since pure hydrogen is produced by supplying pure water without using the existing redox species, it is possible to produce even more pure hydrogen gas.
  • aqueous solution in which the salt is dissolved.
  • NaCl or Na 2 SO 4 end
  • an aqueous solution dissolved at 2.92 g / L to 5.8 g / L When the salt is dissolved, the resistance of the electrode solution can be reduced, but as described above, when the number of cells increases, the effect of the resistance of the electrode solution is insignificant, so pure water or fresh water can be used as the electrode solution.
  • oxygen and electrons may be generated by the oxidation reaction of water in the anode chamber 40 as shown in Formula (1).
  • chloride ions may be oxidized to generate chlorine gas as shown in Formula (2).
  • hydrogen and hydroxide ions may be generated by the reduction reaction of water in the cathode chamber 30 as in Chemical Formula (3).
  • the first water passage WCH1 and the second water passage WCH2 may be configured in a cyclic or acyclic manner.
  • the first water channel WCH1 is connected to the second water channel WCH2 through the connecting tube 63, and the oxygen and electrons generated at the anode 42 together with the second water. It may be transferred to the flow path WCH2.
  • an auxiliary gas-liquid separator 64 is installed in the connecting pipe 33. Oxygen gas can be removed.
  • the cation exchange membrane 11 and the anion exchange membrane 12 are preferably made of a material or structure which can lower resistance and thickness and increase permselectivity.
  • the anode 42 and the cathode 32 may be formed of different materials or the same material.
  • the anode 42 and the cathode 32 may be made of different materials to optimize the respective reduction reaction.
  • the anode 42 may be made of iridium (Ir)
  • the cathode 32 may be made of ruthenium (Ru), but is not limited thereto.
  • the anode 42 and the cathode 32 may be formed of the same material so that the performance may be maintained even when a polarity change occurs during operation.
  • the anode 42 and the cathode 32 may be formed of electrodes coated with a platinum group catalyst material (Pt, Ir, Ru, Pd, etc.) on a titanium (Ti) base.
  • the anode 42 and the cathode 32 is preferably formed of a porous material to increase the specific surface area to provide a large number of reaction sites. It can also be made of a material that can improve corrosion resistance and improve capacity.
  • the anode 42 and the cathode 32 may be formed of a capacitive electrode formed with a porous structural material layer, for example, carbon cloth, carbon felt, or the like, on a metal support.
  • the metal support may be a Ti, Nb, Ta mesh.
  • a spacer (not shown) may be inserted into the high concentration electrolyte solution channel CH1 and the low concentration electrolyte solution channel CH2.
  • the spacers are inserted to maintain a constant mechanical distance between the cation exchange membrane 11 and the anion exchange membrane 12 and to cause turbulence of the supplied solution so that the solution is well supplied over the entire region of the flow paths CH1 and CH2. Can be. Therefore, it may be desirable for the spacer to have a high porosity.
  • the spacer may be composed of a mesh made of polypropylene or polyethylene, but is not limited thereto.
  • an electrode spacer (not shown) may also be provided in the first water channel WCH1 and the second water channel WCH2. Since the electrode spacer may be inserted to increase the electrical resistance, the electrode spacer may be formed of a material having good electrical conductivity. For example, the electrode spacer may be coated with a metal such as Pt to improve electrical conductivity.
  • the reverse electrodialysis apparatus 100 of this embodiment uses water as an electrode solution by increasing the number of cells, and actively generates hydrogen by electrolyzing water. That is, in the present embodiment, the reverse electrodialysis apparatus 100 functions as a hydrogen generator and at the same time a power generation apparatus.
  • Hydrogen generated in the reverse electrodialysis apparatus 100 is supplied to the fuel cell 50 to produce energy, that is, electricity in the fuel cell 50.
  • the hybrid power generation system 1 may further include a gas-liquid separator 70 to more smoothly supply hydrogen generated from the reverse electrodialysis apparatus 100.
  • the gas-liquid separator 70 is connected to the second water channel WCH2 of the reverse electrodialysis apparatus 100 to receive hydrogen and water therefrom. Thereafter, the gas-liquid separator 70 separates hydrogen, which is a gas, and water, which is a liquid.
  • the separated hydrogen is supplied to the fuel cell 50, and the gas-liquid separated water may be supplied again to the reverse electrodialysis apparatus 100 through the auxiliary pipe 71.
  • the gas-liquid separator 70 may be omitted.
  • the fuel cell 50 is a power generation device that generates electricity by using an electrochemical reaction between hydrogen and oxygen, and various types of known fuel cells may be applied.
  • the fuel cell 50 may be formed of any one of a phosphoric acid fuel cell, a molten carbonate fuel cell, a solid oxide fuel cell, and a polymer electrolyte fuel cell.
  • the fuel cell 50 largely includes a fuel cell stack 51, an air pump 52 for supplying air to the fuel cell stack 51, and an electric power for converting DC power from the fuel cell stack 51 into AC power. Transducer 53 and the like.
  • the fuel cell stack 51 includes a plurality of fuel cell cells connected in series, and is classified into the aforementioned types according to the type of catalyst and electrolyte and the operating temperature.
  • FIG. 2 is a schematic diagram of a fuel cell constituting a fuel cell stack of the hybrid power generation system shown in FIG. 1.
  • one fuel cell 54 includes an electrolyte 55, which is a medium material through which ions pass, a catalyst layer 56 positioned on both sides of the electrolyte 55, and one catalyst layer 56. And a cathode (anode) 57 in contact with and supplied with hydrogen, and a cathode (58) in contact with another catalyst layer 56 and provided with air.
  • the fuel electrode 57 hydrogen is separated into hydrogen ions and electrons, and electrons move electric wires to generate electricity.
  • the hydrogen ions moving through the electrolyte 55 react with oxygen sent to the cathode 58 and electrons introduced through the external wire to generate water.
  • the fuel cell 54 produces electricity from hydrogen and air and generates water as a byproduct.
  • the fuel cell stack 51 is connected to the first water flow path WCH1 of the reverse electrodialysis apparatus 100 through a water supply pipe 59 to reverse water generated as a byproduct. 100).
  • the auxiliary pipe 71 connected to the gas-liquid separator 70 may be connected to the water supply pipe 59.
  • Conventional fuel cells include a hydrogen production and storage facility for hydrogen supply, or a fuel processing device for reforming gas (hydrogen rich gas) production.
  • the fuel cell 50 of the present embodiment does not include a fuel processing apparatus including a separate hydrogen production and storage facility or a reformer, and generates power by receiving hydrogen produced by the reverse electrodialysis apparatus 100 as fuel.
  • the amount of hydrogen generated in the reverse electrodialysis apparatus 100 may be adjusted by changing the size, the number of cells, and the operating conditions of the reverse electrodialysis apparatus 100. Therefore, the hydrogen required for the fuel cell 50 can be produced and supplied in real time. In addition, hydrogen generated in the reverse electrodialysis apparatus 100 is additionally generated while producing electricity, and consumes less energy than electrolysis of existing water to produce hydrogen.
  • the above-described hybrid power generation system 1 combines the reverse electrodialysis apparatus 100 and the fuel cell 50 to compensate for the low energy density of the reverse electrodialysis apparatus 100, and the high energy consumption, which is a problem of the conventional fuel cell. It can solve the problem of storage facilities where hydrogen production and safety issues are raised. In addition, since the hydrogen required by the fuel cell 50 can be supplied in real time, the efficiency of the fuel cell 50 can be improved.
  • FIG 3 is a configuration diagram of a hybrid power generation system 2 according to another embodiment of the present invention.
  • the reverse electrodialysis apparatus 200 constituting the hybrid power generation system 2 uses water as an electrode solution by increasing the number of unit cells, and increases the electrode interface resistance by reducing the electrode surface area to apply to the electrode interface. Loss is a device that can increase the voltage and thereby increase the rate of hydrogen evolution.
  • the electrode solution chambers 30 and 40 may be made wider to include a large amount of reactant water. That is, in the present embodiment, the reverse electrodialysis apparatus 200 functions as a hydrogen generator and at the same time a power generation apparatus.
  • Hydrogen generated in the reverse electrodialysis apparatus 200 may be directly supplied to the fuel cell 50 without a separate gas-liquid separator (70 of FIG. 1) to produce energy, that is, electricity in the fuel cell 50.
  • Reference numeral 53, the water supply pipe 59, and the like have substantially the same functions as the components described with reference to FIG.
  • Reverse electrodialysis apparatus 100 constituting the hybrid power generation system 1 may be assembled in a general form as shown in FIG.
  • the cathode 32 and the anode 42 are formed inside the end plates 221 and 222 in a mesh shape having a large surface area.
  • the cell stack 10 is formed in contact with a front surface of the cell stack 10 with a spacer having a thickness of about 100 to 200 ⁇ m and having a spacer having an open area ratio of about 50%.
  • the cathode chamber 30 forming the second water channel WCH2 and the anode chamber 40 forming the first water channel WCH1 may be formed to accommodate the cathode 32 and the anode 42.
  • the cathode 32 and the anode 42 are connected to an external rod (not shown) through the electrode connection 260.
  • the gasket 250 is to seal the space between the cell stack 10 and the end plates 221 and 222 to prevent leakage of the solution in the cathode chamber 30 and the anode chamber 40.
  • the width w of the cathode chamber 30 and the anode chamber 40 may be formed to be substantially equal to the width of the cathode 32 or the anode 42.
  • FIGS. 5A and 5B a cross-sectional view and a top view of the reverse electrodialysis apparatus 200 constituting the hybrid power generation system 2 according to another embodiment are illustrated in FIGS. 5A and 5B.
  • the reverse electrodialysis apparatus 200 constituting the hybrid power generation system 2 according to another embodiment includes a linear cathode 32W and a linear anode 42W.
  • the volume of the cathode chamber 30 and the anode chamber 40 compared to the reverse electrodialysis apparatus 100 shown in FIG. 4 is 10 times or more, preferably 25 times or more, more preferably 50 times or more. can do.
  • the reverse electrodialysis apparatus 200 constituting the hybrid power generation system 2 includes a cell stack 10, a cathode chamber 30, and an anode chamber ( 40).
  • the cell stack 10 includes a cation exchange membrane 11 and an anion exchange membrane 11 which alternately form a high concentration electrolyte solution HC such as a channel for supplying brine and a low concentration electrolyte solution LC such as a channel for supplying fresh water. 12). Two adjacent unit cells share a cation exchange membrane 11 or an anion exchange membrane 12.
  • the flow directions of the high concentration electrolyte solution (HC, brine) and the low concentration electrolyte solution (LC, fresh water) are opposite to each other. However, the flow direction of the high concentration electrolyte solution (HC, brine) and the low concentration electrolyte solution (LC, fresh water) may be in the same direction.
  • End plates 21 and 22 are installed at both ends of the cell stack 10, respectively.
  • the end plates 21 and 22 are installed at both ends of the cell stack 10 to prevent the cation exchange membrane 11 and the anion exchange membrane 12 of the cell stack 10 from expanding due to the pumping pressure of the brine and fresh water. .
  • the end plates 21 and 22 communicate with each other through the opening with the neighboring cathode chamber 30 and the anode chamber 40, respectively.
  • the end plates 21, 22 have a constant open area like a mesh.
  • the end plates 21 and 22 are constructed in a mesh shape to prevent the cell stack 10 from expanding and allow the cell stack 10 to directly contact the solution of the cathode chamber 30 or the anode chamber 40.
  • the end plates 21 and 22 may be made of only plastic or may be made of metal. In the case of a metal mesh, a titanium mesh or the like may be used.
  • the cathode chamber 30 and the anode chamber 40 are disposed in contact with the end plates 21 and 22. As described above, it is suitable for hydrogen generation that at least one linear cathode 32W is disposed in the cathode chamber 30.
  • the anode chamber 40 may be any one of a mesh type electrode and a linear electrode. Although linear anode 42W is illustrated in FIG. 5A, a meshed anode may be disposed.
  • electrochemical potential is generated between the ion exchange membranes 11 and 12.
  • an oxidation reaction occurs at the anode 42
  • a reduction reaction occurs at the cathode 32
  • a flow of electrons (e ⁇ ) is generated between the anode 42 and the cathode 32 such that energy, that is, electricity is generated. Occurs.
  • Electrons generated in the anode chamber 40 may be transferred to the cathode chamber 30 through a load.
  • the cell stack 10 may include a plurality of unit cells, for example, ten or more unit cells. Since the cell voltage increases as the number of unit cells increases, water may be used as an electrode solution instead of the conventional redox species. That is, in the reverse electrodialysis apparatus 200 according to the embodiment of the present invention, the voltage of the cell stack 10 is about 1.23V or more, which is the water electrolysis voltage, so that the electrolysis of water at the anode 42 and the cathode 32 is performed. The reaction may occur. In addition, when the pH of the solution of the cathode chamber 30 and the pH of the solution of the anode chamber 40 are different, the water decomposition voltage may be further lowered.
  • the pH of the solution of the cathode chamber 30 and the solution of the anode chamber 40 may be adjusted to a pH favorable for each reaction.
  • the solution of the cathode chamber 30 in which the reduction reaction occurs is an acidic solution
  • the solution of the anode chamber 40 in which the oxidation reaction occurs can be adjusted to a basic solution.
  • the theoretical water decomposition voltage at this time may be about 0.4V. Therefore, if the voltage applied to the cell stack 10 is 0.4V or more, water electrolysis may occur.
  • the theoretical electrolysis voltage of water varies depending on the pH of the solution of the cathode chamber 30 and the solution of the anode chamber 40.
  • the water electrolysis reaction causes hydrogen. It can produce gas.
  • the ratio of electrode resistance in the total resistance component of the reverse electrodialysis apparatus 100 is significantly reduced, so that pure water or fresh water is used as the electrode solution. Even when used, the amount of reduction in power and the amount of hydrogen produced by the electrode solution resistance is negligible. That is, when hydrogen is produced even with pure water, there are various advantages compared to the production of hydrogen by water electrolysis. In conventional water electrolysis, pure water cannot be used as an electrolyte because the effect of solution resistance is large, so pure water is not used as an electrolyte.
  • the reverse electrodialysis apparatus 100 of the present invention since pure hydrogen is produced by supplying only pure water to the cathode chamber 30 without using the existing redox species, it is possible to produce even more pure hydrogen gas. Therefore, the fuel cell can be directly connected without an additional separation device such as a hydrogen separation membrane.
  • an aqueous solution in which salt is dissolved may be used.
  • NaCl or Na 2 SO 4 end It is also possible to use an aqueous solution dissolved at 2.92 g / L to 5.8 g / L.
  • the resistance of the electrode solution can be reduced, but as described above, when the number of cells increases, the effect of the resistance of the electrode solution is insignificant, so pure water or fresh water can be used as the electrode solution.
  • oxygen and electrons may be generated by the oxidation reaction of water in the linear anode 42W as shown in Chemical Formula 1.
  • chloride ions may be oxidized to generate chlorine gas as shown in Formula (2).
  • hydrogen and hydroxide ions may be generated by the reduction reaction of water in the linear cathode 32W as in Chemical Formula (3).
  • the electrochemically active area becomes small, thereby increasing the interfacial resistance. Since a large resistance is applied to a large resistance (Ohm's law), a large part of the film voltage of the cell stack 10 is caught at the linear cathode 32W interface, and the hydrogen generation rate can increase rapidly. Even in the case of the anode, the smaller the area, the greater the voltage across the anode interface, so that the rate of oxygen generation or chlorine gas generation may increase rapidly.
  • the anode may also use a linear anode 42W, but if oxygen generation or chlorine generation is not the main purpose and the main purpose of electricity production is a mesh type It may be more preferred to form it with an anode (see 42 in FIGS. 1 and 4).
  • the linear cathode 32W and the linear anode 42W are responsible for increasing the electrochemical reaction rate and current by increasing the voltage applied to the electrode interface by reducing the electrode area, only the precious metal such as Pt is used. It does not need to be formed.
  • precious metal such as Pt
  • non-noble metals such as carbon, titanium, nickel, manganese and copper can be used as the electrode.
  • reference numerals 35 and 45 are solution inlets of the cathode chamber 30 and the anode chamber 40, respectively.
  • Reference numerals 32a and 42a denote injection holes of the linear cathode 32W and the linear anode 42W, respectively.
  • the width W of the cathode chamber 30 and the anode chamber 40 of the reverse electrodialysis apparatus 200 constituting the hybrid power generation system 2 is linear between the cathode 32W and the anode 42W. Since it is made of, it is not limited in width Accordingly, the width W of the cathode chamber 30 and the anode chamber 40 of the reverse electrodialysis apparatus 200 is equal to the cathode chamber 30 and the anode chamber 40 of the reverse electrodialysis apparatus 100 illustrated in FIG. 4. 10 times or more, preferably 25 times or more, more preferably 50 times or more than the width (w) of ().
  • the volume can be increased to 10 times or more, preferably 25 times or more, and more preferably 50 times or more.
  • the size of the cathode chamber 30 illustrated in FIG. 4 is particularly 2.5 cm 3
  • the size of the cathode chamber 30 illustrated in FIG. 5A may be 125 cm 3.
  • Increasing the size of the cathode chamber 30 allows sufficient water decomposition reaction to occur, and it becomes easy to collect the hydrogen obtained as a result of the water decomposition reaction to the outside through the collecting pillar 50a connected to the upper portion of the chamber.
  • hydrogen generated in the reverse electrodialysis apparatus 200 simultaneously generates electricity, and consumes less energy than electrolysis of existing water to produce hydrogen. .
  • Seawater freshwater pumping energy is required when driving conventional reverse electrodialysis devices.
  • the power generated by the reverse electrodialysis apparatus minus the pumping energy is the net energy actually obtained. In small cells, the pumping energy is relatively large and the net energy is negative.
  • the reverse electrodialysis apparatuses 100 and 200 according to the embodiments of the present invention even if the output itself is increased and the pumping energy is subtracted, the positive value may obtain the net energy. Thus, hydrogen generation and power generation in large cells may not require additional energy.
  • the net energy including hydrogen production and power generation may decrease due to the increase in the total internal resistance by the distance resistance, but the existing external voltage may not be needed because additional external energy is not required.
  • water consumption can be much lower than water electrolysis, in which water is electrolyzed to produce hydrogen.
  • the sizes of the cathode chamber 30 and the anode chamber 40 can be made as large as possible.
  • the ends of the linear cathode 32W and the anode 42W may be brought into non-contact with the cell stack 10.
  • it may be located at least several millimeters to several centimeters or less.
  • the electrode solution of the cathode chamber 30 and the electrode solution of the anode chamber 40 may be configured in an acyclic manner so that the cathode chamber 30 and the anode chamber 40 may be independently configured.
  • the cathode chamber 30 and the anode chamber 40 are configured independently, the hydrogen generated in the cathode chamber 30 and the oxygen or chlorine gas generated in the anode chamber 40 are not mixed with each other and are collected again. There is no need for separation.
  • the hydrogen chamber 80 is installed in the cathode chamber 30 to collect hydrogen
  • the oxygen chamber or chlorine collector 90 is installed in the anode chamber 40 to collect oxygen or chlorine, respectively.
  • the electrode solution of the cathode chamber 30 and the anode chamber 40 may be formed to circulate.
  • the hydrogen ions H + generated at the linear anode 42W can be used at the linear cathode 32W.
  • oxygen is supplied together, hydrogen is prevented from being generated in the linear cathode 32W.
  • a gas-liquid separator (see 64 in FIG. 1) is installed in the connecting tube to separate oxygen gas, and the electrode includes only hydrogen ions.
  • the solution may be delivered to the cathode chamber 30.
  • FIG. 6 is a schematic diagram of a method of operating the reverse electrodialysis apparatus 200 constituting the hybrid power generation system 2 according to another embodiment of the present invention.
  • the overpotential of the reduction of hydronium ions at low pH and the oxidation of hydroxide ions at high pH is much lower than the overpotential of water redox at neutral pH, resulting in a smoother electrode reaction with reduced electrode interface impedance. This will happen. That is, by periodically switching between the brine and fresh water, it is possible to increase the hydrogen generation rate and oxygen generation rate while at the same time obtain the power of the reverse electrodialysis apparatus. As such, the method of periodically switching the brine and fresh water may be applied to the operation of the reverse electrodialysis apparatus 100 constituting the hybrid power generation system 1 according to an embodiment of the present invention.
  • FIG. 7 is a graph showing power according to current of the conventional reverse electrodialysis apparatus RED and the reverse electrodialysis apparatus 200 using the linear electrode. While the maximum output of the conventional reverse electrodialysis apparatus is 110 mW, the maximum output of the reverse electrodialysis apparatus 200 using the linear electrode is about 25 mW. The reason why the output of RED using linear electrode is lowered is largely for two reasons. First, the use of linear electrodes with small areas increases the amount of hydrogen gas generated at the cathodes with increased interfacial resistance, which converts part of the output reduction into hydrogen generation.
  • the increase in resistance as the distance between the cell stack and the linear electrode increases, and the increase in interfacial resistance as the area decreases increases the internal resistance of the reverse electrodialysis system itself.
  • Hydrogen gas was collected by running the reverse electrodialysis apparatus for an hour, and the energy yield of the reverse electrodialysis apparatus with the linear electrode was calculated.
  • the flow rate of the brine and fresh water was supplied to 50 mL / min per channel, subjected to a resistance of 82 ohms, 100 mM NaCl aqueous solution was used as the electrode solution.
  • the amount of hydrogen collected as a result of the operation was 30 mL and the amount of oxygen collected was 17 mL.
  • the generated power of the reverse electrodialysis apparatus was 24 mWh and 19 mWh.
  • the total energy production was 43 mWh, which was lower than that of the conventional 110 mWh of the reverse electrodialysis apparatus using the redox species. Therefore, it can be confirmed that a part of the RED power reduction has been converted to hydrogen production, and it can be confirmed that the increase in internal resistance by using the linear electrode reduced the total energy production.
  • the distance between the linear electrode and the cell stack should be as short as possible, and the electrochemically active area in contact with the solution of the linear electrode should be as wide as possible.
  • 8 is a graph showing the relationship. That is, when the Pt linear electrode constituting the cathode and the anode is almost in contact with the Ti mesh which is the end plate (about 5 mm or less) ⁇ The distance between the Pt linear electrode constituting the cathode and the anode and the Ti mesh is about 1 If the distance is more than cm ⁇ The distance between the Pt linear electrode constituting the cathode and the anode and the Ti mesh is more than 4 cm apart in order to reduce the energy generation in order. In other words, it can be seen that the power increases as the electrode tip approaches the cell stack.
  • FIG. 9 is a block diagram of an energy-independent hydrogen-electric composite charging station according to an embodiment of the present invention.
  • the energy-independent hydrogen-electric composite charging station includes a hydrogen charger 170 and an electric charger 180 supplied with hydrogen and electricity, respectively, which are produced in a reverse electrodialysis apparatus 100 or 200 that simultaneously produces hydrogen and electricity.
  • the reverse electrodialysis apparatus 100 or 200 is a large capacity apparatus in which the number of unit cells constituting the cell stack is at least 50 or more, preferably 1000 cells or more.
  • the film voltage formed in the cell stack may be 7.5V or more and 100V or more, and sufficient water decomposition reaction may occur.
  • the specific configuration of the reverse electrodialysis apparatus 100 or 200 is the apparatus described with reference to FIGS. 1 to 7.
  • Hydrogen produced in the reverse electrodialysis apparatus 100 or 200 is supplied to the hydrogen charger 170.
  • the hydrogen charged in the hydrogen charger 170 may then be used to charge the fuel cell vehicle 175.
  • Hydrogen produced by the reverse electrodialysis apparatus 100 or 200 before being supplied to the hydrogen charger 170 may be supplied to the hydrogen charger 170 after passing through the hydrogen separation device 155.
  • the hydrogen separation device 155 When pure water is used as the electrode solution used in the reverse electrodialysis apparatus 100 or 200, the hydrogen separation device 155 is not required, and when using an aqueous solution containing salt, the hydrogen separation device 155 may be required. .
  • the electricity produced in the reverse electrodialysis apparatus 100 or 200 may be stored in the electric charger 180 and then used to charge the electric vehicle 185.
  • the electricity produced by the reverse electrodialysis apparatus 100 or 200 may convert power according to the type of the electric charger 180 through the power converter. Typically, fast chargers are powered by DC, while slow and home chargers are powered by AC.
  • the reverse electrodialysis apparatus 100 or 200 may be always supplied to the electric charging device because it is possible to produce power at any time, and the surplus generation amount may be supplied to the electric power grid 187.
  • the fresh water 103 and the brine 105 supplied to the reverse electrodialysis apparatus 100 or 200 may use the fresh water 103 and the brine 105 treated by the intake and pretreatment unit 101, and the intake and pretreatment.
  • the contamination monitoring unit (not shown) of the reverse electrodialysis apparatus 100 or 200, the membrane regeneration unit for chemically or physically cleaning the cell stack of the reverse electrodialysis apparatus 100 or 200 Not shown, the description of the applicant's prior application KR 10-2015-0161014.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

A hybrid power generation system comprises a reverse electrodialysis device and a fuel cell. When electricity is generated in the reverse electrodialysis device and hydrogen is simultaneously generated by a water decomposition reaction, the generated hydrogen is supplied to the fuel cell such that electricity is produced by an electrochemical reaction of hydrogen and oxygen in the fuel cell.

Description

효율적인 수소-전기 생산이 가능한 역전기 투석 장치를 이용한 하이브리드 발전 시스템 및 에너지 자립형 수소-전기 복합 충전 스테이션Hybrid power generation system and energy-independent hydrogen-electric hybrid charging station using reverse electrodialysis system for efficient hydrogen-electric production
본 발명은 하이브리드 발전 시스템에 관한 것으로서, 보다 상세하게는 역전기투석 장치와 연료전지를 이용하여 전기를 생산하는 하이브리드 발전 시스템 및 에너지 자립형 수소-전기 복합 충전 스테이션에 관한 것이다.The present invention relates to a hybrid power generation system, and more particularly, to a hybrid power generation system for producing electricity using a reverse electrodialysis apparatus and a fuel cell, and an energy-independent hydrogen-electric hybrid charging station.
본 발명은 아래의 두 연구 과제에 의해 지원받아 창출된 것이다. The present invention was created by supporting the following two research projects.
첫 번째 연구과제는 해양염분차발전을 위한 15% 이상의 발전효율을 가진 고효율 RED stack 용 핵심개발기술 개발 (2104.06.01~2017.05.03)과제이다. The first research project is the core development technology development (2104.06.01 ~ 2017.05.03) for high efficiency RED stack with power generation efficiency of more than 15% for marine salt generation.
두 번째 연구과제는 산업통상자원부(Ministry of Trade, Industry & Energy, Republic of Korea)의 재원으로 KEPEP(Korea Institute of Energy Technology Evaluation and Planning)의 신재생 에너지 코어 기술 프로그램(New & Renewable Energy Core Technology Program) 과제이다. The second research project is funded by the Ministry of Trade, Industry & Energy, Republic of Korea, and the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KEPEP). ) It is a task.
역전기투석(reverse electrodialysis)은 해수와 담수의 염도 차이를 이용하여 전기를 생산하는 기술로서, 전기를 공급하여 전해질 농도 차이를 발생시키는 일반적인 전기투석 공정과 반대의 공정으로 에너지를 얻는다. 역전기투석 장치는 전극 용액으로 산화 환원쌍(redox couple) 물질을 사용하여 이온 교환막들의 화학 퍼텐셜 차이를 전기 퍼텐셜 차이로 변환시킨다. Reverse electrodialysis is a technique for producing electricity by using salinity differences between seawater and fresh water. Energy is obtained by a process opposite to a general electrodialysis process in which electricity is generated to generate electrolyte concentration differences. The reverse electrodialysis apparatus converts the chemical potential difference of the ion exchange membranes into the electrical potential difference using a redox couple material as the electrode solution.
역전기투석 장치는 친환경적이고, 다른 신재생 에너지 기술과 달리 기후와 시간에 제약을 받지 않는다. 현재 역전기투석 장치와 관련해서는 전극 측에서 발생하는 부산물인 가스상 물질의 발생을 억제하는 방향으로 기술 개발이 이루어지고 있다.Reverse electrodialysis devices are environmentally friendly and, unlike other renewable energy technologies, are not subject to climate and time constraints. In relation to the reverse electrodialysis apparatus, technology development is being made in the direction of suppressing the generation of gaseous substances which are by-products generated on the electrode side.
종래의 역전기투석 장치에서는 산화환원반응을 일으키는 데 필요한 최소한의 전압, 즉 과전압(overpotential)이 적은 산화환원종(Redox Couple)인 페리시안화물/페로시안화물 또는 Fe2 +/3+ 를 전극용액으로 가장 많이 사용한다. 하지만 이들 산화환원종을 사용할 경우 염수 또는 담수와 비교했을 때 상대적으로 높은 독성을 가지고 있어서 역전기투석 장치로부터 나오는 전극용액 물질을 바로 배출할 수 없다. In the conventional reverse electrodialysis apparatus, the electrode solution is prepared by using a minimum voltage necessary for causing a redox reaction, that is, a ferricyanide / ferrocyanide or a Fe 2 + / 3 +, which is a redox couple having a low overpotential. Most often used. However, these redox species have a relatively high toxicity compared to brine or fresh water and cannot immediately discharge the electrode solution material from the reverse electrodialysis apparatus.
또한 이들 산화환원종은 화학적 안정성이 낮아서 역전기투석 장치의 장기 성능을 저하시킨다. 페리시안화물/페로시안화물을 산화환원종으로 사용할 경우에는 물 산화반응이 애노드에서 일어나면서 전극계면의 용액 pH가 낮아져 페리시안화물/페로시안화물이 깨져 자유 페리 이온(free ferric, Fe3 +) 또는 페로스 이온(free ferrous ion, Fe2 +) 이 만들어진다. 이러한 반응 생성물은 깨지지 않은 페리시안화물 또는 페로시안화물과 반응하여 파란 침전물을 만든다. 이 침전물이 전극 표면에 달라붙어 전극의 유효면적을 감소시킨다. 그 결과 전기화학 반응에 참여하는 산화-환원종의 농도가 감소하고, 장기적으로 역전기투석 장치를 운전했을 때 전력이 감소한다. Fe2 +/3+ 을 산화환원종으로 사용할 경우에는 물 환원 반응에 의해서 전극계면의 용액 pH가 높아져 페릭옥시하이드록사이드(ferric oxyhydroxide) 침전물이 생긴다.In addition, these redox species have low chemical stability, degrading the long-term performance of the reverse electrodialysis apparatus. Perry When using a cyanide / ferrocyanide as reducing species oxidation, the oxidation reaction while up in the anode becomes lower the solution pH in the electrode interface broken and Perry cyanide / ferrocyanide free Perry ion (free ferric, Fe 3 +) or Faroe ion (free ferrous ion, Fe + 2) are made. This reaction product reacts with the unbreakable ferricyanide or ferrocyanide to produce a blue precipitate. This deposit sticks to the electrode surface to reduce the effective area of the electrode. As a result, the concentration of redox species participating in the electrochemical reaction is reduced, and the power is reduced when the reverse electrodialysis apparatus is operated in the long term. In the case of using Fe 2 + / 3 + as a redox species, the solution pH of the electrode interface is increased by the water reduction reaction to form a ferric oxyhydroxide precipitate.
한편, 연료전지는 수소와 산소의 전기화학 반응을 이용하여 전기를 생산하는 발전 장치이다. 공지의 연료전지 스택은 수소 발생장치에서 생산된 수소를 공급받거나, 개질기와 버너 및 일산화탄소 저감기를 포함하는 연료 처리장치에서 생산된 개질 가스(수소 리치가스)를 공급받는다. 수소는 탄화수소계 연료를 분해하거나, 물을 전기분해하는 방식으로 얻을 수 있다. On the other hand, a fuel cell is a power generation device that generates electricity by using an electrochemical reaction of hydrogen and oxygen. Known fuel cell stacks are supplied with hydrogen produced in a hydrogen generator, or with reformed gas (hydrogen rich gas) produced in a fuel processor comprising a reformer, a burner and a carbon monoxide reducer. Hydrogen can be obtained by decomposing hydrocarbon fuels or by electrolyzing water.
연료전지 스택으로 수소를 공급하는 경우, 수소를 생산하고 저장하는 시설이 필요한데 수소를 생산하기 위해서는 많은 에너지가 소비되며, 수소의 폭발 위험성 때문에 수소 저장시설 이용에 어려움이 있다. 연료전지 스택으로 개질 가스를 공급하는 경우, 수소를 공급하는 경우보다 발전 효율이 낮으며, 전기 생산비용이 높은 한계가 있다.When supplying hydrogen to a fuel cell stack, a facility for producing and storing hydrogen is required, but a large amount of energy is consumed to produce hydrogen, and there is a difficulty in using a hydrogen storage facility because of the risk of hydrogen explosion. When the reformed gas is supplied to the fuel cell stack, power generation efficiency is lower than when hydrogen is supplied, and electricity production cost is high.
본 개시는 수소를 실시간 및 저비용으로 생산하면서 역전기투석 장치와 연료 전지 모두에서 전기를 생산할 수 있는 하이브리드 발전 시스템을 제공하고자 한다. The present disclosure seeks to provide a hybrid power generation system capable of producing electricity in both reverse electrodialysis equipment and fuel cells while producing hydrogen in real time and at low cost.
본 개시는 에너지 자립형 수소-전기 복합 충전 스테이션을 제공하고자 한다.The present disclosure seeks to provide an energy independent hydrogen-electric composite charging station.
실시예들에 따른 하이브리드 발전 시스템은 고농도 전해질 용액 유로와 저농도 전해질 용액 유로를 번갈아 형성하는 양이온 교환막과 음이온 교환막으로 이루어지고 물 분해 반응에 필요한 막 전압을 제공하는 셀 스택, 상기 셀 스택의 일측에 배치된 제1 물 유로와 애노드를 포함하는 애노드 챔버, 및 상기 셀 스택의 타측에 배치된 제2 물 유로와 캐소드를 포함하는 캐소드 챔버를 포함하고, 상기 애노드 챔버 내에서 물의 산화 반응에 의해 산소 및 전자가 발생하고, 상기 캐소드 챔버 내에서 물의 환원 반응에 의해 수소가 발생하고, 상기 애노드 챔버에서 발생한 상기 전자가 부하를 거쳐 상기 캐소드로 공급되면서 전력을 생산하는 역전기투석 장치, 및 상기 역전기투석 장치로부터 상기 수소를 공급받고, 산소 및 상기 수소의 전기화학 반응에 의해 전기 및 반응 부산물인 물을 생산하는 연료전지를 포함한다. Hybrid power generation system according to the embodiment is a cell stack consisting of a cation exchange membrane and an anion exchange membrane to alternately form a high concentration electrolyte solution flow path and a low concentration electrolyte solution flow path, and provides a membrane voltage for water decomposition reaction, disposed on one side of the cell stack An anode chamber including a first water flow path and an anode, and a cathode chamber including a second water flow path and a cathode disposed on the other side of the cell stack, wherein oxygen and electrons are formed by an oxidation reaction of water in the anode chamber. Is generated, hydrogen is generated by a reduction reaction of water in the cathode chamber, and the electron generated in the anode chamber is supplied to the cathode through a load to produce electric power, and the reverse electrodialysis apparatus. The hydrogen from the oxygen and electrochemical reaction of oxygen and the hydrogen And a fuel cell to produce a group, and a reaction by-product water.
실시예들에 따른 하이브리드 발전 시스템은 고농도 전해질 용액 유로와 저농도 전해질 용액 유로를 번갈아 형성하는 양이온 교환막과 음이온 교환막으로 이루어지고 물 분해 반응에 필요한 막 전압을 제공하는 셀 스택, 상기 셀 스택의 양단에 설치되고 각각 수용액이 담기는 캐소드 챔버 및 애노드 챔버, 상기 캐소드 챔버 내에 설치된 적어도 하나 이상의 선형 캐소드, 및 상기 애노드 챔버 내에 설치된 애노드를 포함하고, 상기 애노드 챔버 내에서 물의 산화 반응에 의해 산소와 전자가 발생하고, 상기 캐소드 챔버내에서 물의 환원 반응에 의해 수소가 발생하고, 상기 애노드 챔버에서 발생한 상기 전자가 부하를 거쳐 상기 캐소드로 공급되면서 전력을 생산하는 역전기 투석 장치; 및 상기 역전기투석 장치로부터 상기 수소를 공급받고, 산소 및 상기 수소의 전기화학 반응에 의해 전기 및 반응 부산물인 물을 생산하는 연료전지를 포함한다. Hybrid power generation system according to the embodiment is a cell stack consisting of a cation exchange membrane and an anion exchange membrane alternately formed between a high concentration electrolyte solution flow path and a low concentration electrolyte solution flow path, providing a membrane voltage required for water decomposition reaction, installed on both ends of the cell stack A cathode chamber and an anode chamber each containing an aqueous solution, at least one linear cathode installed in the cathode chamber, and an anode installed in the anode chamber, wherein oxygen and electrons are generated by an oxidation reaction of water in the anode chamber; A reverse electrodialysis apparatus that generates hydrogen by a reduction reaction of water in the cathode chamber, and generates power while the electrons generated in the anode chamber are supplied to the cathode through a load; And a fuel cell supplied with the hydrogen from the reverse electrodialysis apparatus and producing water as electricity and reaction by-products by an electrochemical reaction of oxygen and the hydrogen.
실시예들에 따른 에너지 자립형 수소-전기 복합 충전 스테이션은 고농도 전해질 용액 및 저농도 전해질 용액의 염분차를 이용하여 물 분해 반응에 의해 수소를 발생시킴과 동시에 전기를 생성하는 역전기투석 장치, 상기 역전기투석 장치에서 생성된 수소가 공급되는 수소충전기, 및 상기 역전기투석 장치에서 생성된 전기를 공급받는 전기충전기를 포함한다. An energy self-supporting hydrogen-electric composite charging station according to the embodiments of the present invention uses a salt difference between a high concentration electrolyte solution and a low concentration electrolyte solution to generate hydrogen by water decomposition reaction, and at the same time, to generate electricity and reverse electricity. And a hydrogen charger supplied with hydrogen generated in the dialysis apparatus, and an electric charger supplied with electricity generated in the reverse electrodialysis apparatus.
본 개시에 따른 하이브리드 발전 시스템은 역전기투석 장치와 연료전지를 결합시켜 역전기투석 장치의 낮은 에너지 밀도를 보상하며, 기존 연료전지의 문제점인 고에너지 소비의 수소 생산과 안전성 문제가 제기되는 저장 시설의 문제를 해소할 수 있다. 또한, 연료전지에서 필요로 하는 수소를 실시간으로 공급할 수 있으므로 연료전지의 효율을 향상시킬 수 있다.The hybrid power generation system according to the present disclosure combines a reverse electrodialysis apparatus and a fuel cell to compensate for the low energy density of the reverse electrodialysis apparatus, and a storage facility that raises hydrogen production and safety issues of high energy consumption, which is a problem of a conventional fuel cell. Can solve the problem. In addition, since hydrogen required by the fuel cell can be supplied in real time, efficiency of the fuel cell can be improved.
특히, 본 개시에 따른 역전기투석 장치는 충분한 양의 수소 생산이 가능하므로 연료 전지의 수소 공급원으로 사용될 수 있다. 따라서 기존 연료 전지의 문제점인 고에너지 소비의 수소 생산과 안전성 문제가 제기되는 저장 시설의 문제를 해소할 수 있다. 또한, 연료전지에서 필요로 하는 수소를 실시간으로 공급할 수 있으므로 연료전지의 효율을 향상시킬 수 있다. In particular, the reverse electrodialysis apparatus according to the present disclosure can be used as a hydrogen source of a fuel cell since a sufficient amount of hydrogen can be produced. Therefore, it is possible to solve the problem of a storage facility that raises the hydrogen production and safety issues of high energy consumption, which is a problem of the conventional fuel cell. In addition, since hydrogen required by the fuel cell can be supplied in real time, efficiency of the fuel cell can be improved.
또한, 본 개시에 따른 수소-전기 생산이 가능한 역전기투석 장치는 화학적 독성이있는 산화환원종을 사용하지 않고 물 산화환원 반응만으로 수소-전기를 생산하므로 친환경 에너지 생산 장치를 구현할 수 있다. In addition, the reverse electrodialysis apparatus capable of producing hydrogen-electricity according to the present disclosure may implement an eco-friendly energy production apparatus because hydrogen-electricity is produced only by water redox reaction without using redox species having chemical toxicity.
본 개시에 따른 역전기투석 장치는 전기생산과 동시에 수소생산이 가능하므로 에너지 자립형 수소-전기 복합 충전 스테이션을 구현할 수 있다. The reverse electrodialysis apparatus according to the present disclosure can produce hydrogen at the same time as the electricity production, it is possible to implement an energy-independent hydrogen-electric complex charging station.
도 1은 본 발명의 일 실시예에 따른 하이브리드 발전 시스템의 구성도이다.1 is a block diagram of a hybrid power generation system according to an embodiment of the present invention.
도 2는 도 1에 도시한 하이브리드 발전 시스템 중 연료전지 스택을 구성하는 연료전지 셀의 개략도이다.FIG. 2 is a schematic diagram of a fuel cell constituting a fuel cell stack of the hybrid power generation system shown in FIG. 1.
도 3은 본 발명의 다른 실시예에 따른 하이브리드 발전 시스템의 구성도이다. 3 is a block diagram of a hybrid power generation system according to another embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 하이브리드 발전 시스템을 구성하는 역전기투석 장치의 어셈블리의 개략도이다. 4 is a schematic diagram of an assembly of a reverse electrodialysis apparatus constituting a hybrid power generation system according to an embodiment of the present invention.
도 5a 및 도 5b는 본 발명의 다른 실시예에 따른 하이브리드 발전 시스템을 구성하는 역전기투석 장치의 단면도와 상면도이다. 5A and 5B are cross-sectional views and a top view of a reverse electrodialysis apparatus constituting a hybrid power generation system according to another embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따른 하이브리드 발전 시스템을 구성하는 역전기투석 장치의 운전 방법에 대한 개략도이다. 6 is a schematic diagram of a method of operating a reverse electrodialysis apparatus constituting a hybrid power generation system according to another embodiment of the present invention.
도 7은 종래의 역전기투석장치와 선형 전극을 이용한 역전기투석장치의 전류에 따른 전력을 도시한 그래프이다. Figure 7 is a graph showing the power according to the current of the conventional reverse electrodialysis apparatus and the reverse electrodialysis apparatus using a linear electrode.
도 8은 전극 끝과 셀 스택 간의 거리에 따른 생성되는 에너지의 관계를 나타내는 그래프이다. 8 is a graph showing a relationship of energy generated according to a distance between an electrode tip and a cell stack.
도 9는 본 발명의 일 실시예에 따른 에너지 자립형 수소-전기 복합 충전 스테이션의 구성도이다. 9 is a block diagram of an energy-independent hydrogen-electric composite charging station according to an embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 도면에 나타난 각 구성의 크기 및 두께 등은 설명의 편의를 위해 임의로 나타낸 것이므로, 본 발명은 도시한 바로 한정되지 않는다.When a part of the specification is said to "include" a certain component it means that it can further include other components unless otherwise stated. The size and thickness of each of the components shown in the drawings are arbitrarily shown for convenience of description, and thus, the present invention is not limited to the drawings.
도 1은 본 발명의 일 실시예에 따른 하이브리드 발전 시스템(1)의 구성도이다.1 is a configuration diagram of a hybrid power generation system 1 according to an embodiment of the present invention.
도 1을 참고하면, 하이브리드 발전 시스템(1)은 역전기투석 장치(100)와 연료전지(50)를 포함한다. 하이브리드 발전 시스템(1)은 역전기투석 장치(100)에서 에너지를 생성할 때 발생하는 수소를 연료전지(50)에 공급하여 연료전지(50)에서도 에너지를 생성하는 발전 시스템이다.Referring to FIG. 1, the hybrid power generation system 1 includes a reverse electrodialysis apparatus 100 and a fuel cell 50. The hybrid power generation system 1 is a power generation system that generates energy in the fuel cell 50 by supplying hydrogen generated when generating energy in the reverse electrodialysis apparatus 100 to the fuel cell 50.
역전기투석 장치(100)는 셀 스택(10)과, 제1 물 유로(WCH1)를 사이에 두고 셀 스택(10)의 일측에 위치하는 애노드(42)와, 제2 물 유로(WCH2)를 사이에 두고 셀 스택(10)의 타측에 위치하는 캐소드(32)를 포함한다. The reverse electrodialysis apparatus 100 includes a cell stack 10, an anode 42 positioned at one side of the cell stack 10 with the first water channel WCH1 interposed therebetween, and a second water channel WCH2. The cathode 32 is positioned on the other side of the cell stack 10 in between.
셀 스택(10)은 고농도 전해질 용액(HC) 예컨대 염수가 공급되는 유로(CH1)와 저농도 전해질 용액(LC) 예컨대 담수가 공급되는 유로(CH2)를 번갈아 형성하는 양이온 교환막(11)과 음이온 교환막(12)으로 이루어진다. 이웃한 두 개의 단위 셀(unit cell)은 양이온 교환막(11) 또는 음이온 교환막(12)을 공유한다. The cell stack 10 includes a cation exchange membrane 11 and an anion exchange membrane 11 which alternately form a high concentration electrolyte solution HC such as a channel for supplying brine and a low concentration electrolyte solution LC such as a channel for supplying fresh water. 12). Two adjacent unit cells share a cation exchange membrane 11 or an anion exchange membrane 12.
고농도 전해질 용액은 염 농도가 35,000 mg/L 이상을 가지는 용액이고, 저농도 전해질 용액은 염 농도가 0~1,000 mg/L 를 가지는 용액일 수 있다. 고농도 전해질 용액으로는 해수(seawater)가 저농도 전해질 용액으로는 담수(fresh water)가 사용될 수 있으나 이에 제한되는 것은 아니며 상대적인 이온 농도차로 인하여 양이온과 음이온의 교환이 일어날 수 있도록 하는 물질의 조합이라면 어느 것이라도 적용가능하다. 그리고 셀 스택(10)에 유입되기 전에 다양한 전처리 시설이 설치 가능하다면 고농도 전해질 용액(염수)으로는 산업 폐염수, 해수, 인공염수 등이 사용될 수 있다. 저농도 전해질 용액(담수)으로는 산업냉각수, 하수방류수, 하천수, 수도물 등이 사용될 수 있다. 이하에서는 고농도 전해질 용액(HC)으로 염수를 저농도 전해질 용액(LC)으로 담수를 예로 들어 설명한다. The high concentration electrolyte solution may be a solution having a salt concentration of 35,000 mg / L or more, and the low concentration electrolyte solution may be a solution having a salt concentration of 0 to 1,000 mg / L. Seawater may be used as the high concentration electrolyte solution and fresh water may be used as the low concentration electrolyte solution. However, the present invention is not limited thereto, and any combination of materials that allow exchange of cations and anions due to a difference in relative concentrations of ions may occur. Is also applicable. And if a variety of pretreatment facilities can be installed before entering the cell stack 10, industrial waste brine, seawater, artificial brine, etc. may be used as a high concentration electrolyte solution (saline). As the low concentration electrolyte solution (fresh water), industrial cooling water, sewage discharged water, river water, tap water, and the like may be used. Hereinafter, the salt water is used as the high concentration electrolyte solution HC and the fresh water is described as the low concentration electrolyte solution LC.
도 1에서는 고농도 전해질 용액(HC)와 저농도 전해질 용액(LC)의 흐름 방향이 서로 반대 방향인 경우를 예시하고 있다. 그러나 고농도 전해질 용액(HC)와 저농도 전해질 용액(LC)의 흐름 방향은 동일 방향일 수도 있다. In FIG. 1, the flow directions of the high concentration electrolyte solution HC and the low concentration electrolyte solution LC are opposite to each other. However, the flow direction of the high concentration electrolyte solution HC and the low concentration electrolyte solution LC may be in the same direction.
이온은 고농도 전해질 용액(HC)에서 저농도 전해질 용액(LC)으로 이동하는데, 유로의 길이가 길어서 이동할 수 있는 시간이 길어지면 보다 많은 양의 이온이 이동하여 입구 측보다 출구 측에서 두 용액의 농도 차이가 줄어들게 된다. 따라서, 유로의 길이가 길 때에는 고농도 전해질 용액(HC)과 저농도 전해질 용액(LC)의 흐름 방향을 서로 반대로 하는 것이 위치에 따른 농도 차이가 적어져서 성능 향상에 유리할 수 있다. 즉, 캐소드(32)와 애노드(42) 전체에서 포텐셜이 일정하게 유지되어 수소 발생에 더 유리할 수 있다.The ions move from the high concentration electrolyte solution HC to the low concentration electrolyte solution LC. As the length of the flow path becomes longer, the larger amount of ions moves and the difference in concentration between the two solutions at the outlet side than at the inlet side. Will be reduced. Therefore, when the length of the flow path is long, it is advantageous to reverse the flow directions of the high concentration electrolyte solution HC and the low concentration electrolyte solution LC to each other so that the difference in concentration depending on the location is small, which may be advantageous in improving performance. That is, the potential is kept constant throughout the cathode 32 and the anode 42, which may be more advantageous for hydrogen generation.
고농도 전해질 용액(HC)은 염 농도가 35,000 mg/L 이상인 용액일 수있고, 저농도 전해질 용액(LC)은 0~1,000 mg/L의 염 농도를 가지는 용액일 수 있다. 고농도 전해질 용액(HC)으로 해수(seawater)가 저농도 전해질 용액(LC)으로 강물이 사용될 수 있으나 이에 제한되는 것은 아니며 상대적인 이온 농도차로 인하여 양이온과 음이온의 교환이 일어날 수 있도록 하는 물질의 조합이라면 어느 것이라도 적용 가능하다.The high concentration electrolyte solution HC may be a solution having a salt concentration of 35,000 mg / L or more, and the low concentration electrolyte solution LC may be a solution having a salt concentration of 0 to 1,000 mg / L. River water may be used as high concentration electrolyte solution (HC) and seawater (low concentration) electrolyte solution (LC), but is not limited thereto, and any combination of materials may allow the exchange of cations and anions due to the difference in relative ion concentrations. Is also applicable.
셀 스택(10)으로 해수와 강물이 공급되는 경우를 예로 들면, 해수와 강물의 이온 농도차로 인하여 해수에 포함된 나트륨 양이온(Na+)이 양이온 교환막(11)을 통과하고, 염소 음이온(Cl-)이 음이온 교환막(12)을 통과한다. 고농도 전해질 유로(CH1)에서 배출되는 염분 농도가 낮아진 기수(brackish water)와, 저농도 전해질 유로(CH2)에서 배출되는 염분 농도가 높아진 기수는 셀 스택(10)의 외부로 배출된다. For example, when the seawater and the river water are supplied to the cell stack 10, sodium cations (Na + ) included in the seawater pass through the cation exchange membrane 11 due to the ionic concentration difference between the seawater and the river water, and the chlorine anion (Cl −). ) Passes through the anion exchange membrane (12). The brackish water having a low salt concentration discharged from the high concentration electrolyte channel CH1 and the brackish water having a high salt concentration discharged from the low concentration electrolyte channel CH2 are discharged to the outside of the cell stack 10.
전술한 과정에서 각 이온 교환막(11, 12) 사이에 전기화학 포텐셜이 생성된다. 그리고 이를 이용하여 캐소드(32)에서 환원 반응이 일어나고 애노드(42)에서 산화 반응이 일어나서, 애노드(42)와 캐소드(32) 사이에 전자의 흐름이 생성되어 에너지, 즉 전기가 발생한다.In the above-described process, electrochemical potential is generated between the ion exchange membranes 11 and 12. In addition, a reduction reaction occurs at the cathode 32 and an oxidation reaction occurs at the anode 42, whereby a flow of electrons is generated between the anode 42 and the cathode 32 to generate energy, that is, electricity.
셀 스택(10)는 복수의 단위 셀(unit cell), 예를 들어 10개 이상의 단위 셀을 포함할 수 있다. 단위 셀 수가 많아질수록 셀 전압이 높아지므로, 전극 용액으로 종래의 산화 환원쌍 물질(Redox Couple) 대신 물을 사용할 수 있다. 즉, 본 발명의 일 실시예에 따른 역전기투석 장치(100)에서는 셀 스택(10)의 전압이 물 전기분해 전압인 대략 1.23V 이상이 되어 애노드(42)와 캐소드(32)에서 물의 전기분해 반응이 일어날 수 있다. 또한 캐소드(32)와 접하는 제2 물 유로(WCH2)를 포함하는 캐소드 챔버(30)와 애노드(42)와 접하는 제1 물 유로(WCH1)를 포함하는 애노드 챔버(40)의 pH를 각각의 반응에 유리한 pH로 조절하여 사용할 수 있다. 예를 들어 환원 반응이 일어나는 제2 물 유로(WCH2)의 용액은 산성 용액으로 산화 반응이 일어나는 제1 물 유로(WCH1)의 용액은 염기성 용액으로 조절할 수 있다. 이 때의 이론적인 물 분해 전압은 0.4V 정도가 될 수 있다. 따라서 셀 스택(10)에 걸리는 전압이 0.4V 이상이면 물 전기 분해반응이 일어날 수 있다. 결론적으로, 캐소드 챔버(30)와 애노드 챔버(40)의 pH에 따라 이론적인 물의 전기분해 전압은 달라지며 이 전압보다 높은 전압을 갖는 셀 전압이 생성되면 물 전기분해 반응을 일으켜서 수소 기체를 생산할 수 있다. The cell stack 10 may include a plurality of unit cells, for example, ten or more unit cells. Since the cell voltage increases as the number of unit cells increases, water may be used instead of a conventional redox couple as an electrode solution. That is, in the reverse electrodialysis apparatus 100 according to an embodiment of the present invention, the voltage of the cell stack 10 is about 1.23V or more, which is water electrolysis voltage, so that electrolysis of water at the anode 42 and the cathode 32 is performed. The reaction may occur. In addition, each reaction of the pH of the cathode chamber 30 including the second water flow path (WCH2) in contact with the cathode 32 and the anode chamber 40 including the first water flow path (WCH1) in contact with the anode 42 It can be used by adjusting to an advantageous pH. For example, the solution of the second water channel WCH2 in which the reduction reaction occurs may be adjusted to an acidic solution, and the solution of the first water channel WCH1 in which the oxidation reaction occurs may be adjusted to the basic solution. The theoretical water decomposition voltage at this time may be about 0.4V. Therefore, if the voltage applied to the cell stack 10 is 0.4V or more, water electrolysis may occur. In conclusion, the theoretical electrolysis voltage of water varies according to the pH of the cathode chamber 30 and the anode chamber 40. When a cell voltage having a voltage higher than this voltage is generated, water electrolysis reaction may occur to produce hydrogen gas. have.
이와 같이 셀 스택(10)의 셀 수를 10셀 이상, 나아가 몇 백셀 이상으로 하면 역전기투석 장치(100)의 전체 저항 성분 중에 전극 저항의 비율이 현저히 작아지기 때문에 순수 물 또는 담수를 전극 용액으로 사용하더라도 전극 용액 저항에 의한 전력 감소량 및 수소 생산량 감소량은 무시할 수 있을 정도의 양이 된다. 즉, 순수 물로도 수소를 생산할 경우 기존의 물의 전기분해(water electrolysis)에 의한 수소 생산에 비해 다양한 장점이 있다. 기존의 물 전기분해에서는 용액 저항의 영향이 크기 때문에 순수 물을 전해질로 사용할 수 없어서 순수 물을 전해질로 사용하지 않는다. 반면 본 발명의 역전기투석 장치(100)에서는 기존의 산화환원종을 사용하지 않고 순수 물만을 공급해서 수소를 생산하기 때문에 더욱 더 순수한 수소 기체를 생산할 수 있다. In this way, if the number of cells in the cell stack 10 is 10 cells or more, and a few hundred cells or more, the ratio of electrode resistance in the total resistance component of the reverse electrodialysis apparatus 100 is significantly reduced, so that pure water or fresh water is used as the electrode solution. Even when used, the amount of reduction in power and the amount of hydrogen produced by the electrode solution resistance is negligible. That is, when hydrogen is produced even with pure water, there are various advantages compared to the production of hydrogen by water electrolysis. In conventional water electrolysis, pure water cannot be used as an electrolyte because the effect of solution resistance is large, so pure water is not used as an electrolyte. On the other hand, in the reverse electrodialysis apparatus 100 of the present invention, since pure hydrogen is produced by supplying pure water without using the existing redox species, it is possible to produce even more pure hydrogen gas.
물론 용액 저항을 낮추기 위해서는 필요에 따라 염이 용해된 수용액을 사용할 수 있다. 예를 들면, NaCl 또는 Na2SO4 2.92g/L ~ 5.8g/L로 용해된 수용액을 사용할 수도 있다. 염이 용해되어 있을 경우 전극 용액의 저항이 감소하는 효과를 볼 수 있으나, 앞에서도 설명한 바와 같이 셀 수가 많아지게 되면 전극 용액의 저항의 영향은 미미하므로 순수 물 또는 담수를 전극용액으로 사용할 수 있다. Of course, in order to lower the solution resistance, it is possible to use an aqueous solution in which the salt is dissolved. For example, NaCl or Na 2 SO 4 end It is also possible to use an aqueous solution dissolved at 2.92 g / L to 5.8 g / L. When the salt is dissolved, the resistance of the electrode solution can be reduced, but as described above, when the number of cells increases, the effect of the resistance of the electrode solution is insignificant, so pure water or fresh water can be used as the electrode solution.
즉, 화학식(1)과 같이 애노드 챔버(40)에서 물의 산화 반응에 의해 산소 및 전자가 발생할 수 있다. 애노드 챔버(40)에 염화나트륨이 녹아있는 경우에는 염화 이온이 산화되어 화학식(2)와 같이 염소기체를 발생할 수 있다. That is, oxygen and electrons may be generated by the oxidation reaction of water in the anode chamber 40 as shown in Formula (1). When sodium chloride is dissolved in the anode chamber 40, chloride ions may be oxidized to generate chlorine gas as shown in Formula (2).
Figure PCTKR2017005702-appb-C000001
Figure PCTKR2017005702-appb-C000001
Figure PCTKR2017005702-appb-C000002
Figure PCTKR2017005702-appb-C000002
그리고, 화학식(3)와 같이 캐소드 챔버(30)에서 물의 환원 반응에 의해 수소 및 수산화이온이 발생할 수 있다. In addition, hydrogen and hydroxide ions may be generated by the reduction reaction of water in the cathode chamber 30 as in Chemical Formula (3).
Figure PCTKR2017005702-appb-C000003
Figure PCTKR2017005702-appb-C000003
제1 물 유로(WCH1)와 제2 물 유로(WCH2)는 순환형 또는 비순환형으로 구성될 수 있다. 순환형으로 구성될 경우에는 제1 물 유로(WCH1)는 연결관(63)을 통해 제2 물 유로(WCH2)와 연결되고, 애노드(42)에서 생성된 산소 및 전자가 물과 함께 제2 물 유로(WCH2)로 전달될 수 있다. 이 경우 애노드(42)에서 발생한 수소 이온을 캐소드(32)에서 이용할 수 있는 장점이 있으나, 산소는 캐소드(32)의 수소 생성을 억제하므로 연결관(33)에 보조 기액 분리장치(64)를 설치하여 산소 기체를 제거할 수 있다.The first water passage WCH1 and the second water passage WCH2 may be configured in a cyclic or acyclic manner. In the case of the circulation type, the first water channel WCH1 is connected to the second water channel WCH2 through the connecting tube 63, and the oxygen and electrons generated at the anode 42 together with the second water. It may be transferred to the flow path WCH2. In this case, there is an advantage that the hydrogen ions generated from the anode 42 can be used in the cathode 32, but since the oxygen inhibits the hydrogen generation of the cathode 32, an auxiliary gas-liquid separator 64 is installed in the connecting pipe 33. Oxygen gas can be removed.
양이온 교환막(11)과 음이온 교환막(12)은 저항(Resistance)과 두께는 낮추고 투과도(permselectivity)는 높일 수 있는 물질 또는 구조로 이루어지는 것이 바람직하다. 애노드(42)와 캐소드(32)는 상이한 재질 또는 동일한 재질로 형성될 수 있다. The cation exchange membrane 11 and the anion exchange membrane 12 are preferably made of a material or structure which can lower resistance and thickness and increase permselectivity. The anode 42 and the cathode 32 may be formed of different materials or the same material.
단기간 또는 일회용으로 사용하는 역전기투석 장치(100)일 경우에는 애노드(42)와 캐소드(32)는 각각의 산환 환원 반응을 최적화할 수 있는 서로 다른 재질로 이루어질 수 있다. 예를 들면, 애노드(42)는 이리듐(Ir)으로 캐소드(32)는 루테늄(Ru)으로 이루어질 수 있으나, 이에 제한되는 것은 아니다. In the case of the reverse electrodialysis apparatus 100 used for a short period or a single use, the anode 42 and the cathode 32 may be made of different materials to optimize the respective reduction reaction. For example, the anode 42 may be made of iridium (Ir), and the cathode 32 may be made of ruthenium (Ru), but is not limited thereto.
역전기투석 장치(100)가 수차례에 걸쳐서 사용하도록 제조된 경우에는 애노드(42)와 캐소드(32)가 동일한 재질로 형성되는 것이 운전시 극성 변화가 일어나더라도 성능이 그대로 유지되도록 할 수 있다. 예를 들면 애노드(42)와 캐소드(32)는 티타늄(Ti) 베이스 위에 백금족 촉매 물질(Pt, Ir, Ru, Pd 등)이 코팅된 전극으로 이루어질 수 있다. When the reverse electrodialysis apparatus 100 is manufactured to be used for several times, the anode 42 and the cathode 32 may be formed of the same material so that the performance may be maintained even when a polarity change occurs during operation. For example, the anode 42 and the cathode 32 may be formed of electrodes coated with a platinum group catalyst material (Pt, Ir, Ru, Pd, etc.) on a titanium (Ti) base.
한편, 애노드(42)와 캐소드(32)는 다공성 물질로 형성되어 비표면적을 넓혀 주어서 많은 반응 사이트를 제공하는 것이 바람직하다. 또한 내부식성을 향상시키고 용량을 향상시킬 수 있는 물질로 이루어질 수 있다. 예를 들면, 애노드(42)와 캐소드(32)는 금속 지지체 위에 다공성 구조 물질층, 예를 들면 카본 클로스(carbon cloth), 카본 펠트(carbon felt) 등이 형성된 용량성 전극으로 이루어질 수 있다. 금속 지지체는 Ti, Nb, Ta 메쉬 일 수 있다. On the other hand, the anode 42 and the cathode 32 is preferably formed of a porous material to increase the specific surface area to provide a large number of reaction sites. It can also be made of a material that can improve corrosion resistance and improve capacity. For example, the anode 42 and the cathode 32 may be formed of a capacitive electrode formed with a porous structural material layer, for example, carbon cloth, carbon felt, or the like, on a metal support. The metal support may be a Ti, Nb, Ta mesh.
한편, 고농도 전해질 용액 유로(CH1)와 저농도 전해질 용액 유로(CH2)에는 스페이서(미도시)가 삽입될 수 있다. 스페이서는 양이온 교환막(11)과 음이온 교환막(12) 사이의 간격을 일정하게 기계적으로 유지하도록 하고 공급되는 용액의 난류 등을 일으켜 유로(CH1, CH2) 전 영역에 걸쳐 용액이 잘 공급되도록 하기 위해 삽입될 수 있다. 따라서 스페이서는 기공율이 큰 것이 바람직할 수 있다. 예를 들면, 스페이서는 폴리프로필렌 또는 폴리에틸렌으로 이루어진 망체로 구성될 수 있으나 이에 제한되는 것은 아니다. Meanwhile, a spacer (not shown) may be inserted into the high concentration electrolyte solution channel CH1 and the low concentration electrolyte solution channel CH2. The spacers are inserted to maintain a constant mechanical distance between the cation exchange membrane 11 and the anion exchange membrane 12 and to cause turbulence of the supplied solution so that the solution is well supplied over the entire region of the flow paths CH1 and CH2. Can be. Therefore, it may be desirable for the spacer to have a high porosity. For example, the spacer may be composed of a mesh made of polypropylene or polyethylene, but is not limited thereto.
또한 필요에 따라서는 제1 물 유로(WCH1) 및 제2 물 유로(WCH2)에도 전극 스페이서(미도시)가 설치될 수 있다. 전극 스페이서가 삽입됨으로써 전기저항을 높일 수 있기 때문에 전극 스페이서는 전기전도도가 좋은 물질로 형성될 수 있다. 예를 들면, 전극 스페이서에는 Pt 등의 금속이 코팅되어 전기전도도가 향상될 수 있다. If necessary, an electrode spacer (not shown) may also be provided in the first water channel WCH1 and the second water channel WCH2. Since the electrode spacer may be inserted to increase the electrical resistance, the electrode spacer may be formed of a material having good electrical conductivity. For example, the electrode spacer may be coated with a metal such as Pt to improve electrical conductivity.
종래의 역전기투석 장치는 애노드(42)와 캐소드(32)에서 발생하는 부산물인 가스상 물질(수소, 산소, 염소가스)을 억제하는 방향으로 기술 개발이 집중되었다. 그러나 본 실시예의 역전기투석 장치(100)는 셀 수를 늘려 전극용액으로 물을 사용하며, 물을 전기 분해하여 수소를 적극적으로 발생시킨다. 즉, 본 실시예에서 역전기투석 장치(100)는 발전 장치이면서 동시에 수소 발생 장치로 기능한다.In the conventional reverse electrodialysis apparatus, technology development has been focused on suppressing gaseous substances (hydrogen, oxygen, chlorine gas) which are by-products generated from the anode 42 and the cathode 32. However, the reverse electrodialysis apparatus 100 of this embodiment uses water as an electrode solution by increasing the number of cells, and actively generates hydrogen by electrolyzing water. That is, in the present embodiment, the reverse electrodialysis apparatus 100 functions as a hydrogen generator and at the same time a power generation apparatus.
역전기투석 장치(100)에서 발생한 수소는 연료전지(50)로 공급되어 연료전지(50)에서 에너지, 즉 전기를 생산하도록 한다. Hydrogen generated in the reverse electrodialysis apparatus 100 is supplied to the fuel cell 50 to produce energy, that is, electricity in the fuel cell 50.
하이브리드 발전 시스템(1)은 역전기투석 장치(100)에서 발생한 수소의 공급을 보다 원활하게 할 수 있도록 기액 분리장치(70)를 더 포함할 수 있다. 기액 분리장치(70)는 역전기투석 장치(100)의 제2 물 유로(WCH2)와 연결되어 이로부터 수소와 물을 제공받는다. 이 후 기액 분리장치(70)에서 기체인 수소와 액체인 물을 분리한다. 분리된 수소는 연료전지(50)로 공급되고, 기액 분리된 물은 보조 배관(71)을 통해 다시 역전기투석 장치(100)로 재공급될 수 있다. 물론 생성되는 수소를 바로 포집해서 연료전지(50)로 공급할 수 있다면 기액 분리장치(70)는 생략할 수도 있다. The hybrid power generation system 1 may further include a gas-liquid separator 70 to more smoothly supply hydrogen generated from the reverse electrodialysis apparatus 100. The gas-liquid separator 70 is connected to the second water channel WCH2 of the reverse electrodialysis apparatus 100 to receive hydrogen and water therefrom. Thereafter, the gas-liquid separator 70 separates hydrogen, which is a gas, and water, which is a liquid. The separated hydrogen is supplied to the fuel cell 50, and the gas-liquid separated water may be supplied again to the reverse electrodialysis apparatus 100 through the auxiliary pipe 71. Of course, if the generated hydrogen can be directly collected and supplied to the fuel cell 50, the gas-liquid separator 70 may be omitted.
연료전지(50)는 수소와 산소의 전기화학 반응을 이용하여 전기를 생산하는 발전 장치로서, 공지된 여러 종류의 연료전지가 적용될 수 있다. 예를 들어, 연료전지(50)는 인산형 연료전지, 용융 탄산염형 연료전지, 고체 산화물형 연료전지, 및 고분자 전해질형 연료전지 중 어느 하나로 이루어질 수 있다.The fuel cell 50 is a power generation device that generates electricity by using an electrochemical reaction between hydrogen and oxygen, and various types of known fuel cells may be applied. For example, the fuel cell 50 may be formed of any one of a phosphoric acid fuel cell, a molten carbonate fuel cell, a solid oxide fuel cell, and a polymer electrolyte fuel cell.
연료전지(50)는 크게 연료전지 스택(51)과, 연료전지 스택(51)으로 공기를 공급하는 공기펌프(52)와, 연료전지 스택(51)에서 나오는 직류 전원을 교류 전원으로 변환하는 전력 변환기(53) 등을 포함한다. 연료전지 스택(51)은 직렬로 연결된 복수의 연료전지 셀을 포함하며, 촉매와 전해질의 종류 및 운전 온도에 따라 전술한 여러 종류로 분류된다.The fuel cell 50 largely includes a fuel cell stack 51, an air pump 52 for supplying air to the fuel cell stack 51, and an electric power for converting DC power from the fuel cell stack 51 into AC power. Transducer 53 and the like. The fuel cell stack 51 includes a plurality of fuel cell cells connected in series, and is classified into the aforementioned types according to the type of catalyst and electrolyte and the operating temperature.
도 2는 도 1에 도시한 하이브리드 발전 시스템 중 연료전지 스택을 구성하는 연료전지 셀의 개략도이다.FIG. 2 is a schematic diagram of a fuel cell constituting a fuel cell stack of the hybrid power generation system shown in FIG. 1.
도 2를 참고하면, 하나의 연료전지 셀(54)은 이온을 통과시키는 매체 물질인 전해질(55)과, 전해질(55)의 양측에 위치하는 촉매층(56)과, 어느 하나의 촉매층(56)과 접하며 수소를 공급받는 연료극(anode, 음극)(57)과, 다른 하나의 촉매층(56)과 접하며 공기를 제공받는 공기극(cathode, 양극)(58)을 포함한다. Referring to FIG. 2, one fuel cell 54 includes an electrolyte 55, which is a medium material through which ions pass, a catalyst layer 56 positioned on both sides of the electrolyte 55, and one catalyst layer 56. And a cathode (anode) 57 in contact with and supplied with hydrogen, and a cathode (58) in contact with another catalyst layer 56 and provided with air.
연료극(57)에서 수소는 수소 이온과 전자로 분리되고, 전자는 외부 전선을 이동하여 전기를 발생시킨다. 전해질(55) 속을 이동한 수소 이온은 공기극(58)에 보내진 산소 및 외부 전선을 통해 들어온 전자와 반응하여 물을 생성한다. 연료전지 셀(54)은 수소와 공기로부터 전기를 생산하고, 부산물로서 물을 발생시킨다.In the fuel electrode 57, hydrogen is separated into hydrogen ions and electrons, and electrons move electric wires to generate electricity. The hydrogen ions moving through the electrolyte 55 react with oxygen sent to the cathode 58 and electrons introduced through the external wire to generate water. The fuel cell 54 produces electricity from hydrogen and air and generates water as a byproduct.
다시 도 1을 참고하면, 연료전지 스택(51)은 물 공급관(59)을 통해 역전기투석 장치(100)의 제1 물 유로(WCH1)와 연결되어 부산물로 생성된 물을 역전기투석 장치(100)로 공급한다. 이때 기액 분리장치(70)에 연결된 보조 배관(71)이 물 공급관(59)에 접속될 수 있다. Referring back to FIG. 1, the fuel cell stack 51 is connected to the first water flow path WCH1 of the reverse electrodialysis apparatus 100 through a water supply pipe 59 to reverse water generated as a byproduct. 100). In this case, the auxiliary pipe 71 connected to the gas-liquid separator 70 may be connected to the water supply pipe 59.
통상의 연료전지는 수소 공급을 위한 수소 생산 및 저장 시설이나, 개질 가스(수소 리치가스) 생산을 위한 연료 처리장치를 구비한다. 그러나 본 실시예의 연료전지(50)는 별도의 수소 생산 및 저장 시설이나 개질기를 포함한 연료 처리장치를 구비하지 않으며, 역전기투석 장치(100)에서 생산된 수소를 연료로 공급받아 발전을 행한다. Conventional fuel cells include a hydrogen production and storage facility for hydrogen supply, or a fuel processing device for reforming gas (hydrogen rich gas) production. However, the fuel cell 50 of the present embodiment does not include a fuel processing apparatus including a separate hydrogen production and storage facility or a reformer, and generates power by receiving hydrogen produced by the reverse electrodialysis apparatus 100 as fuel.
역전기투석 장치(100)의 수소 발생량은 역전기투석 장치(100)의 크기와 셀 수 및 작동 조건 변화를 통해 조절 가능하다. 따라서 연료전지(50)에 필요한 수소를 실시간으로 생산하여 공급할 수 있다. 또한, 역전기투석 장치(100)에서 발생하는 수소는 전기를 생산하면서 부가적으로 발생하는 것으로서, 기존의 물을 전기분해하여 수소를 생산하는 것보다 소비 에너지가 적다.The amount of hydrogen generated in the reverse electrodialysis apparatus 100 may be adjusted by changing the size, the number of cells, and the operating conditions of the reverse electrodialysis apparatus 100. Therefore, the hydrogen required for the fuel cell 50 can be produced and supplied in real time. In addition, hydrogen generated in the reverse electrodialysis apparatus 100 is additionally generated while producing electricity, and consumes less energy than electrolysis of existing water to produce hydrogen.
전술한 하이브리드 발전 시스템(1)은 역전기투석 장치(100)와 연료전지(50)를 결합시켜 역전기투석 장치(100)의 낮은 에너지 밀도를 보상하며, 기존 연료전지의 문제점인 고에너지 소비의 수소 생산과 안전성 문제가 제기되는 저장 시설의 문제를 해소할 수 있다. 또한, 연료전지(50)에서 필요로 하는 수소를 실시간으로 공급할 수 있으므로 연료전지(50)의 효율을 향상시킬 수 있다.The above-described hybrid power generation system 1 combines the reverse electrodialysis apparatus 100 and the fuel cell 50 to compensate for the low energy density of the reverse electrodialysis apparatus 100, and the high energy consumption, which is a problem of the conventional fuel cell. It can solve the problem of storage facilities where hydrogen production and safety issues are raised. In addition, since the hydrogen required by the fuel cell 50 can be supplied in real time, the efficiency of the fuel cell 50 can be improved.
도 3은 본 발명의 다른 실시예에 따른 하이브리드 발전 시스템(2)의 구성도이다. 3 is a configuration diagram of a hybrid power generation system 2 according to another embodiment of the present invention.
도 3을 참고하면, 하이브리드 발전 시스템(2)를 구성하는 역전기투석 장치(200)는 단위 셀 수를 늘려 전극 용액으로 물을 사용하며, 전극 표면적을 줄여서 전극 계면 저항을 증가시켜 전극 계면에 가해지는 전압을 증가시키고 이로 인해 수소 발생 속도를 증가시킬 수 있는 장치이다. 또한 전극 용액 챔버(30, 40)를 넓게 만들어 반응물인 물을 다량 포함할 수 있도록 할 수 있다. 즉, 본 실시예에서 역전기투석 장치(200)는 발전 장치이면서 동시에 수소 발생 장치로 기능한다.Referring to FIG. 3, the reverse electrodialysis apparatus 200 constituting the hybrid power generation system 2 uses water as an electrode solution by increasing the number of unit cells, and increases the electrode interface resistance by reducing the electrode surface area to apply to the electrode interface. Loss is a device that can increase the voltage and thereby increase the rate of hydrogen evolution. In addition, the electrode solution chambers 30 and 40 may be made wider to include a large amount of reactant water. That is, in the present embodiment, the reverse electrodialysis apparatus 200 functions as a hydrogen generator and at the same time a power generation apparatus.
역전기투석 장치(200)에서 발생한 수소는 별도의 기액분리장치(도 1의 70) 없이 바로 연료전지(50)로 공급되어 연료전지(50)에서 에너지, 즉 전기를 생산하도록 할 수 있다. Hydrogen generated in the reverse electrodialysis apparatus 200 may be directly supplied to the fuel cell 50 without a separate gas-liquid separator (70 of FIG. 1) to produce energy, that is, electricity in the fuel cell 50.
연료전지(50), 연료전지 스택(51)과, 연료전지 스택(51)으로 공기를 공급하는 공기펌프(52)와, 연료전지 스택(51)에서 나오는 직류 전원을 교류 전원으로 변환하는 전력 변환기(53), 물 공급관(59) 등은 도 1을 참조하여 설명한 구성요소와 그 기능이 실질적으로 동일하므로 그 설명을 생략한다. The fuel cell 50, the fuel cell stack 51, an air pump 52 for supplying air to the fuel cell stack 51, and a power converter for converting DC power from the fuel cell stack 51 into AC power. Reference numeral 53, the water supply pipe 59, and the like have substantially the same functions as the components described with reference to FIG.
일 실시예에 따른 하이브리드 발전 시스템(1)을 구성하는 역전기투석 장치(100)는 일반적으로 도 4와 같은 형태로 어셈블리될 수 있다. Reverse electrodialysis apparatus 100 constituting the hybrid power generation system 1 according to an embodiment may be assembled in a general form as shown in FIG.
도 4를 참조하면, 엔드 플레이트(221, 222) 안 쪽에 캐소드(32)과 애노드(42)가 표면적이 넓은 메쉬 형태로 형성된다. 그리고, 셀 스택(10)의 전면과 100 내지 200㎛ 두께를 가지고 오픈 영역(open area)의 비율이 약 50% 정도인 스페이서를 사이에 두고 접촉하는 형태로 형성된다. 또한, 제2 물 유로(WCH2)를 형성하는 캐소드 챔버(30) 및 제1 물 유로(WCH1)를 형성하는 애노드 챔버(40)는 캐소드(32)과 애노드(42)를 담을 수 있을 정도로 형성된다. 캐소드(32)와 애노드(42)는 전극 연결부(260)을 통해 외부 로드(미도시)와 연결된다. 개스킷(gasket)(250)은 셀 스택(10)과 엔드 플레이트(221, 222) 사이의 공간을 밀폐(sealing)하여 캐소드 챔버(30)와 애노드 챔버(40)에서 용액이 새는 것을 방지하기 위한 것이다. 캐소드 챔버(30) 및 애노드 챔버(40)의 폭(w)은 캐소드(32) 또는 애노드(42)의 폭과 거의 실질적으로 동일하도록 형성될 수 있다. Referring to FIG. 4, the cathode 32 and the anode 42 are formed inside the end plates 221 and 222 in a mesh shape having a large surface area. The cell stack 10 is formed in contact with a front surface of the cell stack 10 with a spacer having a thickness of about 100 to 200 μm and having a spacer having an open area ratio of about 50%. In addition, the cathode chamber 30 forming the second water channel WCH2 and the anode chamber 40 forming the first water channel WCH1 may be formed to accommodate the cathode 32 and the anode 42. . The cathode 32 and the anode 42 are connected to an external rod (not shown) through the electrode connection 260. The gasket 250 is to seal the space between the cell stack 10 and the end plates 221 and 222 to prevent leakage of the solution in the cathode chamber 30 and the anode chamber 40. . The width w of the cathode chamber 30 and the anode chamber 40 may be formed to be substantially equal to the width of the cathode 32 or the anode 42.
반면, 다른 실시예에 따른 하이브리드 발전 시스템(2)을 구성하는 역전기투석 장치(200)의 단면도와 상면도가 도 5a 및 도 5b에 예시되어 있다. 도 5a 및 도 5b에 예시되어 있는 바와 같이, 다른 실시예에 따른 하이브리드 발전 시스템(2)을 구성하는 역전기투석 장치(200)는 선형의 캐소드(32W) 및 선형의 애노드(42W)를 포함한다. 그리고, 도 4에 도시되어 있는 역전기투석 장치(100) 대비 캐소드 챔버(30)와 애노드 챔버(40)의 부피를 10배 이상, 바람직하기로는 25배 이상, 더욱 바람직하기로는 50배 이상으로 크게 할 수 있다. On the other hand, a cross-sectional view and a top view of the reverse electrodialysis apparatus 200 constituting the hybrid power generation system 2 according to another embodiment are illustrated in FIGS. 5A and 5B. As illustrated in FIGS. 5A and 5B, the reverse electrodialysis apparatus 200 constituting the hybrid power generation system 2 according to another embodiment includes a linear cathode 32W and a linear anode 42W. . And, the volume of the cathode chamber 30 and the anode chamber 40 compared to the reverse electrodialysis apparatus 100 shown in FIG. 4 is 10 times or more, preferably 25 times or more, more preferably 50 times or more. can do.
도 5a 및 도 5b를 참조하여 구체적으로 설명하면, 다른 실시예에 따른 하이브리드 발전 시스템(2)을 구성하는 역전기투석 장치(200)는 셀 스택(10), 캐소드 챔버(30) 및 애노드 챔버(40)로 구성된다. 5A and 5B, the reverse electrodialysis apparatus 200 constituting the hybrid power generation system 2 according to another embodiment includes a cell stack 10, a cathode chamber 30, and an anode chamber ( 40).
셀 스택(10)은 고농도 전해질 용액(HC) 예컨대 염수가 공급되는 유로(CH1)와 저농도 전해질 용액(LC) 예컨대 담수가 공급되는 유로(CH2)를 번갈아 형성하는 양이온 교환막(11)과 음이온 교환막(12)으로 이루어진다. 이웃한 두 개의 단위 셀(unit cell)은 양이온 교환막(11) 또는 음이온 교환막(12)을 공유한다. The cell stack 10 includes a cation exchange membrane 11 and an anion exchange membrane 11 which alternately form a high concentration electrolyte solution HC such as a channel for supplying brine and a low concentration electrolyte solution LC such as a channel for supplying fresh water. 12). Two adjacent unit cells share a cation exchange membrane 11 or an anion exchange membrane 12.
고농도 전해질 용액(HC, 염수)의 흐름 방향과 저농도 전해질 용액(LC, 담수)의 흐름 방향은 서로 반대 방향인 경우를 예시하고 있다. 그러나 고농도 전해질 용액(HC, 염수)의 흐름 방향과 저농도 전해질 용액(LC, 담수)의 흐름 방향은 동일 방향일 수도 있다. The flow directions of the high concentration electrolyte solution (HC, brine) and the low concentration electrolyte solution (LC, fresh water) are opposite to each other. However, the flow direction of the high concentration electrolyte solution (HC, brine) and the low concentration electrolyte solution (LC, fresh water) may be in the same direction.
셀 스택(10)의 양단에는 엔드 플레이트(21,22)가 각각 설치된다. 엔드 플레이트(21, 22)는 염수와 담수의 펌핑 압력에 의해 셀 스택(10)의 양이온 교환막(11)과 음이온 교환막(12)이 서로 팽창되는 현상을 막기 위해 셀 스택(10) 양단 쪽에 설치한다. 엔드 플레이트(21, 22)는 각각 이웃한 캐소드 챔버(30) 및 애노드 챔버(40)와 개방부를 통해 서로 연통한다. 엔드 플레이트(21, 22)는 메쉬형처럼 일정한 오픈 영역(open area)를 갖고 있다. 엔드 플레이트(21,22)가 메쉬형으로 구성됨으로써 셀 스택(10)의 팽창을 막고 셀 스택(10)이 캐소드 챔버(30) 또는 애노드 챔버(40)의 용액과 바로 접촉할 수 있도록 한다. 엔드 플레이트(21, 22)는 플라스틱만으로 구성될 수도 있고, 금속으로 이루어질 수도 있다. 금속 메쉬의 경우에는 티타늄 메쉬 등이 사용될 수 있다. End plates 21 and 22 are installed at both ends of the cell stack 10, respectively. The end plates 21 and 22 are installed at both ends of the cell stack 10 to prevent the cation exchange membrane 11 and the anion exchange membrane 12 of the cell stack 10 from expanding due to the pumping pressure of the brine and fresh water. . The end plates 21 and 22 communicate with each other through the opening with the neighboring cathode chamber 30 and the anode chamber 40, respectively. The end plates 21, 22 have a constant open area like a mesh. The end plates 21 and 22 are constructed in a mesh shape to prevent the cell stack 10 from expanding and allow the cell stack 10 to directly contact the solution of the cathode chamber 30 or the anode chamber 40. The end plates 21 and 22 may be made of only plastic or may be made of metal. In the case of a metal mesh, a titanium mesh or the like may be used.
엔드 플레이트(21, 22)와 연접하여 캐소드 챔버(30)와 애노드 챔버(40)가 배치된다. 앞서 설명한 바와 같이 캐소드 챔버(30)에 적어도 하나 이상의 선형의 캐소드(32W)가 배치되는 것이 수소 발생에 적합하다. 애노드 챔버(40)에는 메쉬형 전극, 선형 전극 중 어느 하나의 전극이 사용될 수 있다. 도 5a에는 선형 애노드(42W)가 예시되어 있으나 메쉬형 애노드가 배치될 수도 있다.The cathode chamber 30 and the anode chamber 40 are disposed in contact with the end plates 21 and 22. As described above, it is suitable for hydrogen generation that at least one linear cathode 32W is disposed in the cathode chamber 30. The anode chamber 40 may be any one of a mesh type electrode and a linear electrode. Although linear anode 42W is illustrated in FIG. 5A, a meshed anode may be disposed.
셀 스택(10)으로 공급된 염수와 담수의 이온 농도차로 인하여 염수에 포함된 나트륨 양이온(Na+)이 양이온 교환막(11)을 통과하고, 염소 음이온(Cl-)이 음이온 교환막(12)을 통과한다. 고농도 전해질 유로(CH1)에서 배출되는 염분 농도가 낮아진 기수(brackish water)와, 저농도 전해질 유로(CH2)에서 배출되는 염분 농도가 높아진 기수는 배출구(미도시)를 통해서 셀 스택(10)의 외부로 배출된다. Due to the difference in ion concentration between the brine and fresh water supplied to the cell stack 10, sodium cations (Na + ) included in the brine pass through the cation exchange membrane 11, and chlorine anion (Cl ) passes through the anion exchange membrane 12. do. The brackish water with low salt concentration discharged from the high concentration electrolyte channel CH1 and the brackish water with high salt concentration discharged from the low concentration electrolyte channel CH2 are discharged to the outside of the cell stack 10 through an outlet (not shown). Discharged.
전술한 과정에서 각 이온 교환막(11, 12) 사이에 전기화학 포텐셜이 생성된다. 그리고 이를 이용하여 애노드(42)에서 산화 반응이 일어나고, 캐소드(32)에서 환원 반응이 일어나며, 애노드(42)와 캐소드(32) 사이에 전자(e-)의 흐름이 생성되어 에너지, 즉 전기가 발생한다. 애노드 챔버(40)에서 발생한 전자는 부하(load)를 거쳐 캐소드 챔버(30)로 전달될 수 있다. In the above-described process, electrochemical potential is generated between the ion exchange membranes 11 and 12. In addition, an oxidation reaction occurs at the anode 42, a reduction reaction occurs at the cathode 32, and a flow of electrons (e ) is generated between the anode 42 and the cathode 32 such that energy, that is, electricity is generated. Occurs. Electrons generated in the anode chamber 40 may be transferred to the cathode chamber 30 through a load.
셀 스택(10)는 복수의 단위 셀(unit cell), 예를 들어 10개 이상의 단위 셀을 포함할 수 있다. 단위 셀 수가 많아질수록 셀 전압이 높아지므로, 전극 용액으로 종래의 산화환원종 대신 물을 사용할 수 있다. 즉, 본 발명의 일 실시예에 따른 역전기투석 장치(200)에서는 셀 스택(10)의 전압이 물 전기분해 전압인 대략 1.23V 이상이 되어 애노드(42)와 캐소드(32)에서 물의 전기분해 반응이 일어날 수 있다. 또한, 캐소드 챔버(30)의 용액의 pH와 애노드 챔버(40)의 용액의 pH를 다르게 할 경우에는 물 분해 전압을 더 낮출 수도 있다. 캐소드 챔버(30)와 애노드 챔버(40)를 비순환형으로 독립적으로 사용할 경우 캐소드 챔버(30)의 용액과 애노드 챔버(40)의 용액의 pH를 각각의 반응에 유리한 pH로 조절하여 사용할 수 있다. 예를 들어 환원 반응이 일어나는 캐소드 챔버(30)의 용액은 산성 용액으로 산화 반응이 일어나는 애노드 챔버(40)의 용액은 염기성 용액으로 조절할 수 있다. 이 때의 이론적인 물 분해 전압은 0.4V 정도가 될 수 있다. 따라서 셀 스택(10)에 걸리는 전압이 0.4V 이상이면 물 전기 분해반응이 일어날 수 있다. 결론적으로, 캐소드 챔버(30)의 용액과 애노드 챔버(40)의 용액의 pH에 따라 이론적인 물의 전기분해 전압은 달라지며 이 전압보다 높은 전압을 갖는 셀 전압이 생성되면 물 전기분해 반응을 일으켜서 수소 기체를 생산할 수 있다. The cell stack 10 may include a plurality of unit cells, for example, ten or more unit cells. Since the cell voltage increases as the number of unit cells increases, water may be used as an electrode solution instead of the conventional redox species. That is, in the reverse electrodialysis apparatus 200 according to the embodiment of the present invention, the voltage of the cell stack 10 is about 1.23V or more, which is the water electrolysis voltage, so that the electrolysis of water at the anode 42 and the cathode 32 is performed. The reaction may occur. In addition, when the pH of the solution of the cathode chamber 30 and the pH of the solution of the anode chamber 40 are different, the water decomposition voltage may be further lowered. In the case where the cathode chamber 30 and the anode chamber 40 are independently used in an acyclic manner, the pH of the solution of the cathode chamber 30 and the solution of the anode chamber 40 may be adjusted to a pH favorable for each reaction. For example, the solution of the cathode chamber 30 in which the reduction reaction occurs is an acidic solution, and the solution of the anode chamber 40 in which the oxidation reaction occurs can be adjusted to a basic solution. The theoretical water decomposition voltage at this time may be about 0.4V. Therefore, if the voltage applied to the cell stack 10 is 0.4V or more, water electrolysis may occur. In conclusion, the theoretical electrolysis voltage of water varies depending on the pH of the solution of the cathode chamber 30 and the solution of the anode chamber 40. When a cell voltage having a voltage higher than this voltage is generated, the water electrolysis reaction causes hydrogen. It can produce gas.
이와 같이 셀 스택(10)의 셀 수를 10셀 이상, 나아가 몇 백셀 이상으로 하면 역전기투석 장치(100)의 전체 저항 성분 중에 전극 저항의 비율이 현저히 작아지기 때문에 순수 물 또는 담수를 전극 용액으로 사용하더라도 전극 용액 저항에 의한 전력 감소량 및 수소 생산량 감소량은 무시할 수 있을 정도의 양이 된다. 즉, 순수 물로도 수소를 생산할 경우 기존의 물의 전기분해(water electrolysis)에 의한 수소 생산에 비해 다양한 장점이 있다. 기존의 물 전기분해에서는 용액 저항의 영향이 크기 때문에 순수 물을 전해질로 사용할 수 없어서 순수 물을 전해질로 사용하지 않는다. 반면 본 발명의 역전기투석 장치(100)에서는 캐소드 챔버(30)에 기존의 산화환원종을 사용하지 않고 순수 물만을 공급해서 수소를 생산하기 때문에 더욱 더 순수한 수소 기체를 생산할 수 있다. 따라서, 수소분리막 같은 추가적인 분리장치없이 바로 연료전지에 연결할 수 있게 된다. In this way, if the number of cells in the cell stack 10 is 10 cells or more, and a few hundred cells or more, the ratio of electrode resistance in the total resistance component of the reverse electrodialysis apparatus 100 is significantly reduced, so that pure water or fresh water is used as the electrode solution. Even when used, the amount of reduction in power and the amount of hydrogen produced by the electrode solution resistance is negligible. That is, when hydrogen is produced even with pure water, there are various advantages compared to the production of hydrogen by water electrolysis. In conventional water electrolysis, pure water cannot be used as an electrolyte because the effect of solution resistance is large, so pure water is not used as an electrolyte. On the other hand, in the reverse electrodialysis apparatus 100 of the present invention, since pure hydrogen is produced by supplying only pure water to the cathode chamber 30 without using the existing redox species, it is possible to produce even more pure hydrogen gas. Therefore, the fuel cell can be directly connected without an additional separation device such as a hydrogen separation membrane.
물론 캐소드 챔버(30)의 용액 저항을 낮추기 위해서는 필요에 따라 염이 용해된 수용액을 사용할 수 있다. 예를 들면, NaCl 또는 Na2SO4 2.92g/L ~ 5.8g/L로 용해된 수용액을 사용할 수도 있다. 염이 용해되어 있을 경우 전극 용액의 저항이 감소하는 효과를 볼 수 있으나, 앞에서도 설명한 바와 같이 셀 수가 많아지게 되면 전극 용액의 저항의 영향은 미미하므로 순수 물 또는 담수를 전극용액으로 사용할 수 있다. Of course, in order to lower the solution resistance of the cathode chamber 30, an aqueous solution in which salt is dissolved may be used. For example, NaCl or Na 2 SO 4 end It is also possible to use an aqueous solution dissolved at 2.92 g / L to 5.8 g / L. When the salt is dissolved, the resistance of the electrode solution can be reduced, but as described above, when the number of cells increases, the effect of the resistance of the electrode solution is insignificant, so pure water or fresh water can be used as the electrode solution.
즉, 상기 화학식 1과 같이 선형의 애노드(42W)에서 물의 산화 반응에 의해 산소 및 전자가 발생할 수 있다. 애노드 챔버(40)의 용액에 염화나트륨이 녹아있는 경우에는 염화 이온이 산화되어 상기 화학식(2)와 같이 염소기체를 발생할 수 있다. 그리고, 상기 화학식(3)와 같이 선형의 캐소드(32W)에서 물의 환원 반응에 의해 수소 및 수산화이온이 발생할 수 있다. That is, oxygen and electrons may be generated by the oxidation reaction of water in the linear anode 42W as shown in Chemical Formula 1. When sodium chloride is dissolved in the solution of the anode chamber 40, chloride ions may be oxidized to generate chlorine gas as shown in Formula (2). In addition, hydrogen and hydroxide ions may be generated by the reduction reaction of water in the linear cathode 32W as in Chemical Formula (3).
이 때, 메쉬형 캐소드(도 1 및 도 4의 32 참고) 대신 선형의 캐소드(32W)을 사용하면 전기화학적 활성면적이 작아지게 되어 계면 저항이 커진다. 큰 저항에 큰 전압이 걸리기 때문에 (옴의 법칙) 셀 스택(10)의 막 전압의 상당 부분이 선형의 캐소드(32W) 계면에 걸리게 되어 수소 발생 속도가 급속히 증가할 수 있다. 애노드의 경우에도 면적이 작을수록 애노드 계면 걸리는 전압이 커져 산소 발생 속도 또는 염소 기체 발생속도가 급속히 증가할 수 있다. 따라서, 애노드 챔버(40)에서 산소 발생 또는 염소 발생을 증가시키고자 할 경우에는 애노드도 선형의 애노드(42W)를 사용할 수 있지만 산소 발생 또는 염소 발생이 주된 목적이 아니고 전기 생산이 주된 목적이라면 메쉬형 애노드(도 1 및 도 4의 42 참고)로 형성하는 것이 더 바람직할 수도 있다. At this time, when the linear cathode 32W is used instead of the mesh type cathode (see 32 in FIGS. 1 and 4), the electrochemically active area becomes small, thereby increasing the interfacial resistance. Since a large resistance is applied to a large resistance (Ohm's law), a large part of the film voltage of the cell stack 10 is caught at the linear cathode 32W interface, and the hydrogen generation rate can increase rapidly. Even in the case of the anode, the smaller the area, the greater the voltage across the anode interface, so that the rate of oxygen generation or chlorine gas generation may increase rapidly. Therefore, in the case of increasing oxygen generation or chlorine generation in the anode chamber 40, the anode may also use a linear anode 42W, but if oxygen generation or chlorine generation is not the main purpose and the main purpose of electricity production is a mesh type It may be more preferred to form it with an anode (see 42 in FIGS. 1 and 4).
선형의 캐소드(32W)와 선형의 애노드(42W)는 전극 면적을 줄여 전극 계면에 가해지는 전압을 증가시킴으로써 전기화학 반응속도 및 전류를 증가시키는 작용을 담당하기 때문에 종래와 같이 Pt 등의 귀금속으로만 형성하지 않아도 가능하다. 예를 들면, 탄소, 티타늄, 니켈, 망간, 구리 등 비귀금속을 전극으로 사용 가능하다.Since the linear cathode 32W and the linear anode 42W are responsible for increasing the electrochemical reaction rate and current by increasing the voltage applied to the electrode interface by reducing the electrode area, only the precious metal such as Pt is used. It does not need to be formed. For example, non-noble metals such as carbon, titanium, nickel, manganese and copper can be used as the electrode.
도 5a 및 도 5b에서 미설명 도면 부호 35 및 45는 각각 캐소드 챔버(30)와 애노드 챔버(40)의 용액 주입구이다. 미설명 도면 부호 32a와 42a는 각각 선형의 캐소드(32W)와 선형의 애노드(42W)의 주입구이다. In FIGS. 5A and 5B, reference numerals 35 and 45 are solution inlets of the cathode chamber 30 and the anode chamber 40, respectively. Reference numerals 32a and 42a denote injection holes of the linear cathode 32W and the linear anode 42W, respectively.
다른 실시예에 따른 하이브리드 발전 시스템(2)을 구성하는 역전기투석 장치(200)의 캐소드 챔버(30)와 애노드 챔버(40)의 폭(W)은 캐소드(32W)와 애노드(42W)가 선형으로 이루어지기 때문에 폭에 제한을 받지 않는다. 따라서, 역전기투석 장치(200)의 캐소드 챔버(30)와 애노드 챔버(40)의 폭(W)은 도 4에 예시된 역전기투석 장치(100)의 캐소드 챔버(30) 및 애노드 챔버(40)의 폭(w)보다 10배 이상, 바람직하기로는 25배 이상, 더욱 바람직하기로는 50배 이상으로 크게 할 수 있다. 따라서, 종래와 같은 높이와 길이로 형성한다고 하면 그 부피를 10배 이상, 바람직하기로는 25배 이상, 더욱 바람직하기로는 50배 이상으로 크게 할 수 있다. 예를 들면 도 4에 예시되어 있는 캐소드 챔버(30)의 크기가 특히 2.5㎤ 라면 도 5a에 예시되어 있는 캐소드 챔버(30)의 크기는 125㎤ 일 수 있다. 캐소드 챔버(30)의 크기를 크게 할 경우 충분한 물 분해 반응이 일어나도록 할 수 있으며, 물 분해 반응의 결과로 얻어진 수소를 챔버 상부에 연결된 포집 기둥(50a)을 통하여 외부로 포집하기가 용이해진다. According to another embodiment, the width W of the cathode chamber 30 and the anode chamber 40 of the reverse electrodialysis apparatus 200 constituting the hybrid power generation system 2 is linear between the cathode 32W and the anode 42W. Since it is made of, it is not limited in width Accordingly, the width W of the cathode chamber 30 and the anode chamber 40 of the reverse electrodialysis apparatus 200 is equal to the cathode chamber 30 and the anode chamber 40 of the reverse electrodialysis apparatus 100 illustrated in FIG. 4. 10 times or more, preferably 25 times or more, more preferably 50 times or more than the width (w) of (). Therefore, if it is formed in the same height and length as in the prior art, the volume can be increased to 10 times or more, preferably 25 times or more, and more preferably 50 times or more. For example, if the size of the cathode chamber 30 illustrated in FIG. 4 is particularly 2.5 cm 3, the size of the cathode chamber 30 illustrated in FIG. 5A may be 125 cm 3. Increasing the size of the cathode chamber 30 allows sufficient water decomposition reaction to occur, and it becomes easy to collect the hydrogen obtained as a result of the water decomposition reaction to the outside through the collecting pillar 50a connected to the upper portion of the chamber.
도 5a 및 도 5b를 참조하여 설명한 바와 같이, 역전기투석 장치(200)에서 발생하는 수소는 전기를 생산하면서 동시에 발생하는 것으로서, 기존의 물을 전기 분해하여 수소를 생산하는 것보다 소비 에너지가 적다. As described with reference to FIGS. 5A and 5B, hydrogen generated in the reverse electrodialysis apparatus 200 simultaneously generates electricity, and consumes less energy than electrolysis of existing water to produce hydrogen. .
종래의 역전기투석 장치를 구동할 때에는 해수 담수 펌핑 에너지가 필요하다. 역전기투석 장치에서 발생하는 전력에서 펌핑 에너지를 뺀 값이 실제 얻을 수 있는 알짜 에너지(net energy)이다. 소형 셀에서는 펌핑 에너지가 상대적으로 커서 알짜 에너지가 음의 값을 나타낸다. 반면 본 발명의 실시예들에 따른 역전기투석 장치(100, 200)에서는 출력 자체가 높아져서 펌핑 에너지를 빼더라도 양의 값이 알짜 에너지를 얻을 수 있다. 따라서, 대형 셀에서의 수소 발생 및 전력 생산은 추가적인 에너지가 필요하지 않을 수 있다. 선형 전극을 사용하는 역전기투석 장치(200)에서는 거리 저항에 의한 전체 내부 저항 증가로 수소 생산 및 전력 생산을 포함한 알짜 에너지가 감소할 수 있으나, 추가적인 외부 에너지가 필요하지 않기 때문에 기존의 외부 전압을 가하여 물을 전기분해하여 수소를 생산하는 물 전기분해 방식에 비해서는 소비 에너지가 훨씬 적게될 수 있다. Seawater freshwater pumping energy is required when driving conventional reverse electrodialysis devices. The power generated by the reverse electrodialysis apparatus minus the pumping energy is the net energy actually obtained. In small cells, the pumping energy is relatively large and the net energy is negative. On the other hand, in the reverse electrodialysis apparatuses 100 and 200 according to the embodiments of the present invention, even if the output itself is increased and the pumping energy is subtracted, the positive value may obtain the net energy. Thus, hydrogen generation and power generation in large cells may not require additional energy. In the reverse electrodialysis apparatus 200 using the linear electrode, the net energy including hydrogen production and power generation may decrease due to the increase in the total internal resistance by the distance resistance, but the existing external voltage may not be needed because additional external energy is not required. In addition, water consumption can be much lower than water electrolysis, in which water is electrolyzed to produce hydrogen.
한편, 선형 전극을 사용하는 역전기투석 장치(200)에서는 캐소드 챔버(30)와 애노드 챔버(40)의 크기를 최대한 크게 할 수 있다. 캐소드 챔버(30)와 애노드 챔버(40)의 크기를 크게 하면 할수록 선형의 캐소드(32W)와 애노드(42W)의 말단을 셀 스택(10)과 비접촉하도록 할 수 있다. 구체적으로는 각각의 엔드 플레이트(21, 22)와 비접촉하면서도 가능한 거리를 가까이하여 전력 생산량에 영향을 미치지 않도록 할 수 있다. 예를 들면, 적어도 수 밀리미터에서 수 센티미터 이하로 떨어져 위치하도록 할 수 있다. 선형의 캐소드 및 선형의 애노드(32W, 42W)의 말단이 셀 스택(10)과 떨어져 위치하고 선형으로 형성될 경우 전극 계면에서 발생하는 수소 기체가 막 표면에 흡착되는 문제가 발생하지 않는 장점이 있다. Meanwhile, in the reverse electrodialysis apparatus 200 using the linear electrode, the sizes of the cathode chamber 30 and the anode chamber 40 can be made as large as possible. As the size of the cathode chamber 30 and the anode chamber 40 is increased, the ends of the linear cathode 32W and the anode 42W may be brought into non-contact with the cell stack 10. Specifically, it is possible to contact each end plate 21, 22 while being in contact with each other as close as possible so as not to affect the power output. For example, it may be located at least several millimeters to several centimeters or less. When the ends of the linear cathode and the linear anodes 32W and 42W are located apart from the cell stack 10 and formed in a linear manner, hydrogen gas generated at the electrode interface is not adsorbed to the membrane surface.
또한, 캐소드 챔버(30)의 전극 용액과 애노드 챔버(40)의 전극 용액은 비순환형으로 구성되어 캐소드 챔버(30)와 애노드 챔버(40)는 각각 독립적으로 구성될 수 있다. 캐소드 챔버(30)와 애노드 챔버(40)를 각각 독립적으로 구성할 경우 캐소드 챔버(30)에서 발생하는 수소와 애노드 챔버(40)에서 발생하는 산소 또는 염소 기체가 서로 섞이지 않기 때문에 포집한 후 이를 다시 분리하는 과정이 필요 없게 된다. In addition, the electrode solution of the cathode chamber 30 and the electrode solution of the anode chamber 40 may be configured in an acyclic manner so that the cathode chamber 30 and the anode chamber 40 may be independently configured. When the cathode chamber 30 and the anode chamber 40 are configured independently, the hydrogen generated in the cathode chamber 30 and the oxygen or chlorine gas generated in the anode chamber 40 are not mixed with each other and are collected again. There is no need for separation.
따라서 캐소드 챔버(30)에는 수소 포집기(80)가 설치되어 수소를 포집하고,애노드 챔버(40)에는 산소 또는 염소 포집기(90)가 각각 설치되어 산소 또는 염소를 포집한다. Therefore, the hydrogen chamber 80 is installed in the cathode chamber 30 to collect hydrogen, and the oxygen chamber or chlorine collector 90 is installed in the anode chamber 40 to collect oxygen or chlorine, respectively.
경우에 따라서는 캐소드 챔버(30)와 애노드 챔버(40)의 전극 용액이 순환되도록 형성할 수 있다. 이 경우에는 선형의 애노드(42W)에서 발생한 수소 이온(H+)를 선형의 캐소드(32W)에서 이용할 수 있는 장점이 있다. 그러나 산소가 같이 공급될 경우 선형의 캐소드(32W)에서 수소가 생성되는 것을 억제하므로 연결관에 기액 분리 장치(도 1의 64 참고)를 설치하여 산소 기체를 따로 분리한 후 수소 이온만을 포함하는 전극 용액이 캐소드 챔버(30)로 전달되도록 할 수 있다. In some cases, the electrode solution of the cathode chamber 30 and the anode chamber 40 may be formed to circulate. In this case, there is an advantage that the hydrogen ions H + generated at the linear anode 42W can be used at the linear cathode 32W. However, when oxygen is supplied together, hydrogen is prevented from being generated in the linear cathode 32W. Thus, a gas-liquid separator (see 64 in FIG. 1) is installed in the connecting tube to separate oxygen gas, and the electrode includes only hydrogen ions. The solution may be delivered to the cathode chamber 30.
도 6는 본 발명의 다른 실시예에 따른 하이브리드 발전 시스템(2)을 구성하는 역전기투석 장치(200)의 운전 방법에 대한 개략도이다. 6 is a schematic diagram of a method of operating the reverse electrodialysis apparatus 200 constituting the hybrid power generation system 2 according to another embodiment of the present invention.
도 6의 왼쪽에 도시되어 있는 바와 같이, 일정 시간 발전을 진행하면 산화 반응이 일어나는 애노드 챔버(40)의 pH는계속 낮아지고 환원 반응이 일어나는 캐소드 챔버(30)의 pH는 높아진다. 이 상태에서 오른쪽에 도시되어 있는 바와 같이, 염수 자리에 담수를 담수 자리에 염수를 공급하면 pH가 낮은 챔버(40)에서 하이드로늄 이온(hydronium ion)의 환원 반응에 의해 수소발생 반응이 일어나고, pH가 높은 챔버(30)에서 하이드록사이드(hydroxide ion)의 산화반응에 의해서 산소발생 반응이 일어난다. As shown on the left side of FIG. 6, when the power generation progresses for a certain time, the pH of the anode chamber 40 where the oxidation reaction occurs is continuously lowered and the pH of the cathode chamber 30 where the reduction reaction occurs is increased. In this state, as shown on the right side, when fresh water is supplied to the fresh water at the brine site, the hydrogen generation reaction occurs by the reduction reaction of the hydronium ions (hydronium ion) in the chamber 40 having a low pH, In the high chamber 30, the oxygen generation reaction occurs by the oxidation reaction of hydroxide (hydroxide ion).
낮은 pH에서의 하이드로늄 이온의 환원반응과 높은 pH 에서의 하이드록사이드이온의 산화반응의 과전위는 중성 pH에서의 물 산화환원반응의 과전위보다 훨씬 낮기 때문에 전극계면 임피던스가 줄어들어 더 원활한 전극 반응이 일어나게 된다. 즉, 염수와 담수를 주기적으로 서로 스위칭함으로써 수소발생속도와 산소발생속도를 증가시키면서 동시에 역전기투석 장치의 전력을 얻을 수 있다. 이와 같이 염수와 담수를 주기적으로 스위칭하는 방법은 본 발명의 일 실시예에 따른 하이브리드 발전 시스템(1)을 구성하는 역전기투석 장치(100)의 운전시에도 적용할 수 있다. The overpotential of the reduction of hydronium ions at low pH and the oxidation of hydroxide ions at high pH is much lower than the overpotential of water redox at neutral pH, resulting in a smoother electrode reaction with reduced electrode interface impedance. This will happen. That is, by periodically switching between the brine and fresh water, it is possible to increase the hydrogen generation rate and oxygen generation rate while at the same time obtain the power of the reverse electrodialysis apparatus. As such, the method of periodically switching the brine and fresh water may be applied to the operation of the reverse electrodialysis apparatus 100 constituting the hybrid power generation system 1 according to an embodiment of the present invention.
도 7은 종래의 역전기투석장치(RED)와 선형 전극을 이용한 역전기투석 장치(200)의 전류에 따른 전력을 도시한 그래프이다. 종래의 역전기투석장치의 최대 출력은 110 mW인데 반해 선형전극을 이용한 역전기투석 장치(200)의 최대 출력은 약 25 mW이다. 선형전극을 이용한 RED의 출력이 낮아진 이유는 크게 두 가지이다. 첫 번째는 면적이 작은 선형 전극을 사용함으로써 계면 저항이 커진 캐소드에서 수소기체 발생량이 늘어나 출력 감소의 일부분이 수소발생으로 변환되기 때문이다. 두 번째는 셀 스택과 선형전극간의 거리가 멀어짐에 따른 저항 증가와 면적이 작아짐에 따른 계면 저항 증가가 역전기투석 시스템 자체의 내부저항을 증가시켰기 때문이다. 한 시간 동안 역전기투석장치를 구동하여 수소기체를 포집한 후 선형 전극을 갖는 역전기투석장치의 에너지생산량을 계산하였다. 염수와 담수의 유량이 채널당 50 mL/min 이 되도록 공급하고, 82ohm의 저항을 걸어주고, 100 mM NaCl 수용액을 전극 용액으로 사용하였다. 구동 결과 생성된 수소 포집량은 30 mL 이었고 산소 포집량은 17 mL 이었다. 수소 포집량을 에너지로 환산환 결과 24 mWh, 역전기투석 장치의 발전 전력은 19 mWh 이었다. 즉 총 에너지 생산량은 43 mWh로 종래의 산화환원종을 사용하는 역전기투석 장치의 발전량인 110 mWh 에 비해 총 에너지 생산량은 적게 나타났다. 따라서 RED 전력 감소의 일부분이 수소 생산으로 변환되었음을 확인할 수 있고, 선형전극을 사용함에 따른 내부저항 증가가 총 에너지 생산량을 감소시켰음을 확인할 수 있다. FIG. 7 is a graph showing power according to current of the conventional reverse electrodialysis apparatus RED and the reverse electrodialysis apparatus 200 using the linear electrode. While the maximum output of the conventional reverse electrodialysis apparatus is 110 mW, the maximum output of the reverse electrodialysis apparatus 200 using the linear electrode is about 25 mW. The reason why the output of RED using linear electrode is lowered is largely for two reasons. First, the use of linear electrodes with small areas increases the amount of hydrogen gas generated at the cathodes with increased interfacial resistance, which converts part of the output reduction into hydrogen generation. Second, the increase in resistance as the distance between the cell stack and the linear electrode increases, and the increase in interfacial resistance as the area decreases increases the internal resistance of the reverse electrodialysis system itself. Hydrogen gas was collected by running the reverse electrodialysis apparatus for an hour, and the energy yield of the reverse electrodialysis apparatus with the linear electrode was calculated. The flow rate of the brine and fresh water was supplied to 50 mL / min per channel, subjected to a resistance of 82 ohms, 100 mM NaCl aqueous solution was used as the electrode solution. The amount of hydrogen collected as a result of the operation was 30 mL and the amount of oxygen collected was 17 mL. As a result of converting the hydrogen collection amount into energy, the generated power of the reverse electrodialysis apparatus was 24 mWh and 19 mWh. In other words, the total energy production was 43 mWh, which was lower than that of the conventional 110 mWh of the reverse electrodialysis apparatus using the redox species. Therefore, it can be confirmed that a part of the RED power reduction has been converted to hydrogen production, and it can be confirmed that the increase in internal resistance by using the linear electrode reduced the total energy production.
내부저항을 줄이기 위해서는 선형전극과 셀 스택 사이의 거리가 가급적 짧아야 하며 선형전극의 용액에 접촉되어있는 전기화학적 활성 면적을 가급적 넓게 해야 한다. 도 8이 그 관계를 나타내는 그래프이다. 즉, 캐소드와 애노드를 구성하는 Pt 선형전극이 엔드 플레이트인 Ti 메쉬와 거의 닿을 정도의 거리에 있는 경우 (약 5 mm 이하) → 캐소드와 애노드를 구성하는 Pt 선형 전극과 Ti mesh 와의 거리가 약 1 cm 이상 떨어져 있는 경우 → 캐소드와 애노드를 구성하는 Pt 선형전극과 Ti mesh와의 거리가 4 cm 이상 떨어져 있는 경우 순으로 에너지 발생량은 감소함을 알 수 있다. 즉, 전극 끝이 셀 스택에 가까워질수록 파워가 증가함을 알 수 있다. To reduce internal resistance, the distance between the linear electrode and the cell stack should be as short as possible, and the electrochemically active area in contact with the solution of the linear electrode should be as wide as possible. 8 is a graph showing the relationship. That is, when the Pt linear electrode constituting the cathode and the anode is almost in contact with the Ti mesh which is the end plate (about 5 mm or less) → The distance between the Pt linear electrode constituting the cathode and the anode and the Ti mesh is about 1 If the distance is more than cm → The distance between the Pt linear electrode constituting the cathode and the anode and the Ti mesh is more than 4 cm apart in order to reduce the energy generation in order. In other words, it can be seen that the power increases as the electrode tip approaches the cell stack.
이로부터 전극과 셀 스택간의 거리 그리고 전극의 면적 등을 최적화함으로써 역전기투석의 발전에 의해 생성되는 전기적 에너지를 최대화함과 동시에 수소 생산량 또한 최대화할 수 있음을 알 수 있다. From this, it can be seen that by optimizing the distance between the electrode and the cell stack and the area of the electrode, the hydrogen energy can be maximized while maximizing the electric energy generated by the development of reverse electrodialysis.
도 9은 본 발명의 일 실시예에 따른 에너지 자립형 수소-전기 복합 충전 스테이션의 구성도이다.9 is a block diagram of an energy-independent hydrogen-electric composite charging station according to an embodiment of the present invention.
에너지 자립형 수소-전기 복합 충전 스테이션은 수소와 전기를 동시에 생산하는 역전기투석 장치(100 또는 200)에서 생산된 수소와 전기가 각각 공급되는 수소 충전기(170)와 전기 충전기(180)를 포함한다. The energy-independent hydrogen-electric composite charging station includes a hydrogen charger 170 and an electric charger 180 supplied with hydrogen and electricity, respectively, which are produced in a reverse electrodialysis apparatus 100 or 200 that simultaneously produces hydrogen and electricity.
역전기투석 장치(100 또는 200)는 셀 스택을 이루는 단위 셀의 수가 적어도 50개 이상, 바람직하기로는 1000셀 이상이 되는 대용량 장치이다. 이 경우 셀 스택에 형성되는 막 전압은 7.5V 이상 100V 이상이 될 수 있으며 충분한 물 분해 반응이 일어나도록 할 수 있다. 역전기투석 장치(100 또는 200)의 구체적인 구성은 도 1 내지 도 7을 참조하여 설명한 장치이다. The reverse electrodialysis apparatus 100 or 200 is a large capacity apparatus in which the number of unit cells constituting the cell stack is at least 50 or more, preferably 1000 cells or more. In this case, the film voltage formed in the cell stack may be 7.5V or more and 100V or more, and sufficient water decomposition reaction may occur. The specific configuration of the reverse electrodialysis apparatus 100 or 200 is the apparatus described with reference to FIGS. 1 to 7.
역전기투석 장치(100 또는 200)에서 생산된 수소는 수소충전기(170)에 공급된다. 수소충전기(170)에 충전된 수소는 이후 연료전지자동차(175)를 충전하는데 사용될 수 있다. 수소충전기(170)에 공급되기 전에 역전기투석 장치(100 또는 200)에서 생산된 수소는 수소분리장치(155)를 거친 후 수소충전기(170)에 공급될 수 있다. 역전기투석 장치(100 또는 200)에 사용되는 전극 용액으로 순수한 물을 사용할 경우에는 수소분리장치(155)가 필요하지 않으며 염을 포함하는 수용액을 사용할 경우에는 수소분리장치(155)가 필요할 수 있다. Hydrogen produced in the reverse electrodialysis apparatus 100 or 200 is supplied to the hydrogen charger 170. The hydrogen charged in the hydrogen charger 170 may then be used to charge the fuel cell vehicle 175. Hydrogen produced by the reverse electrodialysis apparatus 100 or 200 before being supplied to the hydrogen charger 170 may be supplied to the hydrogen charger 170 after passing through the hydrogen separation device 155. When pure water is used as the electrode solution used in the reverse electrodialysis apparatus 100 or 200, the hydrogen separation device 155 is not required, and when using an aqueous solution containing salt, the hydrogen separation device 155 may be required. .
역전기투석 장치(100 또는 200)에서 생산된 전기는 전기충전기(180)에 저장된 후 이후 전기자동차(185)를 충전하는데 사용될 수 있다. 도면에는 도시되어 있지 않지만 역전기 투석 장치(100 또는 200)에서 생산된 전기는 전력 변환기를 통해 전기충전기(180)의 종류에 따라 전력을 변환할 수 있다. 일반적으로 급속충전기는 DC로 공급되며, 완속 및 홈 충전기 방식은 AC로 전력이 공급된다. 역전기투석 장치(100 또는 200)는 필요에 따라 상시 전력생산이 가능하므로 전기충전 장치에 직접 공급이 가능하며, 잉여 발전량은 전력망(187)으로 공급될 수 있다. The electricity produced in the reverse electrodialysis apparatus 100 or 200 may be stored in the electric charger 180 and then used to charge the electric vehicle 185. Although not shown in the figure, the electricity produced by the reverse electrodialysis apparatus 100 or 200 may convert power according to the type of the electric charger 180 through the power converter. Typically, fast chargers are powered by DC, while slow and home chargers are powered by AC. The reverse electrodialysis apparatus 100 or 200 may be always supplied to the electric charging device because it is possible to produce power at any time, and the surplus generation amount may be supplied to the electric power grid 187.
역전기투석 장치(100 또는 200)에 공급되는 담수(103)와 염수(105)는 취수 및 전처리부(101)에 의해 처리된 담수(103)와 염수(105)를 이용할 수 있으며, 취수 및 전처리부(101), 역전기투석 장치(100 또는 200)의 오염 모니터링부(미도시), 역전기투석 장치(100 또는 200)의 셀 스택이 오염되었을 경우 이를 화학적 또는 물리적으로 세정하는 막 재생부(미도시)와 관련해서는 본 출원인의 선행 출원인 KR 10-2015-0161014 의 설명으로 대신한다. The fresh water 103 and the brine 105 supplied to the reverse electrodialysis apparatus 100 or 200 may use the fresh water 103 and the brine 105 treated by the intake and pretreatment unit 101, and the intake and pretreatment. Part 101, the contamination monitoring unit (not shown) of the reverse electrodialysis apparatus 100 or 200, the membrane regeneration unit for chemically or physically cleaning the cell stack of the reverse electrodialysis apparatus 100 or 200 ( Not shown), the description of the applicant's prior application KR 10-2015-0161014.
신재생 에너지 기술 분야 및 이를 이용한 에너지 자립형 수소-전기 복합 충전 스테이션 등에 이용할 수 있다. It can be used in the field of renewable energy technology and energy independent hydrogen-electric composite charging station using the same.

Claims (20)

  1. 고농도 전해질 용액 유로와 저농도 전해질 용액 유로를 번갈아 형성하는 양이온 교환막과 음이온 교환막으로 이루어지고 물 분해 반응에 필요한 막 전압을 제공하는 셀 스택, A cell stack comprising a cation exchange membrane and an anion exchange membrane which alternately form a high concentration electrolyte solution flow path and a low concentration electrolyte solution flow path, and provide a membrane voltage necessary for water decomposition reaction,
    상기 셀 스택의 일측에 배치된 제1 물 유로와 애노드를 포함하는 애노드 챔버, 및 An anode chamber comprising a first water flow path and an anode disposed on one side of the cell stack, and
    상기 셀 스택의 타측에 배치된 제2 물 유로와 캐소드를 포함하는 캐소드 챔버를 포함하고, A cathode chamber including a second water flow path and a cathode disposed on the other side of the cell stack,
    상기 애노드 챔버 내에서 물의 산화 반응에 의해 산소 및 전자가 발생하고, Oxygen and electrons are generated by the oxidation reaction of water in the anode chamber,
    상기 캐소드 챔버 내에서 물의 환원 반응에 의해 수소가 발생하고, Hydrogen is generated by a reduction reaction of water in the cathode chamber,
    상기 애노드 챔버에서 발생한 상기 전자가 부하를 거쳐 상기 캐소드로 공급되면서 전력을 생산하는 역전기투석 장치; 및 A reverse electrodialysis apparatus that generates power while the electrons generated in the anode chamber are supplied to the cathode through a load; And
    상기 역전기투석 장치로부터 상기 수소를 공급받고, 산소 및 상기 수소의 전기화학 반응에 의해 전기 및 반응 부산물인 물을 생산하는 연료전지를 포함하는 하이브리드 발전 시스템.And a fuel cell supplied with the hydrogen from the reverse electrodialysis apparatus and producing water as electricity and reaction by-products by electrochemical reaction of oxygen and the hydrogen.
  2. 제1항에 있어서,The method of claim 1,
    상기 애노드 챔버에서 발생한 상기 산소 및 전자를 상기 제2 물 유로로 공급하기 위한 배관과,A pipe for supplying the oxygen and electrons generated in the anode chamber to the second water passage;
    상기 배관 상에 설치되어 상기 산소를 제거하기 위한 보조 기액 분리장치를 더 포함하는 하이브리드 발전 시스템.And a secondary gas-liquid separator installed on the pipe to remove the oxygen.
  3. 제1항 또는 제2 항에 있어서, The method according to claim 1 or 2,
    상기 연료전지는 상기 제1 물 유로와 연결되어 상기 반응 부산물인 물을 상기 제1 물 유로로 공급하는 하이브리드 발전 시스템.The fuel cell is connected to the first water flow path is a hybrid power generation system for supplying the reaction by-product water to the first water flow path.
  4. 제1항에 있어서,The method of claim 1,
    상기 제2 물 유로와 연결되어 상기 제2 물 유로로부터 상기 수소와 물을 제공받고, 상기 수소와 물을 분리시켜 상기 연료전지로 분리된 상기 수소를 공급하는 기액 분리장치를 더 포함하는 하이브리드 발전 시스템. And a gas-liquid separator connected to the second water passage to receive the hydrogen and water from the second water passage, and to separate the hydrogen and water to supply the hydrogen separated into the fuel cell. .
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 기액 분리장치는 상기 기액 분리된 물을 상기 역전기투석 장치로 공급하는 하이브리드 발전 시스템.The gas-liquid separator is a hybrid power generation system for supplying the gas-liquid separated water to the reverse electrodialysis device.
  6. 제1 항에 있어서, According to claim 1,
    상기 캐소드 챔버와 상기 애노드 챔버에는 페리시안화물/페로시안화물 또는 Fe2+/3+ 없는 수용액이 공급되는 하이브리드 발전 시스템.And a ferricyanide / ferrocyanide or Fe 2 + / 3 + aqueous solution is supplied to the cathode chamber and the anode chamber.
  7. 제6 항에 있어서, The method of claim 6,
    상기 수용액은 0 이상 5.8g/L 이하의 염을 더 포함하는 수용액인 하이브리드 발전 시스템.The aqueous solution is a hybrid power generation system which is an aqueous solution further comprising a salt of 0 or more and 5.8g / L or less.
  8. 제1 항에 있어서,According to claim 1,
    상기 고농도 용액 유로와 저농도 전해질 용액 유로는 주기적으로 서로 스위칭하는 하이브리드 발전 시스템.And the high concentration solution flow path and the low concentration electrolyte solution flow path periodically switch to each other.
  9. 고농도 전해질 용액 유로와 저농도 전해질 용액 유로를 번갈아 형성하는 양이온 교환막과 음이온 교환막으로 이루어지고 물 분해 반응에 필요한 막 전압을 제공하는 셀 스택, A cell stack comprising a cation exchange membrane and an anion exchange membrane which alternately form a high concentration electrolyte solution flow path and a low concentration electrolyte solution flow path, and provide a membrane voltage necessary for water decomposition reaction,
    상기 셀 스택의 양단에 설치되고 각각 수용액이 담기는 캐소드 챔버 및 애노드 챔버, A cathode chamber and an anode chamber installed at both ends of the cell stack and each containing an aqueous solution;
    상기 캐소드 챔버 내에 설치된 적어도 하나 이상의 선형 캐소드, 및At least one linear cathode installed in the cathode chamber, and
    상기 애노드 챔버 내에 설치된 애노드를 포함하고, An anode installed in the anode chamber,
    상기 애노드 챔버 내에서 물의 산화 반응에 의해 산소와 전자가 발생하고, Oxygen and electrons are generated by the oxidation reaction of water in the anode chamber,
    상기 캐소드 챔버내에서 물의 환원 반응에 의해 수소가 발생하고, Hydrogen is generated by a reduction reaction of water in the cathode chamber,
    상기 애노드 챔버에서 발생한 상기 전자가 부하를 거쳐 상기 캐소드로 공급되면서 전력을 생산하는 역전기 투석 장치; 및 A reverse electrodialysis apparatus for producing power while the electrons generated in the anode chamber are supplied to the cathode through a load; And
    상기 역전기투석 장치로부터 상기 수소를 공급받고, 산소 및 상기 수소의 전기화학 반응에 의해 전기 및 반응 부산물인 물을 생산하는 연료전지를 포함하는 하이브리드 발전 시스템.And a fuel cell supplied with the hydrogen from the reverse electrodialysis apparatus and producing water as electricity and reaction by-products by electrochemical reaction of oxygen and the hydrogen.
  10. 제9항에 있어서, The method of claim 9,
    상기 연료전지는 상기 반응 부산물인 물을 상기 캐소드 챔버와 상기 애노드 챔버로 공급하는 하이브리드 발전 시스템. The fuel cell is a hybrid power generation system for supplying the reaction by-product water to the cathode chamber and the anode chamber.
  11. 제9항에 있어서, The method of claim 9,
    상기 셀 스택과 상기 캐소드 챔버 및 상기 애노드 챔버의 사이에 각각 상기 캐소드 챔버의 수용액 및 상기 애노드 챔버의 수용액와 연통하는 메쉬형 엔드 플레이트를 더 포함하는 하이브리드 발전 시스템.And a meshed end plate in communication with the aqueous solution of the cathode chamber and the aqueous solution of the anode chamber between the cell stack and the cathode chamber and the anode chamber, respectively.
  12. 제11항에 있어서, The method of claim 11,
    상기 캐소드의 말단과 상기 엔드 플레이트는 이격되어 있는 하이브리드 발전 시스템.And a distal end of the cathode and the end plate.
  13. 제9항에 있어서, The method of claim 9,
    상기 캐소드 챔버와 상기 애노드 챔버에는 페리시안화물/페로시안화물 또는 Fe2+/3+ 없는 수용액이 공급되는 하이브리드 발전 시스템.And a ferricyanide / ferrocyanide or Fe 2 + / 3 + aqueous solution is supplied to the cathode chamber and the anode chamber.
  14. 제13 항에 있어서, The method of claim 13,
    상기 수용액은 0 이상 5.8g/L 이하의 염을 더 포함하는 수용액인 하이브리드 발전 시스템.The aqueous solution is a hybrid power generation system which is an aqueous solution further comprising a salt of 0 or more and 5.8g / L or less.
  15. 제9항에 있어서,The method of claim 9,
    상기 캐소드 챔버에서 생성된 상기 수소는 상기 연료전지에 직접적으로 공급되는 하이브리드 발전 시스템.The hydrogen generated in the cathode chamber is supplied directly to the fuel cell.
  16. 제9 항에 있어서,The method of claim 9,
    상기 애노드는 선형 또는 메쉬형 전극인 하이브리드 발전 시스템.Wherein said anode is a linear or mesh type electrode.
  17. 제9 항에 있어서,The method of claim 9,
    상기 염수 채널과 담수 채널은 주기적으로 서로 스위칭하는 하이브리드 발전 시스템.Hybrid power generation system for switching the salt water channel and the fresh water channel to each other periodically.
  18. 고농도 전해질 용액과 및 저농도 전해질 용액의 염분차를 이용하여 물 분해 반응에 의해 수소를 발생시킴과 동시에 전기를 생성하는 역전기투석 장치; A reverse electrodialysis apparatus for generating hydrogen and generating electricity by water decomposition reaction using salt differences between a high concentration electrolyte solution and a low concentration electrolyte solution;
    상기 역전기투석 장치에서 생성된 수소가 공급되는 수소충전기;및A hydrogen charger supplied with hydrogen generated in the reverse electrodialysis apparatus; and
    상기 역전기투석 장치에서 생성된 전기를 공급받는 전기충전기를 포함하는 에너지 자립형 수소-전기 복합 충전 스테이션. Energy self-supporting hydrogen-electric composite charging station comprising an electric charger supplied with electricity generated by the reverse electrodialysis device.
  19. 제18항에 있어서, The method of claim 18,
    상기 역전기투석 장치는 The reverse electrodialysis device
    상기 고농도 전해질 용액의 유로와 상기 저농도 전해질 용액의 유로를 번갈아 형성하는 양이온 교환막과 음이온 교환막으로 이루어지고 물 분해 반응에 필요한 막 전압을 제공하는 셀 스택, A cell stack comprising a cation exchange membrane and an anion exchange membrane which alternately form a flow path of the high concentration electrolyte solution and a flow path of the low concentration electrolyte solution, and provide a membrane voltage necessary for water decomposition reaction,
    상기 셀 스택의 일측에 배치된 제1 물 유로와 애노드를 포함하는 애노드 챔버, 및 An anode chamber comprising a first water flow path and an anode disposed on one side of the cell stack, and
    상기 셀 스택의 타측에 배치된 제2 물 유로와 캐소드를 포함하는 캐소드 챔버를 포함하고, A cathode chamber including a second water flow path and a cathode disposed on the other side of the cell stack,
    상기 애노드 챔버 내에서 물의 산화 반응에 의해 산소 및 전자가 발생하고, Oxygen and electrons are generated by the oxidation reaction of water in the anode chamber,
    상기 캐소드 챔버 내에서 물의 환원 반응에 의해 수소가 발생하고, Hydrogen is generated by a reduction reaction of water in the cathode chamber,
    상기 애노드 챔버에서 발생한 상기 전자가 부하를 거쳐 상기 캐소드로 공급되면서 전력을 생산하는 역전기투석 장치인 에너지 자립형 수소-전기 복합 충전 스테이션. An energy self-supporting hydrogen-electric composite charging station, which is a reverse electrodialysis apparatus that generates electric power while the electrons generated in the anode chamber are supplied to the cathode through a load.
  20. 제18항에 있어서, The method of claim 18,
    상기 역전기투석 장치는 The reverse electrodialysis device
    상기 고농도 전해질 용액의 유로와 상기 저농도 전해질 용액의 유로를 번갈아 형성하는 양이온 교환막과 음이온 교환막으로 이루어지고 물 분해 반응에 필요한 막 전압을 제공하는 셀 스택, A cell stack comprising a cation exchange membrane and an anion exchange membrane which alternately form a flow path of the high concentration electrolyte solution and a flow path of the low concentration electrolyte solution, and provide a membrane voltage necessary for water decomposition reaction,
    상기 셀 스택의 양단에 설치되고 각각 수용액이 담기는 캐소드 챔버 및 애노드 챔버, A cathode chamber and an anode chamber installed at both ends of the cell stack and each containing an aqueous solution;
    상기 캐소드 챔버 내에 설치된 적어도 하나 이상의 선형 캐소드, 및At least one linear cathode installed in the cathode chamber, and
    상기 애노드 챔버 내에 설치된 애노드를 포함하고, An anode installed in the anode chamber,
    상기 애노드 챔버 내에서 물의 산화 반응에 의해 산소와 전자가 발생하고, Oxygen and electrons are generated by the oxidation reaction of water in the anode chamber,
    상기 캐소드 챔버내에서 물의 환원 반응에 의해 수소가 발생하고, Hydrogen is generated by a reduction reaction of water in the cathode chamber,
    상기 애노드 챔버에서 발생한 상기 전자가 부하를 거쳐 상기 캐소드로 공급되면서 전력을 생산하는 역전기 투석 장치인 에너지 자립형 수소-전기 복합 충전 스테이션.An energy self-supporting hydrogen-electric composite charging station, which is a reverse electrodialysis apparatus that generates electric power while the electrons generated in the anode chamber are supplied to the cathode through a load.
PCT/KR2017/005702 2016-10-27 2017-05-31 Hybrid power generation system and energy-independent hydrogen-electricity hybrid charging station, which use reverse electrodialysis device capable of efficiently producing hydrogen-electricity WO2018079965A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0141145 2016-10-27
KR1020160141145A KR101892692B1 (en) 2016-10-27 2016-10-27 Hybrid power generation system using reverse electrodialysis device and fuel cell
KR10-2017-0059428 2017-05-12
KR1020170059428A KR102041554B1 (en) 2017-05-12 2017-05-12 Hybrid power generation system and self supporting hydrogen-electricity complex charge station using reverse electrodialysis power generation appartus with effective hydrogen-electricity generation

Publications (1)

Publication Number Publication Date
WO2018079965A1 true WO2018079965A1 (en) 2018-05-03

Family

ID=62023698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005702 WO2018079965A1 (en) 2016-10-27 2017-05-31 Hybrid power generation system and energy-independent hydrogen-electricity hybrid charging station, which use reverse electrodialysis device capable of efficiently producing hydrogen-electricity

Country Status (1)

Country Link
WO (1) WO2018079965A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436758A (en) * 2020-11-10 2021-03-02 西安理工大学 Reverse electrodialysis power generation device
GB2589649A (en) * 2020-04-17 2021-06-09 Atom Industries Int Ltd Apparatus and method for production of hydrogen gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110034006A (en) * 2008-06-24 2011-04-04 솔트워크스 테크놀로지스 인코포레이티드 Method, apparatus and plant for desalinating saltwater using concentration difference energy
US20120292187A1 (en) * 2011-05-17 2012-11-22 The Penn State Research Foundation Reverse electrodialysis supported microbial fuel cells and microbial electrolysis cells
KR20140140059A (en) * 2012-03-26 2014-12-08 스티칭 ?서스 인텔렉츄얼 프로퍼티 파운데이션 Reverse electrodialysis energy generating system using capacitive electrodes and method there for
KR20150033295A (en) * 2013-09-24 2015-04-01 한국에너지기술연구원 Ion exchange membrane used for reverse electrodialysis device and reverse electrodialysis device including the same
KR20150034545A (en) * 2013-09-26 2015-04-03 한국에너지기술연구원 High efficiency reverse electrodialysis system for optimized electron generation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110034006A (en) * 2008-06-24 2011-04-04 솔트워크스 테크놀로지스 인코포레이티드 Method, apparatus and plant for desalinating saltwater using concentration difference energy
US20120292187A1 (en) * 2011-05-17 2012-11-22 The Penn State Research Foundation Reverse electrodialysis supported microbial fuel cells and microbial electrolysis cells
KR20140140059A (en) * 2012-03-26 2014-12-08 스티칭 ?서스 인텔렉츄얼 프로퍼티 파운데이션 Reverse electrodialysis energy generating system using capacitive electrodes and method there for
KR20150033295A (en) * 2013-09-24 2015-04-01 한국에너지기술연구원 Ion exchange membrane used for reverse electrodialysis device and reverse electrodialysis device including the same
KR20150034545A (en) * 2013-09-26 2015-04-03 한국에너지기술연구원 High efficiency reverse electrodialysis system for optimized electron generation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2589649A (en) * 2020-04-17 2021-06-09 Atom Industries Int Ltd Apparatus and method for production of hydrogen gas
WO2021209763A1 (en) * 2020-04-17 2021-10-21 Atom Industries International Limited Apparatus and method for production of hydrogen gas
GB2589649B (en) * 2020-04-17 2022-02-23 Atom Industries Int Ltd Apparatus and method for production of hydrogen gas
CN112436758A (en) * 2020-11-10 2021-03-02 西安理工大学 Reverse electrodialysis power generation device
CN112436758B (en) * 2020-11-10 2022-04-12 西安理工大学 Reverse electrodialysis power generation device

Similar Documents

Publication Publication Date Title
Ding et al. Electrochemical neutralization energy: from concept to devices
US6994929B2 (en) Electrochemical hydrogen compressor for electrochemical cell system and method for controlling
US9269983B2 (en) Flow battery
JP6865436B2 (en) Electrochemical device
WO2010134717A2 (en) Electrolytic synthesis of hydrogen peroxide directly from water and application thereof
WO2018066939A1 (en) Bipolar electrode assembly that is capable of quantitative measurements by visualising electric current, and electrochemical cell and electrochemical cell management system using same
CN102976559A (en) Anaerobic ammonia oxidation microbe reverse electroosmosis sewage treatment and power generation method and device
KR101895525B1 (en) Sodium hydroxide manufacturing apparatus using reverse electrodialysis device and hybrid system using the same
WO2018079965A1 (en) Hybrid power generation system and energy-independent hydrogen-electricity hybrid charging station, which use reverse electrodialysis device capable of efficiently producing hydrogen-electricity
KR102015064B1 (en) Power generation system having serially connected heterogeneous reverse electrodialysis
US5296110A (en) Apparatus and method for separating oxygen from air
US10787747B2 (en) Electrolytic cell for generating hydrogen
CN111534830B (en) Device and method for producing high-purity hydrogen by electrolyzing water
KR101015698B1 (en) Powdered fuel cell
KR102041554B1 (en) Hybrid power generation system and self supporting hydrogen-electricity complex charge station using reverse electrodialysis power generation appartus with effective hydrogen-electricity generation
RU2418887C2 (en) Electrolysis unit for obtaining hydrogen and oxygen by electrolysis of water solution of electrolyte
KR20180046192A (en) Hybrid power generation system using reverse electrodialysis device and fuel cell
CN209929451U (en) Chlorine-magnesium fuel cell
RU194839U1 (en) OPEN Cathode Regenerative Fuel Cell
JP2007059196A (en) Power generating system
WO2011093124A1 (en) Water treatment device
KR20210000073A (en) Hydrogen production system using acid-base solution
CN216378422U (en) Modular multi-electrode flowing type hydrogen peroxide electrochemical generation device
KR200225287Y1 (en) Electrolytic device for producing oxygen and hydrogen gases
GB2604213A (en) Hydrogen generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864424

Country of ref document: EP

Kind code of ref document: A1