JPH06306516A - Hydrogen storage alloy and electrode using the same - Google Patents

Hydrogen storage alloy and electrode using the same

Info

Publication number
JPH06306516A
JPH06306516A JP5113661A JP11366193A JPH06306516A JP H06306516 A JPH06306516 A JP H06306516A JP 5113661 A JP5113661 A JP 5113661A JP 11366193 A JP11366193 A JP 11366193A JP H06306516 A JPH06306516 A JP H06306516A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
rare earth
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5113661A
Other languages
Japanese (ja)
Inventor
Hisafumi Shintani
尚史 新谷
Yasuhito Sugahara
泰人 須ヶ原
Tama Nakano
瑞 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP5113661A priority Critical patent/JPH06306516A/en
Publication of JPH06306516A publication Critical patent/JPH06306516A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To maintain the hydrogen occluding capacity of a hydrogen storage allay expressed by a MmNi5 series even if it undergoes a high temp. by denoting the Mm by Ce or a mixture of rare earth elements contg. a specified amt. of Ce. CONSTITUTION:In this hydrogen storage alloy expressed by a MmNi5 series, the Mm denotes Ce or a mixture of rare earth elements contg. >=45wt.% Ce. Furthermore, a part of Ni as the constituting components of the hydrogen storage alloy is preferably substituted by at least one kind among Co, Al and Mn, at this time, preferably, Co and Al are essentially contained, and, preferably, Mn is moreover incorporated. This hydrogen storage alloy is formed, by which the electrode excellent in high temp. properties particularly for an alkali storage battery can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素吸蔵合金及びそれを
用いた電極に関し、特に、アルカリ蓄電池用の負電極と
して好適な水素吸蔵合金及びそれを用いた電極に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy and an electrode using the same, and more particularly to a hydrogen storage alloy suitable as a negative electrode for an alkaline storage battery and an electrode using the same.

【0002】[0002]

【従来技術】水素を吸蔵したり、放出する水素吸蔵合金
が発見されて以来、その応用は、単なる水素貯蔵手段に
とどまらずヒートポンプや電池へと展開が図られてき
た。特に、水素吸蔵合金を負電極として用いるアルカリ
蓄電池は殆ど実用の域に達しており、用いる水素吸蔵合
金も次々に改良されている。
2. Description of the Related Art Since the discovery of hydrogen storage alloys that absorb and release hydrogen, their applications have been expanded to heat pumps and batteries, not limited to simple hydrogen storage means. In particular, alkaline storage batteries using a hydrogen storage alloy as a negative electrode have almost reached the practical range, and the hydrogen storage alloys used have been improved one after another.

【0003】即ち、当初に検討されたLaNi5 合金は
(特開昭51−13934号公報参照)、水素吸蔵量が
大きいという利点がある一方、La金属が高価である
上、水素を吸蔵したり放出することの繰り返しによって
微粉化し易く、更に、アルカリ溶液や酸溶液によって腐
蝕され易いという欠点があったが、かかる欠点は、La
の一部を、Ce、Pr、Ndその他の希土類元素に置換
することによって、及び/又はNiの一部をCo、A
l、Mn等の金属で置換することによって改良された
(例えば、特開昭53−48918号公報、同54−6
4014号公報、同60−250558号公報、同61
−233969号公報、同62−43064号公報参
照)。
That is, the LaNi 5 alloy initially studied (see Japanese Patent Application Laid-Open No. 51-13934) has the advantage that the hydrogen storage capacity is large, while the La metal is expensive and also stores hydrogen. It has a drawback that it is easily pulverized by repeated discharge and is easily corroded by an alkali solution or an acid solution.
By substituting a part of Ce with Pr, Nd and other rare earth elements and / or part of Ni with Co, A
It has been improved by substituting a metal such as 1, Mn (for example, JP-A-53-48918, 54-6).
4014, 60-250558, and 61.
-233969 gazette and the same 62-43064 gazette).

【0004】そして、Laの一部をCe等で置換した金
属としては、市販のミッシュメタル(Mm)が使用され
ている。ミッシュメタルは希土類元素の混合物であり、
例えば、Ce45重量%、La30重量%、Nd5重量
%、及びその他の希土類元素20重量%からなる。
Commercially available misch metal (Mm) is used as a metal in which a part of La is replaced with Ce or the like. Misch metal is a mixture of rare earth elements,
For example, it is composed of Ce 45% by weight, La 30% by weight, Nd 5% by weight, and other rare earth elements 20% by weight.

【0005】ところで、一般に、水素吸蔵合金を電池用
の負電極として使用した場合には、高温特性が重要な条
件となる。即ち、この合金を用いて負電極を作製し、電
池に使用した場合には、充電時、や夏の暑い時期に車の
中などに放置した場合、電池が高温となるために負電極
の寿命が短くなり、電池としての機能が劣化する。この
ような欠点は、特に、高温にさらされる機会が多い電気
自動車(EV)用の電池の場合には顕著である。
By the way, generally, when a hydrogen storage alloy is used as a negative electrode for a battery, high temperature characteristics are an important condition. In other words, if a negative electrode is made from this alloy and used in a battery, the battery will reach a high temperature when charged or left in a car during the hot summer months. Becomes shorter and the function as a battery deteriorates. Such a drawback is particularly remarkable in the case of batteries for electric vehicles (EV), which are often exposed to high temperatures.

【0006】このため、高温特性を有する電池用の負電
極として使用することのできる水素吸蔵合金の開発が望
まれていた。そこで、本発明者等は、電池用の電極とし
た場合の高温特性に優れた水素吸蔵合金について鋭意研
究した結果、電極の高温特性が水素吸蔵合金中に占める
Ceの含有量に大きく依存することを見出し、本発明を
完成させた。
Therefore, it has been desired to develop a hydrogen storage alloy that can be used as a negative electrode for batteries having high temperature characteristics. Therefore, the inventors of the present invention have conducted intensive studies on a hydrogen storage alloy having excellent high temperature characteristics when used as an electrode for a battery, and as a result, the high temperature characteristics of the electrode are largely dependent on the Ce content in the hydrogen storage alloy. Then, the present invention has been completed.

【0007】[0007]

【発明が解決しようとする課題】従って本発明の第1の
目的は、高温を経験しても水素吸蔵能を維持することの
できる水素吸蔵合金を提供することにある。また、本発
明の第2の目的は、高温性能に優れた電池を構成するの
に好適な電極を提供することにある。
SUMMARY OF THE INVENTION It is, therefore, a first object of the present invention to provide a hydrogen storage alloy capable of maintaining hydrogen storage capacity even when it is exposed to high temperatures. A second object of the present invention is to provide an electrode suitable for forming a battery having excellent high temperature performance.

【0008】[0008]

【課題を解決するための手段】本発明の上記の諸目的
は、Mm Ni 5 系で表される水素吸蔵合金であって、M
m がCe又は少なくともCeを45重量%以上含有する
希土類元素の混合物であることを特徴とする水素吸蔵合
金及びそれを用いた電極により達成された。
The above-mentioned objects of the present invention are hydrogen storage alloys represented by the Mm Ni 5 system, wherein M
m 2 is Ce or a mixture of rare earth elements containing at least 45 wt% or more of Ce, and a hydrogen storage alloy and an electrode using the same.

【0009】本発明の水素吸蔵合金の構成成分である希
土類元素中に含有されるCeの量が45重量%以下であ
ると、後述する如く、高温を経験した後の容量が小さく
なり、高温性能が不十分となる。本発明においては、N
i の一部をCo、Al及びMnの中から選択される少な
くとも1種によって置換することが好ましいが、特に、
CoとAlを必須とすることが好ましく、更にMnが含
有されることが好ましい。
When the amount of Ce contained in the rare earth element which is a constituent of the hydrogen storage alloy of the present invention is 45% by weight or less, the capacity after experiencing high temperature becomes small and the high temperature performance becomes high, as described later. Is insufficient. In the present invention, N
It is preferable to replace a part of i with at least one selected from Co, Al and Mn, but in particular,
It is preferable that Co and Al are essential and that Mn is further contained.

【0010】本発明の電極は、公知のバインダーを用い
て本発明の水素吸蔵合金を賦形することにより、容易に
得ることができる。本発明の水素吸蔵合金は、上記した
如く、アルカリ蓄電池用の電極として用いた場合に、そ
の特徴を最も発揮することができるが、上記電極以外の
用途として、本来の水素貯蔵手段として、或いはヒート
ポンプ用等として使用することができることは当然であ
る。
The electrode of the present invention can be easily obtained by shaping the hydrogen storage alloy of the present invention using a known binder. As described above, the hydrogen storage alloy of the present invention can exhibit its characteristics most when it is used as an electrode for an alkaline storage battery. However, it can be used as an original hydrogen storage means or as a heat pump as an application other than the electrode. Of course, it can be used as an application.

【0011】[0011]

【発明の効果】本発明の水素吸蔵合金は、高温を経験し
てもその水素吸蔵能を維持することができるので、本発
明の水素吸蔵合金を電極として用いた電池の高温性能は
良好である。
Since the hydrogen storage alloy of the present invention can maintain its hydrogen storage capacity even when it is exposed to high temperatures, the high temperature performance of the battery using the hydrogen storage alloy of the present invention as an electrode is good. .

【0012】[0012]

【実施例】以下、実施例によって本発明を更に詳述する
が、本発明はこれによって限定されるものではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited thereto.

【0013】実施例1 希土類金属としてLa、Ce、Pr、Ndの各単体金属
を使用した場合、及びLaに対してCe、Pr並びにN
dをそれぞれ等量使用した場合について、Ni、Co、
Alがそれぞれ4.0:0.7:0.3となるように秤
量し、それらをアーク溶解炉で溶解して10種類の合金
を得た。
Example 1 When rare metals such as La, Ce, Pr and Nd are used as rare earth metals, and when La, Ce, Pr and N are used.
When d is used in equal amounts, Ni, Co,
Al was weighed so as to be 4.0: 0.7: 0.3, respectively, and they were melted in an arc melting furnace to obtain 10 kinds of alloys.

【0014】得られた合金を粉砕して平均粒径が75μ
m未満の粉末にした。この粉末10gに対し、3重量%
のポリビニルアルコールの水溶液を2.5g加えて混合
し、ペーストとした。得られたペーストを多孔度94〜
96の発泡ニッケル多孔体(寸法30×40×厚み1.
2mm)内へ均一になるように充填し、乾燥した後、加
圧成形して負電極を作製した。
The obtained alloy is crushed to obtain an average particle size of 75μ.
to less than m. 3% by weight to 10 g of this powder
2.5 g of the polyvinyl alcohol aqueous solution was added and mixed to form a paste. The resulting paste has a porosity of 94-
96 foamed nickel porous body (size 30 × 40 × thickness 1.
2 mm) to be evenly filled, dried and then pressure-molded to produce a negative electrode.

【0015】一方、公知の方法に従って作製された焼結
式ニッケルを酸化ニッケル正電極とした。セパレータと
してポリオレフィン不織布を用い、上記の電極を、前記
10種類の負電極と組み合わせると共に、電解液として
6モル濃度の水酸化カリウム水溶液を用いて、10種類
の開放型ニッケル−水素蓄電池を構成させた。尚、参照
極としては、充電済の正電極を用い、正電極からの影響
がないようにした。
On the other hand, sintered nickel produced by a known method was used as a nickel oxide positive electrode. A polyolefin non-woven fabric was used as a separator, the above electrodes were combined with the above-mentioned 10 types of negative electrodes, and an aqueous solution of 6 molar potassium hydroxide was used as an electrolytic solution to form 10 types of open-type nickel-hydrogen storage batteries. . A charged positive electrode was used as the reference electrode so that there was no influence from the positive electrode.

【0016】得られた各電池を、20℃の一定温度下
で、充電レートを0.1Cで15時間とし、放電レート
を0.2Cの電流で電池電圧が0.8Vになるまで続け
るというサイクルを15回繰り返した後、50℃で同様
のサイクルを10回繰り返し、再び20℃に戻した時の
容量の回復率を測定した結果を表1に示した。
A cycle in which each of the obtained batteries was kept at a constant temperature of 20 ° C. for 15 hours at a charge rate of 0.1 C and a discharge rate was continued at a current of 0.2 C until the battery voltage reached 0.8 V. After repeating 15 times, the same cycle was repeated 10 times at 50 ° C., and the recovery rate of the capacity when the temperature was returned to 20 ° C. was measured again.

【0017】[0017]

【表1】 表1の結果から明らかな如く、Ceを十分に含有する負
電極を用いた場合に、回復率が100%となることが実
証された。
[Table 1] As is clear from the results in Table 1, it was proved that the recovery rate was 100% when the negative electrode sufficiently containing Ce was used.

【0018】実施例2 Laに対し、Ce、Pr及びNdをそれぞれ等量使用す
ると共に、NI、Co、Mn、Alがそれぞれ3.8:
0.7:0.2:0.3となるように秤量した他は、実
施例1と同様にして電池の回復率を調べた。その結果を
表2に示す。
Example 2 With respect to La, Ce, Pr and Nd were used in equal amounts, respectively, and NI, Co, Mn and Al were each 3.8:
The recovery rate of the battery was examined in the same manner as in Example 1 except that the weight was adjusted to 0.7: 0.2: 0.3. The results are shown in Table 2.

【0019】[0019]

【表2】 表2に示すように、Mnを添加したことにより、容量が
増加したことが判る。また、希土類中にCeが50重量
%含有される場合に、特に高温特性が良好であることが
実証された。
[Table 2] As shown in Table 2, it is understood that the capacity was increased by adding Mn. It was also proved that the high temperature characteristics were particularly good when Ce contained in the rare earth in an amount of 50% by weight.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Mm Ni 5 系で表される水素吸蔵合金であ
って、Mm が、Ce又は少なくともCeを45重量%以
上含有する希土類元素の混合物であることを特徴とする
水素吸蔵合金。
1. A hydrogen storage alloy represented by Mm Ni 5 system, wherein Mm is Ce or a mixture of rare earth elements containing at least 45 wt% or more of Ce.
【請求項2】Ni の一部が、Co、Al及びMnの中か
ら選択される少なくとも一種で置換されてなる請求項1
に記載の水素吸蔵合金。
2. A part of Ni is substituted with at least one selected from Co, Al and Mn.
Hydrogen storage alloy according to.
【請求項3】請求項1に記載された水素吸蔵合金を賦形
してなる、高温特性に優れた電極。
3. An electrode excellent in high temperature characteristics, which is formed by shaping the hydrogen storage alloy according to claim 1.
JP5113661A 1993-04-16 1993-04-16 Hydrogen storage alloy and electrode using the same Pending JPH06306516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5113661A JPH06306516A (en) 1993-04-16 1993-04-16 Hydrogen storage alloy and electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5113661A JPH06306516A (en) 1993-04-16 1993-04-16 Hydrogen storage alloy and electrode using the same

Publications (1)

Publication Number Publication Date
JPH06306516A true JPH06306516A (en) 1994-11-01

Family

ID=14617952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5113661A Pending JPH06306516A (en) 1993-04-16 1993-04-16 Hydrogen storage alloy and electrode using the same

Country Status (1)

Country Link
JP (1) JPH06306516A (en)

Similar Documents

Publication Publication Date Title
JPH0719599B2 (en) Storage battery electrode
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JPH06187983A (en) Hydrogen storage alloy electrode
JPH06306516A (en) Hydrogen storage alloy and electrode using the same
JP2579072B2 (en) Hydrogen storage alloy electrode
JPH06306517A (en) Hydrogen storage alloy and electrode using it
JP2000239769A (en) Rare earth hydrogen storage alloy and electrode using it
JPH06306515A (en) Hydrogen storage alloy and electrode using the same
JP2563638B2 (en) Hydrogen storage alloy electrode
JPH0675398B2 (en) Sealed alkaline storage battery
JP2000073134A (en) LaNi5 HYDROGEN STORAGE ALLOY AND ELECTRODE USING THE SAME
JPS61176067A (en) Hydrogen occlusion electrode
JP2538610B2 (en) Metal oxide / hydrogen battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPH0867936A (en) Powdery hydrogen occluding alloy and negative electrode using the same
JP3796085B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JPH0754703B2 (en) Metal oxide / hydrogen battery
JPH0835028A (en) Hydrogen storage alloy and cathode using the same
JPH0582125A (en) Hydrogen occluding alloy electrode
JPH08143993A (en) Hydrogen storage alloy and negative electrode using same
JPH08302438A (en) Hydrogen storage alloy and cathode using same
JPH07103434B2 (en) Hydrogen storage Ni-based alloy and sealed Ni-hydrogen storage battery
JPH0598374A (en) Hydrogen storage alloy for ni-hydrogen battery and hydrogen storage alloy electrode
JPH07262988A (en) Negative electrode using hydrogen storage alloy
JPH0696762A (en) Hydrogen storage alloy electrode and its manufacture