JPH06298520A - Production of silica gel containing dispersed ultrafine titanium oxide particle - Google Patents

Production of silica gel containing dispersed ultrafine titanium oxide particle

Info

Publication number
JPH06298520A
JPH06298520A JP10995493A JP10995493A JPH06298520A JP H06298520 A JPH06298520 A JP H06298520A JP 10995493 A JP10995493 A JP 10995493A JP 10995493 A JP10995493 A JP 10995493A JP H06298520 A JPH06298520 A JP H06298520A
Authority
JP
Japan
Prior art keywords
colloid
titanium oxide
particles
alkoxide
silica gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10995493A
Other languages
Japanese (ja)
Other versions
JPH085660B2 (en
Inventor
Tatsuro Horiuchi
達郎 堀内
Toyohiko Sugiyama
豊彦 杉山
Hiroo Takashima
廣夫 高嶋
Kazuo Yasue
和夫 安江
Kenichi Ushiki
建一 宇敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10995493A priority Critical patent/JPH085660B2/en
Publication of JPH06298520A publication Critical patent/JPH06298520A/en
Publication of JPH085660B2 publication Critical patent/JPH085660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a silica gel having improved optical characteristics by dispersing ultrafine TiO2 particles in SiO2 colloid, gelatinizing the colloid at a specific temperature and baking the gel. CONSTITUTION:Transparent TiO2 colloid is prepared by diluting 1mol of a Ti alkoxide such as Ti isopropoxide with 5-50mol of an alcohol such as ethanol and dropping the diluted solution under stirring into strongly acidic water such as hydrochloric acid of pH <=1. Separately, SiO2 colloid is prepared by diluting an Si alkoxide such as tetraethoxysilane with an alcohol such as ethanol and adding strongly acidic water such as nitric acid to effect the hydrolysis of the alkoxide. The SiO2 colloid adjusted to pH <=1 is incorporated with 1-10wt.% (in terms of solid) of the ultrafine TiO2 particles such as TiO2 colloid, the particles are dispersed by stirring and the mixture is left standing at 40-60 deg.C to effect the gelatinization. The get is dried and baked at 500-1000 deg.C for 30min to 2hr to obtain SiO2 get containing dispersed ultrafine TiO2 particles and having excellent optical characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化チタン超微粒子分
散シリカゲルの製造法に関するものである。さらに詳し
くいえば、本発明は、量子閉じ込め効果を示し、かつ透
明性などの光学特性に優れた酸化チタン超微粒子分散シ
リカゲルを、簡単に効率よく製造する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing silica gel containing titanium oxide ultrafine particles. More specifically, the present invention relates to a method for easily and efficiently producing titanium oxide ultrafine particle-dispersed silica gel exhibiting a quantum confinement effect and excellent in optical properties such as transparency.

【0002】[0002]

【従来の技術】近年、半導体超微粒子は量子閉じ込め効
果を示すことが知られ、その三次非線形感受率を増大さ
せることが可能になることも指摘されている。半導体超
微粒子が分散したガラスとしては、主にCdS‐CdS
e微粒子分散ガラス、CuCl微粒子分散ガラスが研究
されているが、酸化物半導体超微粒子が分散した材料に
関しては報告例がほとんど見られず、酸化チタン微粒子
の合成に関する報告も数例しかなく、特に酸化チタン微
粒子をガラスマトリックスに分散させたものは未だ知ら
れていない。
2. Description of the Related Art In recent years, it has been known that ultrafine semiconductor particles exhibit a quantum confinement effect, and it has been pointed out that it becomes possible to increase the third-order nonlinear susceptibility thereof. CdS-CdS is mainly used as glass in which ultrafine semiconductor particles are dispersed.
Although fine particle-dispersed glass and CuCl fine particle-dispersed glass have been studied, almost no reports have been found on materials in which ultrafine oxide semiconductor particles are dispersed, and there are only a few reports on the synthesis of titanium oxide fine particles, particularly oxidation. A dispersion of titanium fine particles in a glass matrix has not been known yet.

【0003】このような超微粒子を分散させた材料を製
造するには、例えばCdS‐CdSe微粒子分散ガラス
の場合、ガラスにあらかじめ微粒子の成分を仕込んでお
き、ガラス形成後に再び熱処理して微粒子を析出させる
方法などが用いられる。
In order to produce such a material in which ultrafine particles are dispersed, for example, in the case of CdS-CdSe fine particle-dispersed glass, glass is preliminarily charged with the components of the fine particles and heat-treated again after the glass is formed to precipitate the fine particles. The method of making it etc. are used.

【0004】しかしながら、同様な方法で酸化物半導体
微粒子をガラス中に分散させるためには、目的とする結
晶が析出するガラス組成から探索する必要があるし、ま
た、マトリックスとしては、紫外領域まで広い範囲に渡
って透明なシリカが光学的に優れた特性を有しており、
マトリックスとして適当であると考えられるが、ガラス
からの結晶析出法を採った場合、ガラスの組成によって
はマトリックスとして不適当となり、利用範囲が制限さ
れるのを免れない。
However, in order to disperse the oxide semiconductor fine particles in the glass by the similar method, it is necessary to search from the glass composition in which the desired crystal is deposited, and the matrix is wide in the ultraviolet region. Transparent silica over the range has optically excellent characteristics,
Although it is considered to be suitable as a matrix, when the crystal precipitation method from glass is adopted, it becomes unsuitable as a matrix depending on the composition of glass, and the range of use cannot be avoided.

【0005】他方、Si微粒子分散シリカガラスを気相
法で製造することも知られているが、シランガスなどの
取り扱いに注意が必要なガスを用いざるを得ないため、
特殊な装置や煩雑な操作を要する。
On the other hand, it is also known to produce a silica fine particle-dispersed silica glass by a vapor phase method, but since a gas such as silane gas which requires careful handling must be used,
Requires special equipment and complicated operations.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来の量子閉じ込め効果を示す酸化チタン超微粒子の製
造法のもつ欠点を克服し、量子閉じ込め効果を示し、か
つ透明性などの光学特性に優れた酸化チタン超微粒子分
散シリカゲルを簡単に効率よく製造する方法を提供する
ことを目的としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention overcomes the disadvantages of the conventional method for producing titanium oxide ultrafine particles exhibiting the quantum confinement effect, exhibits the quantum confinement effect, and has optical characteristics such as transparency. The object of the present invention is to provide a method for easily and efficiently producing excellent titanium oxide ultrafine particle-dispersed silica gel.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記した
好ましい特徴を有する酸化チタン超微粒子分散シリカゲ
ルの製造法を開発するために種々研究を重ねた結果、酸
化チタン超微粒子をシリカコロイドに分散し、ゲル化し
たのち、焼成することにより、その目的を達成しうるこ
とを見出し、この知見に基づいて本発明を完成するに至
った。
[Means for Solving the Problems] The inventors of the present invention have conducted various studies in order to develop a method for producing silica gel containing titanium oxide ultrafine particles having the above-mentioned preferable characteristics. It was found that the object can be achieved by dispersing, gelling, and then firing, and the present invention has been completed based on this finding.

【0008】すなわち、本発明は、酸化チタン超微粒子
をシリカコロイドに分散したのち、コロイドをゲル化
し、次いで焼成することを特徴とする酸化チタン超微粒
子分散シリカゲルの製造方法を提供するものである。
That is, the present invention provides a method for producing a titanium oxide ultrafine particle-dispersed silica gel, which comprises dispersing the titanium oxide ultrafine particles in a silica colloid, gelling the colloid, and then firing.

【0009】本発明において用いる酸化チタン超微粒子
は、量子閉じ込め効果を示す程度に微細であればどのよ
うなものでもよい。
The titanium oxide ultrafine particles used in the present invention may be any particles as long as they are fine enough to exhibit a quantum confinement effect.

【0010】このようなものとしては、例えばアルコー
ルで希釈したチタンアルコキシドを強酸性水に少量ずつ
添加する方法で得られる酸化チタンコロイドなどが適当
である。
As such a material, for example, a titanium oxide colloid obtained by a method of adding titanium alkoxide diluted with alcohol to strongly acidic water little by little is suitable.

【0011】このコロイドはpHが高くなると凝集しや
すくなるので、コロイド中の水素イオン濃度を1mol
/l以上すなわちpH1以下に調整するのが好ましい。
This colloid easily aggregates as the pH increases, so the hydrogen ion concentration in the colloid should be 1 mol.
/ L or more, that is, the pH is preferably adjusted to 1 or less.

【0012】前記の例示した方法について、さらに説明
する。この方法において用いるアルコールで希釈したチ
タンアルコキシド(以下希釈チタンアルコキシドとい
う)は、通常チタンアルコキシドをその1モルに対し5
〜50モルのアルコールで希釈することにより調製され
る。このチタンアルコキシドに対するアルコールのモル
比が5未満になると沈殿が生成するし、50を超えると
コロイド粒子がチタニルイオンに分解する傾向が顕著に
なる。
The above exemplified method will be further described. Titanium alkoxide diluted with alcohol (hereinafter referred to as diluted titanium alkoxide) used in this method is usually titanium alkoxide in an amount of 5 mol / mol.
Prepared by diluting with ~ 50 moles alcohol. When the molar ratio of the alcohol to the titanium alkoxide is less than 5, precipitation is generated, and when it exceeds 50, the colloidal particles have a remarkable tendency to decompose into titanyl ions.

【0013】この際に用いるチタンアルコキシドについ
ては特に制限はないが、例えばチタンイソプロポキシ
ド、チタンプロポキシド、チタンエトキシド、チタンメ
トキシド、チタンブトキシドなど公知のものの中から任
意に選んで使用することができる。
There are no particular restrictions on the titanium alkoxide used at this time, but any known one such as titanium isopropoxide, titanium propoxide, titanium ethoxide, titanium methoxide, titanium butoxide may be used. You can

【0014】また、アルコールについては特に制限はな
いが、例えばエタノール、メタノール、プロパノール、
イソプロパノール、ブタノールなどを用いることができ
る。
The alcohol is not particularly limited, but for example, ethanol, methanol, propanol,
Isopropanol, butanol, etc. can be used.

【0015】また、チタンアルコキシドの希釈度あるい
はチタンアルコキシドの濃度を変えるなどして調整する
ことにより、得られる酸化チタンコロイドの粒子の大き
さを制御することが可能になる。通常、一定の強酸性水
に対し、前記希釈度を小さくするかあるいは前記濃度を
高めると、前記コロイド粒子の粒径を大きくすることが
できる。
By adjusting the dilution degree of titanium alkoxide or the concentration of titanium alkoxide, the size of the obtained titanium oxide colloid particles can be controlled. Generally, the particle size of the colloidal particles can be increased by decreasing the dilution degree or increasing the concentration with respect to a certain strongly acidic water.

【0016】次いで、前記希釈チタンアルコキシドを、
強酸性水に、少量ずつ添加する、すなわち滴下するか、
あるいはゆっくり添加する。この操作によりアルコキシ
ドは加水分解を受け、チタンの水和酸化物が分散した所
望の酸化チタンコロイドが生成する。
Next, the diluted titanium alkoxide is added,
Add to the strongly acidic water little by little, i.e. drop by drop,
Or add slowly. By this operation, the alkoxide is hydrolyzed, and a desired titanium oxide colloid in which a hydrated oxide of titanium is dispersed is produced.

【0017】この際に用いる強酸性水については、その
酸性度は前記希釈チタンアルコキシドの希釈度、希釈に
用いるアルコールの種類、強酸性水に用いる強酸の種類
などにより適宜調整されるが、通常、pH1以下が選ば
れる。この範囲内では透明性の良好なコロイドが得られ
るが、この範囲を逸脱するとコロイドの透明性が低下し
たり、沈殿を生じる。
The acidity of the strongly acidic water used at this time is appropriately adjusted depending on the dilution of the diluted titanium alkoxide, the type of alcohol used for dilution, the type of strong acid used for the strongly acidic water, etc. A pH of 1 or less is selected. Within this range, a colloid with good transparency can be obtained, but if it deviates from this range, the transparency of the colloid will decrease, or precipitation will occur.

【0018】特に有利には得られるコロイド液のpHが
酸化チタンの零電荷点よりも低くなるように調整され
る。
Particularly preferably, the pH of the colloidal solution obtained is adjusted to be below the zero charge point of titanium oxide.

【0019】強酸性水に用いる強酸については特に制限
はないが、通常塩酸、硫酸、硝酸、リン酸などの無機
酸、各種スルホン酸やカルボン酸などの有機酸が挙げら
れる。
The strong acid used in the strongly acidic water is not particularly limited, but examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, and organic acids such as various sulfonic acids and carboxylic acids.

【0020】前記希釈チタンアルコキシドの強酸性水へ
の添加速度は、希釈度や酸性度などにより変動するが、
通常、1ml/分、好ましくは0.8ml/分の範囲で
選ばれる。
Although the rate of addition of the diluted titanium alkoxide to the strongly acidic water varies depending on the degree of dilution and acidity,
Usually, it is selected in the range of 1 ml / min, preferably 0.8 ml / min.

【0021】本発明に用いるシリカコロイドについては
特に制限はなく、例えばシリコンアルコキシドの加水分
解によって合成したものや、市販のコロイド状シリカな
どが挙げられる。
The silica colloid used in the present invention is not particularly limited, and examples thereof include those synthesized by hydrolysis of silicon alkoxide and commercially available colloidal silica.

【0022】酸化チタン超微粒子のシリカコロイドに対
する使用割合は、通常固形分に基づき、1〜10重量%
の範囲で選ばれるが、有利には、混合分散させた酸化チ
タンコロイドなどの酸化チタン超微粒子を安定に保つた
めに、シリカコロイドの水素イオン濃度を1mol/l
以上すなわちpH1以下に保つのがよい。
The use ratio of titanium oxide ultrafine particles to silica colloid is usually 1 to 10% by weight based on the solid content.
However, in order to keep the titanium oxide ultrafine particles such as titanium oxide colloid mixed and dispersed stably, the hydrogen ion concentration of the silica colloid is preferably 1 mol / l.
It is preferable to keep the pH above 1 or below.

【0023】本発明においては、このようにして得た分
散物に対し、そのコロイドをゲル化処理する。この処理
は、40〜60℃の温度で行うのが好ましい。この温度
が低すぎるとゲル化に時間がかかりすぎるために用いる
酸化チタンコロイドなどの酸化チタン超微粒子によって
はコロイド粒子が成長し過ぎるし、また、高すぎても酸
化チタンコロイドなどの酸化チタン超微粒子が成長しす
ぎてゲルを白濁させるので不適当である。
In the present invention, the colloid of the dispersion thus obtained is subjected to gelation treatment. This treatment is preferably performed at a temperature of 40 to 60 ° C. If the temperature is too low, the gelation takes too long, so the colloid particles grow too much depending on the titanium oxide ultrafine particles such as titanium oxide colloid used, and if it is too high, the titanium oxide ultrafine particles such as titanium oxide colloid. Is unsuitable because it grows too much and makes the gel cloudy.

【0024】本発明においては、次いでゲル化処理物を
通常500〜1000℃、好ましくは750〜1000
℃の温度で焼成する。焼成時間は通常30分〜2時間、
好ましくは30分〜1時間の範囲で選ばれる。
In the present invention, the gelled product is then usually treated at 500 to 1000 ° C., preferably 750 to 1000.
Bake at a temperature of ° C. The firing time is usually 30 minutes to 2 hours,
It is preferably selected in the range of 30 minutes to 1 hour.

【0025】[0025]

【発明の効果】本発明方法によれば、量子閉じ込め効果
を示し、かつ透明性などの光学特性に優れた酸化チタン
超微粒子分散シリカゲルを、入手容易な原料と電気炉程
度の簡単な設備だけでそれ以上の原料や特殊な装置を必
要とすることなく、簡単に効率よく製造でき、また、酸
化チタン超微粒子を光学的に優れた特性をもつシリカマ
トリックス中に分散しうるという顕著な効果を奏する。
According to the method of the present invention, titanium oxide ultrafine particle-dispersed silica gel exhibiting a quantum confinement effect and excellent optical properties such as transparency can be obtained by using easily available raw materials and simple equipment such as an electric furnace. It has a remarkable effect that it can be easily and efficiently produced without the need for further raw materials or special equipment, and that ultrafine titanium oxide particles can be dispersed in a silica matrix having optically excellent characteristics. .

【0026】本発明方法で得られる酸化チタン超微粒子
分散シリカゲルは、良好な三次非線形感受率を示すと予
想されるので、光メモリや非線形光学材料などのオプト
エレクトロニクス素子用材料としての利用や、また、量
子閉じ込め効果を利用して、例えば光触媒として用いる
と量子効率を増大させうるので、種々の光学材料、電子
材料、化学材料へ応用することができる。
Since the titanium oxide ultrafine particle-dispersed silica gel obtained by the method of the present invention is expected to exhibit a good third-order nonlinear susceptibility, it can be used as a material for optoelectronic devices such as optical memories and nonlinear optical materials, and Utilizing the quantum confinement effect, for example, when used as a photocatalyst, the quantum efficiency can be increased, so that it can be applied to various optical materials, electronic materials, and chemical materials.

【0027】[0027]

【実施例】次に実施例によって本発明をさらに詳細に説
明する。
The present invention will be described in more detail with reference to Examples.

【0028】実施例1 チタンイソプロポキシド4容量部を脱水したエタノール
20容量部で希釈し、これを2規定の塩酸50容量部中
に微量定量ポンプで1容量部/分の速度でかきまぜなが
ら滴下して透明な酸化チタンコロイドを得た。
Example 1 4 parts by volume of titanium isopropoxide was diluted with 20 parts by volume of dehydrated ethanol, and this was added dropwise to 50 parts by volume of 2N hydrochloric acid while stirring at a rate of 1 part by volume / min with a microvolume metering pump. Thus, a transparent titanium oxide colloid was obtained.

【0029】別に、テトラエトキシシラン18mlを特
級エタノール10mlで希釈し、1規定の硝酸10ml
を加えて加水分解し、シリカコロイドを得た。このシリ
カコロイドに、固形分として酸化チタンを1重量%、5
重量%及び10重量%含むように前記酸化チタンコロイ
ドを混合分散したのち、適当な(蓋付き)容器に流し込
み50℃に保った恒温槽中に静置してゲル化させ、その
まま乾燥させた。
Separately, 18 ml of tetraethoxysilane was diluted with 10 ml of special grade ethanol to obtain 10 ml of 1N nitric acid.
Was added and hydrolyzed to obtain a silica colloid. 1% by weight of titanium oxide was added to this silica colloid as a solid content.
The titanium oxide colloid was mixed and dispersed so as to be contained in an amount of 10% by weight and 10% by weight, poured into an appropriate (with a lid) container, allowed to stand in a thermostat kept at 50 ° C. for gelation, and dried as it was.

【0030】このようにして得られた透明な乾燥ゲルを
500〜1000℃で1時間焼成した。得られた焼成物
を透過電子顕微鏡で観察して直径5nm程度の酸化チタ
ン微粒子が分散しているのを確認した。また、その可視
紫外吸収スペクトルを測定した結果、その吸収端は37
0nm付近にあり、バルクの吸収端が390nmにある
のと比べると短波長側に移動していることから、量子閉
じ込め効果が確認された。
The transparent dry gel thus obtained was calcined at 500 to 1000 ° C. for 1 hour. The obtained fired product was observed with a transmission electron microscope, and it was confirmed that titanium oxide fine particles having a diameter of about 5 nm were dispersed. In addition, as a result of measuring the visible ultraviolet absorption spectrum, the absorption edge was 37
The quantum confinement effect was confirmed because the absorption edge of the bulk is near 0 nm and the absorption edge of the bulk is moved to the shorter wavelength side compared to that at 390 nm.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安江 和夫 愛知県一宮市荻原町串作1372番地 (72)発明者 宇敷 建一 愛知県名古屋市千種区北千種3丁目2番地 千種東住宅13棟23号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Yasue 1372, Kushisaku, Ogiwara-cho, Ichinomiya-shi, Aichi (72) Inventor Kenichi Ushiki 3-chome, Chikusa-ku, Nagoya, Aichi 13 13 Chikusa East Housing 13 issue

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化チタン超微粒子をシリカコロイドに
分散したのち、コロイドをゲル化し、次いで焼成するこ
とを特徴とする酸化チタン超微粒子分散シリカゲルの製
造方法。
1. A method for producing silica gel containing titanium oxide ultrafine particles, which comprises dispersing the titanium oxide ultrafine particles in a silica colloid, gelling the colloid, and then calcining.
【請求項2】 シリカコロイドのpHが1以下である請
求項1記載の製造方法。
2. The production method according to claim 1, wherein the pH of the silica colloid is 1 or less.
【請求項3】 コロイドのゲル化を40〜60℃の温度
で行う請求項1又は2記載の製造方法。
3. The production method according to claim 1, wherein the gelling of the colloid is performed at a temperature of 40 to 60 ° C.
【請求項4】 焼成を500〜1000℃の温度で行う
請求項1、2又は3記載の製造方法。
4. The production method according to claim 1, 2 or 3, wherein the firing is performed at a temperature of 500 to 1000 ° C.
JP10995493A 1993-04-13 1993-04-13 Method for producing silica gel containing titanium oxide ultrafine particles dispersed therein Expired - Lifetime JPH085660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10995493A JPH085660B2 (en) 1993-04-13 1993-04-13 Method for producing silica gel containing titanium oxide ultrafine particles dispersed therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10995493A JPH085660B2 (en) 1993-04-13 1993-04-13 Method for producing silica gel containing titanium oxide ultrafine particles dispersed therein

Publications (2)

Publication Number Publication Date
JPH06298520A true JPH06298520A (en) 1994-10-25
JPH085660B2 JPH085660B2 (en) 1996-01-24

Family

ID=14523349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10995493A Expired - Lifetime JPH085660B2 (en) 1993-04-13 1993-04-13 Method for producing silica gel containing titanium oxide ultrafine particles dispersed therein

Country Status (1)

Country Link
JP (1) JPH085660B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227829A (en) * 1995-12-22 1997-09-02 Toto Ltd Photocatalytic, hydrophilic coating composition, method for forming hydrophilic coating, and coated article
JPH09231821A (en) * 1995-12-22 1997-09-05 Toto Ltd Luminaire and method for maintaining illuminance
US6013372A (en) * 1995-03-20 2000-01-11 Toto, Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with superhydrophilic photocatalytic surface, and method of making thereof
US6090489A (en) * 1995-12-22 2000-07-18 Toto, Ltd. Method for photocatalytically hydrophilifying surface and composite material with photocatalytically hydrophilifiable surface
US6165256A (en) * 1996-07-19 2000-12-26 Toto Ltd. Photocatalytically hydrophilifiable coating composition
EP1070679A1 (en) * 1999-07-23 2001-01-24 Asahi Glass Company Ltd. Fine particulate silica gel and fine particulate silical gel internally containing microparticles of a metal compound
US6337129B1 (en) 1997-06-02 2002-01-08 Toto Ltd. Antifouling member and antifouling coating composition
US6524664B1 (en) 1996-03-21 2003-02-25 Toto Ltd. Photocatalytically hydrophilifying and hydrophobifying material
US6830785B1 (en) 1995-03-20 2004-12-14 Toto Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof
JP2005224698A (en) * 2004-02-12 2005-08-25 Asahi Kasei Chemicals Corp Photocatalyst member
JP2006167594A (en) * 2004-12-15 2006-06-29 National Institute Of Advanced Industrial & Technology Crystal structure having periodic structure
JP2019048753A (en) * 2017-09-12 2019-03-28 富士ゼロックス株式会社 Silica-titania composite aerogel particle, method for producing silica-titania composite aerogel particle, photocatalyst-forming composition, photocatalyst and structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013372A (en) * 1995-03-20 2000-01-11 Toto, Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with superhydrophilic photocatalytic surface, and method of making thereof
US6830785B1 (en) 1995-03-20 2004-12-14 Toto Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof
US6090489A (en) * 1995-12-22 2000-07-18 Toto, Ltd. Method for photocatalytically hydrophilifying surface and composite material with photocatalytically hydrophilifiable surface
JPH09227829A (en) * 1995-12-22 1997-09-02 Toto Ltd Photocatalytic, hydrophilic coating composition, method for forming hydrophilic coating, and coated article
JPH09231821A (en) * 1995-12-22 1997-09-05 Toto Ltd Luminaire and method for maintaining illuminance
US6524664B1 (en) 1996-03-21 2003-02-25 Toto Ltd. Photocatalytically hydrophilifying and hydrophobifying material
US6165256A (en) * 1996-07-19 2000-12-26 Toto Ltd. Photocatalytically hydrophilifiable coating composition
US6337129B1 (en) 1997-06-02 2002-01-08 Toto Ltd. Antifouling member and antifouling coating composition
EP1070679A1 (en) * 1999-07-23 2001-01-24 Asahi Glass Company Ltd. Fine particulate silica gel and fine particulate silical gel internally containing microparticles of a metal compound
US6495257B1 (en) 1999-07-23 2002-12-17 Asahi Glass Company, Limited Fine particulate silica gel and fine particulate silica gel internally containing microparticles of a metal compound
JP2005224698A (en) * 2004-02-12 2005-08-25 Asahi Kasei Chemicals Corp Photocatalyst member
JP4520175B2 (en) * 2004-02-12 2010-08-04 旭化成ケミカルズ株式会社 Photocatalyst
JP2006167594A (en) * 2004-12-15 2006-06-29 National Institute Of Advanced Industrial & Technology Crystal structure having periodic structure
JP2019048753A (en) * 2017-09-12 2019-03-28 富士ゼロックス株式会社 Silica-titania composite aerogel particle, method for producing silica-titania composite aerogel particle, photocatalyst-forming composition, photocatalyst and structure

Also Published As

Publication number Publication date
JPH085660B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
US7344591B2 (en) Stabilized suspension of titanium dioxide nanoparticles and methods of manufacture
KR100374478B1 (en) Method for Preparing an Anatase Typed-Titanium Dioxide Photocatalyst and Photocatalyst Produced by the same
JP2783417B2 (en) Manufacturing method of rutile type titanium oxide sol
JPH06298520A (en) Production of silica gel containing dispersed ultrafine titanium oxide particle
Zeng et al. Synthesis of lithium niobate gels using a metal alkoxide− metal nitrate precursor
CN107151029B (en) A kind of sol-gel self-combustion synthesis preparation process of tetra phase barium titanate powder
JPH0729771B2 (en) Highly dispersed sol or gel of monoclinic zirconia ultrafine crystals and method for producing
JP5126783B2 (en) Method for producing rutile type titanium oxide fine particles
US5911965A (en) Process for producing tungsten oxide
US7175825B2 (en) Method of producing titania solution
JP2000053421A (en) Titanium oxide sol and its preparation
TWI520909B (en) Production method of rutile form-titanium oxide sol
JPH0710535A (en) Production of alumina sol excellent in transparency and having satisfactory viscosity stability
JPS6033766B2 (en) Manufacturing method of zinc oxide ultrafine powder
JP3137623B1 (en) Dispersed gel and solution of titanium oxide fine particles and methods for producing them
KR101763357B1 (en) Preparation method of rutile titanium dioxide powder
CN109502643B (en) Boron-magnesium co-doped VO2Powder and preparation method and application thereof
Balabanov et al. Synthesis and properties of yttrium hydroxyacetate sols
JP2010138020A (en) Organic solvent dispersion of titanium oxide fine powder and process of producing the same
Prakash et al. An investigation on optimization of instantaneous synthesis of TiO2 nanoparticles and it’s thermal stability analysis in PP-TiO2 nanocomposite
JPH06298533A (en) Production of titanium oxide colloid
JP2820251B2 (en) Titanium oxide sol
JP3877235B2 (en) Rutile-type titanium dioxide particles and production method thereof
CN1194044C (en) Preparation of silica white from silicon sol
KR20080004723A (en) Photocatalyst coating solution

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term